
A Decomposition-Based Probabilistic Framework for Estimating the Selectivity
of XML Twig Queries

Chao Wang, Ruoming Jin, Srinivasan Parthasarathy

Department of Computer Science and Engineering, The Ohio State University
Contact:

�
wachao, jinr, srini � @cse.ohio-state.edu

Abstract

In this paper we present a novel approach for es-
timating the selectivity of XML twig queries. Such
a technique is useful for approximate query answer-
ing as well as for determining an optimal query plan,
based on said estimates, for complex queries. Our ap-
proach relies on summary structure that contains oc-
currence statistics of small twigs. We then present a
novel probabilistic approach for decomposing larger
twig queries into smaller ones. We then show how in
conjunction with the summary information it can be
used to estimate the selectivity of the larger query. We
present and evaluate two approaches for decomposi-
tion and compare this work against a state-of-the-art
selectivity estimation approach on synthetic and real
datasets. Quantitatively, our results show that the new
approach is much more efficient in terms of the time it
takes to construct the summary and estimate the selec-
tivity of a twig query. Qualitatively, the new approach
is more accurate on most datasets.

1 Introduction

XML is gaining acceptance as the standard for
data representation and exchange over the World Wide
Web. However, for wide spread deployment and use
it is becoming increasingly clear that the design of an
efficient high level querying mechanism is necessary.
Since XML documents may be represented as a rooted
and labeled tree, this necessity has led to the devel-
opment of tree-based (twigs) querying mechanisms.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Twig queries describe a complex traversal of the doc-
ument graph and retrieve document elements through
an intertwined (i.e., joint) evaluation of multiple path
expressions.

Given the importance of twig queries as a basic se-
lection mechanism in XML[15, 14, 3], efficient sup-
port for accurately estimating the selectivity of twig
queries is crucial for query optimization of complex
queries. This is analogous to selectivity estimation in
relational databases [4, 6, 7, 11]. Accurate selectiv-
ity estimation is also desirable in interactive settings
and for approximate querying. For instance, an end-
user can interactively refine her query if she knows that
the current query will result in an overwhelming result
set. Similarly, the estimated value can be returned as
an approximate answer to aggregate queries using the
COUNT primitive.

The early work in this area has focused on determin-
ing the selectivity of path expressions (a special case
of twig queries) [10, 9, 1, 17, 16, 8]. The Lore sys-
tem [10] adopts a Markov model based approach for
this purpose. Markov table[1], improves on the Lore
system through the use of intelligent pruning and ag-
gregation to reduce the space requirements.Recently,
Lim and Wang proposed XPathLearner [9], an on-line
tunable Markov table method which has been shown
to be effective for path expression selectivity. A key
limitation of these methods is that they do not adapt
to twig queries well since path correlations are not ac-
counted for.

More recently researchers have focused on selec-
tivity estimation for twig queries [5, 3, 13, 14,
15]. Examples include Correlated Sub-Trees [3], XS-
ketches [13, 15], and TreeSketches [14]. Among these
it has been shown that TreeSketches is the most ac-
curate and efficient method presented to date [14].
TreeSketches [14], a successor of XSketches, clusters
the similar fragments of XML data together to gener-
ate its synopsis. The granularity of the clustering de-
pends on the memory budget.

To estimate the selectivity of XML twig queries,

all the above approaches as well as the approach pre-
sented in this article define a summary data structure
that houses important statistics about the data from
which the selectivity may be estimated. Important is-
sues at hand include: the quality of estimation from the
given summary; time to construct the summary; and
finally the time to estimate the selectivity of queries
from the summary. To address these issues we present
a new approach to selectivity estimation. The key con-
tributions of our approach are highlighted below.

First, we present a probabilistic framework under
which the selectivity of a query (represented as a
rooted tree) can be estimated from its subtrees. We
present and evaluate two different strategies for de-
composing the query into subtrees. These subtrees can
then be used to arrive at a selectivity estimate. We
present a theoretical basis for this approach. We also
show that our decomposition framework subsumes the
Markov model based XML path selectivity estimation
as a special case.

Second, to summarize an XML dataset we leverage
the use of frequent tree mining. A dynamically de-
termined subset1 of all the occurred subtrees up to a
certain size (number of nodes), coupled with associ-
ated occurrence statistics, forms the basis of our sum-
mary structure. More specifically the dynamic subset
we store is based on the notion of (non)-derivable oc-
curred patterns. We also rely on fast searching mech-
anisms to locate the subtrees of a given twig query
within our summary structure.

Third, we conducted an extensive experimental
study to examine the benefits of our approach and
compare it against TreeSketches2 . Empirical results
show that our approach takes several orders of mag-
nitude less time to construct the summary, and is one
to two orders of magnitude faster when computing the
selectivity estimates. In our qualitative assessment we
also find that our approach compares favorably with
TreeSketches. We also offer a detailed explanation as
to why the new approach(labeled TreeLattice) outper-
forms TreeSketches [14]).

2 Problem Definition and Related Work

2.1 Problem Definition

An XML document can be structurally modeled as
a tree (if one ignores IDREFs) where each node is typ-
ically associated with a tag or a value. In practice,
values are almost always associated with leaf nodes

1Due to storage costs, the complete lattice (all frequent patterns) can-
not be held in memory, we can only store a portion of it which is data
dependent and dynamic.

2We are grateful to Neoklis Polyzotis for providing us with the
TreeSketches executable and also for helping us tune the approach for a
fair comparison.

computer

laptops desktops

laptop laptop

brand price brand price

t
0
: //laptop

t
1
: brand t

2
: price

(a) (b)

Figure 1. (a)A sample XML data tree; (b)A
sample twig query

and tags with interior nodes. Similar to prior work by
Polyzotis and Garofalakis [12], in this paper we do not
model value elements.

More formally, let � be an alphabet, let ��� be the
set of strings of finite length on � , and ���������
be a small set of strings. Let � (representing an
XML document) be a large rooted node-labeled tree
�
	������������� where non-leaf nodes are labeled with
strings from ��� (element tags and attribute names),
and leaf nodes are labeled with strings from � � . Fig-
ure 1(a) shows a sample xml document containing on-
line auction information.

A twig query ��� is defined as a node-labeled tree
� � �� � ��� � � , where each node ����� � is labeled with
a path expression !�� . At an abstract level, each node
�"� corresponds to a subset of elements, while path !��
describes the structural relationship that must be satis-
fied between elements in ��� and elements in its parent
node.

We next define the notion of a twig match given by
Chen et al. [3].

Definition 1 A match of a twig query � � 	
�� � ��� � �
in a node-labeled data tree �#	
��$�%���&��� is defined by
an ')(*' mapping: + ,- �/.0 1� such that if +2�435�2	76
for 38�9 � and 6:�;1� , then (i) Label(u) = Label(v)
and (ii) if �43)��3=<>�?�@� � , then �A+2�43B�C�D+2�43E<>���?�@��� .

The selectivity F��G� � � of twig query � � is defined
as the number of matches of � � in the data tree. Fig-
ure 1(b) shows a sample twig query and the encircled
subtrees in Figure 1(a) show its two matches in the
sample XML data tree. Our objective is to accurately
estimate the selectivity of an XML twig query H in
as efficient a manner as possible given constraints in
space (summary storage) and time (summary construc-
tion and estimation time).

2.2 Related Work

Chen et al. [3] are among the first to study the prob-
lem of estimating twig counts. They propose the Cor-
related Sub-path Tree(CST) method for estimating the
selectivity for XML twig queries. A CST is a suffix
tree based data structure to store all the paths up to

certain length. To estimate the selectivity of a given
twig query, this approach needs to decompose the twig
into a set of paths stored in the CST. Note that even
CST approach and our TreeLattice approach both de-
pend on decomposing a large twig into the basic twigs,
two approaches are quite different in several perspec-
tives. First, our approach utilizes the subtrees instead
of paths as the summary of an XML document to esti-
mate a twig query. Our results have shown the subtrees
capture the structure of an XML document very effec-
tively. In contrast, CST has to store additional infor-
mation associated with each path, denoted as the set
hashing signature, to capture the correlation among
paths, in order to perform the selectivity estimation.
Also, our approach is essentially an generalization of
the Markov model based approach for XML path se-
lectivity estimation(Subsection 3.4). Note that when
dealing with XML path selectivity, the Markov prop-
erty based approach has been shown to be more effec-
tive than the CST-based approach [3].

XSketch [12] exploits localized graph stability in
a graph-synopsis model to approximate path and
branching distribution in an XML data graph. Its suc-
cessor, XSketches [13], integrates support for value
constraints as well, by using a multidimensional syn-
opsis to capture value correlations. They augment XS-
ketch model [15] with new distribution information to
estimate the selectivity of XML twig queries. Also,
they show that XSketches performs better than CST
and yields estimates with significantly lower estima-
tion error.

TreeSketches [14], a successor of XSketches, clus-
ters the similar fragments of XML data together to
generate its synopsis. The granularity of the cluster-
ing depends on the memory budget. Also, it outper-
forms its predecessors, in terms of both accuracy and
construction time.

A particular case of the twig query is the XML path
query. The wide use of the XML path queries has mo-
tivated many researches on estimating the selectivity
of XML path queries. Lore system [10] is one of the
early work in this direction. It stores statistics of all
distinct paths up to length � , where � is a tunable
parameter. Selectivity of paths longer than � are es-
timated assuming the Markov property. Aboulnaga et
al. [1], extends the idea used by Lore system in their
Markov table method. The Markov table method con-
sists of a set of pruning and aggregation techniques on
the statistics used in the Lore system and is therefore
an improvement over the method used in the Lore sys-
tem because it reduces the space requirement. Aboul-
naga et al. [1], also proposes a tree-based method
known as path tree, for estimating the selectivity of
XML paths without data values. A path tree is a sum-
marized form of the XML data tree. Compared with
the Markov table method, this approach is inferior in

terms of estimation accuracy on real data sets [1].
XPathLearner [9], is an on-line self-tuning Markov

table based approach to estimate the selectivity of
XML paths. The statistics of the data is collected in
an on-line fashion, thus is workload aware. Our ap-
proach by design is also incremental in nature and can
maintain summaries on-line although we do not eval-
uate this aspect in this paper. We note that our ap-
proach is provably a generalization of these Markov
model based approach for more complex twig queries.
Recently, Wang et al. [16] propose the use of Bloom
Histograms to estimate XML path selectivity. It is the
first approach that gives a theoretical bound on the esti-
mation error. However, it does not handle twig queries.

3 An Estimation Framework based on Twig
Decomposition

Similar to the previous Markov Table approach to
the XML path selectivity estimation problem, we use
the counting information of small twigs as the sum-
mary of the original XML data. Since we rely on the
lattice-based framework for collecting such informa-
tion, we name this structure lattice summary. The lat-
tice summary consisting of twigs of size � or less is
denoted as

���
or � -lattice. For twig selectivity esti-

mation, if the twig is small and it’s in the lattice sum-
mary, then we just need to retrieve its count from the
summary directly and use this as the estimate. On the
other hand, if the twig is large, and we cannot obtain
its count directly from the lattice summary, then we
have to come up with novel approaches for this.

The basic question we seek to answer in this section
is given the lattice summary

���
, how can we estimate

the selectivity of a twig query of size � where �����
accurately. The details of the lattice summary will be
described in the next section.

Before we answer this question we will first detail
our solution to the simpler problem of estimating the
selectivity of a twig of size � from two twigs of size� (7' with an � (�	 sized common subtree under the
assumption of conditional independence.

3.1 Augmenting Twigs

Suppose we have two basic twigs ��
 and �� , and
they differ by only one edge (Figure 2(a)). If � is their
common part, then we can express �
 as �������
��
and �� 	 ��������� � , where ��
 and ��� are the two
distinct edges. The edges are distinct in that they ei-
ther attach to different nodes of � , or the two addi-
tional nodes � and � introduced by these two edges
are different. For the sake of expository simplicity,
we assume that for a given parent all children are dis-
tinct within a twig query. The two twigs can be aug-
mented together to generate a larger twig, denoted as

� �

�
��� ���

�	��
 ���

�������

Figure 2. (a) Augmented twigs �
 � � � ; (b)
Growing �
 from �

�
 � � � 	7� � ���
�� � ��� � � . Assuming the counts of �

, �� , and their common part � are available, denoted as
F��G�
 � , F��G� � � , and F��G� � respectively, we are interested
in estimating the count of the augmented twig, �
 �?�� ,
based on these information.

A complication we have here is that in the XML
document the occurrence of T could be coupled with
one or more instances of edge �
 as shown in Fig-
ure 2(b). Let � �
 denote the occurrence of � with �
edges of type ��
 . Then it is easy to see that the selec-
tivity of �
 is given by the decomposition formula3:

F��G�
 � 	#F��G�

 ��� 	��@F��G� �
 ��������� ��� F��G���
 �
and similarly the selectivity of � � is given by:

F��G� � �2	#F��G�
� ��� 	 �@F��G� �� ��������� �!�@F��G�
�
� �

In order to derive our formula for estimating the
augmented twig �
 � � � , we assume that the event of
growing T1 from T is conditionally independent from
the event of growing T2 from T. More formally we
have:

!#" �G� �
 � �%$��& � �2	#!#" �G� �
 & � �'�@!#" �G�%$��& � �
where:

!#" �G� �
 & � �2	#F��G� �
 �)(F��G� �
and:

!#" �G� �� & � �2	#F��G� �� �)(F��G� �
Theorem 1 Given two non-trivial rooted and labeled
trees �
 and �� , which differ by only one edge, let �
be the common part between ��
 and �� , then the ex-
pected count of �
�� � � can be estimated by F��G��
 �*�
F��G� � �)(F��G� � .

Proof:Given the tree growing independence as-
sumption, we can treat the counts of �
 �8� � as a

3The coefficients in front of each term represents the number of choices
one has to grow from � to �,+ .

random variable. The expected counts of this random
variable, � � F��G�
 � � � ��� , is as follows.

�.-0/2143652708#908;:<143>=?1�@BA	52AC1�DFEG1H/I3KJ0LCME�
� � F��G�
�� � � ����	 �N

�O

�N
$ O

� � F��G� �
 � � $� ���

	 �N
�O

�N
$ O

�C�P�RQS�@!#" �G� �
 � �%$��& � �'� F��G� �

�.TVUF527W8#:,1�D09XA	52AC1�D0MHL4A.DW9X8�=Y8;D0908ZD0:<8[M\@]@2J03^=W5_A	14D��
	 �N
�O

�N
$ O

�P�RQS�@!#" �G� �
 & � �'�@!#" �G�%$��& � �'� F��G� �

	#F��G� �'� �N
�O
 �P� !#" �G�

�
 & � �'� �
�N
$ O

Q`� !#" �G� $��& � ���

	#F��G� �'� �N
�O
 �P�@!["1�G�

�
 & � �%� �
�N
$ O

QS� F��G� $� �F��G� � �

	#F��G� �'� �N
�O
 �P� !#" �G�

�
 & � �'� '
F��G� � �/�

�N
$ O

QS�@F��G�%$� ���

�baV7W8[9X8;:<1�3^=?1H@2Ac5_A	14DF1HEd:,1�JXD45B@'1HE*aVe-��F��baVe ���
	 F��G� �'� �N

�O
 �%�@!#" �G�
�
 & � �%� F��G�� �F��G� �

�baV7W8[9X8;:<1�3^=?1H@2Ac5_A	14DF1HEd:,1�JXD45B@'1HE*a`f ��F��ba`f ���
	#F��G� �'� F��G�
 �F��G� � �

F��G�� �
F��G� �

	#F��G�
 �%�@F��G� � �)(F��G� �
g
In our approach, we will use the expected count of �
��
� � as the estimator to estimate the count of �
�� �� ,
denoted as hF��G�
 � �� �2	#F��G�
 �'�@F��G�� �)(F��G� � .

An important lemma that follows from this theorem
is stated next.

Lemma 1 Given two subtrees ��
 and �� which share
a common subtree � , where

& � & 	 �F� � � & �
 & � & �� & ��('
then F��G�
 � �� � can be estimated as follows:

F��G�
 � �� ��	 F��G�
 �'� F��G� � �F��G� �

Proof Sketch: From the statement of the lemma we
have �
�� � � 	 � . Without loss of generality we can
assume the following hold: & ��
 & 	�� ; & �� & 	�� ; ����� ;
and can therefore deduce & � & 	��=(' .

Now, we pick a tree, �
�� , such that: i) �

�� contains
� � ; ii) �
 � � �� 	 �
�� �� ; and iii) & �
 � � �� & , denoted
as & � � & 		� (' . We would like to note here that con-
dition i) can be derived from the other two conditions
but we explicitly state it here for the sake of expos-
itory simplicity. One can find such a tree by essen-
tially starting with the intersection component (�) of
�
 , and expanding it to all but one element of �
 and
then union it with � � to get �

�� . Now from Theorem 1
and the way we pick �

�� we have:

F��G�
 �#� � � 	 F��G�
 � � �� � 	

� �<+���
 � �

�� �

� � � � 	

� �,+����
 � �

�� �

� �<+� � �� � (1)

Now, we pick a tree, similar to the above instance, �
� �� ,

such that: i) �
� �� contains �� ; ii) �

�� 	 � � � � � �� ; and iii)

& � � � � � �� & , denoted as & � � � & 	�� (.
From Theorem 1 we know have: F��G�

�� � 	

� � � �� ���

� � � �

� � � � � � �� � (2)

Substituting this (2) in (1) and canceling terms we

have: F��G�
 � � � ��	�
 � �,+���
 � �
� �� �

� � � � � � �� �

Expanding �
�

we have: F��G�
 � �� ��	�
 � �<+��
 � �
� �� �

� � + � � �� � � � �� �

Since we know that �
� �� is a strict subset of �

�� we

can reduce this to: F��G��
 � � � ��	�
 � �,+���
 � �
� �� �

� � + � � � �� �

The rest of the proof relies on repeating this process
till we get: F��G�
 � � � ��	
 � � + ���
 � � � �

� �<+�� � � �g
3.2 Recursive Decomposition Scheme

This decomposition is obtained directly from
Lemma 1. Since each tree has at least two leaf nodes(if
the root node has degree ' , it can also be considered a
leaf node for our purposes), it is guaranteed that we
can always obtain two subtrees(�
 and ��) of the orig-
inal tree � by removing one or the other of its two leaf
nodes respectively. If the size of � is � , then the size
of �
 and �� will be ���@(' � . Suppose the common
part between �
 and �� is ��� , then we can apply the
above formula to estimate the selectivity of � , given
the selectivity of �
 , �� and ��� .

This decomposition scheme ensures that the overlap
between �
 and �� is maximal and thus it ensures that
correlation of occurrence is well captured. If �
 , � �

(a)

dc

a

b

f

e g
d

a

b

f

e g

dc

a

b

f

g

+

d

a
b

f
g

d

a

b

f

e

d

a

b

f

g
dc

a

b

f

a

b

f

g

d

a

b

f
d

a
b

f d

a
b

e

a

b

f

g

d

a

b

f d

a

b

f dc

a

b

+ +

+ + + +

(b)

dc

a

b

f

e g
dc

a

b dc

b

e

d

b

f

g

d

b

f

e

+ + +

Figure 3. (a)Recursive Decomposition
Scheme; (b)Fix-sized Decomposition
Scheme

are still too large that they are not in the lattice sum-
mary, then we execute the above decomposition pro-
cess recursively, until we reach the brim of the lattice
summary. We present an example of recursive decom-
position in Figure 3a. The nodes in bold are chosen to
be eliminated at each recursion. We use a � -lattice in
this example. Figure 4 presents the formal algorithm
of the estimator.
Voting Scheme Extension: We note that a tree may
have more than two leaves. In this case the choice
of leaf nodes for decomposition may result in differ-
ent estimates. Correspondingly, we can have multi-
ple estimations at each recursive step. In the optimiza-
tion herein, we record all estimations at a given level
and average them to obtain the resulting estimate to be

Algorithm: Estimate (� ,
�

)
Input: � , an XML twig;�

, a � -lattice summary;
Output: hF , selectivity estimation for � ;
1. if �����B��� ��� �

look up � in
�

, and return the associated count;
2. else

pick a pair of � ’s nodes(6
 , 6��) having degree of ' ;
remove 6
 from � to get �
 ,
remove 6�� from � to get � � ;
evaluate ��� = �
 � �� ;hF 	"!$#�% �

�'&
%)(
� �<++* ,-� � !$#.% �

�'&
%)(
� � � * ,/�

!$#�% �
�'&
%)(
� �102* ,-�

Figure 4. Algorithm for Recursive Decompo-
sition Estimator

Input: � , an XML twig of size � and the lattice
level � ;

Output: � , a set of � -subtrees satisfying the condition
in Theorem 	 ;

1. Order all nodes of � according to pre-order;
i.e., 6
 ��6�� ��6 � �2�2�2� ��6 �2. Choose the subtree �
 consisting of the first � nodes

from the node list; and label them as covered;
; �
 must be a valid subtree
Initialize ��� by �
 , add �
 to � ;

3. for each remained uncovered node 6��
4. pick a subtree � � containing 6 � as the

rightmost node, and all other nodes are from � � ;
5. add 6 � to � � , label 6 � as covered,

and add � � to � ;
6. return � ;

Figure 5. Fix-sized Decomposition Algorithm

used in the next step. Intuitively, we expect to avoid
skewed estimates resulting from poor initial choices
and expect that this optimization will relieve the error
propagation during the course of the decomposition.
Different voting schemes can be applied here account-
ing for higher order statistical moments and these are
under evaluation. We will demonstrate the power of
this optimization in Section 5.

3.3 Fix-sized Decomposition Scheme

Another approach to decomposition may be to use
smaller, fix-sized subtrees(��� ’s) to cover � . Toward
this end we propose a step by step, progressively cov-
ering scheme using fix-sized subtrees.

Assume the maximal pattern in the summary is of
size � , in other words, we keep the information of all
subtrees no larger than � . We sort all nodes in the twig
in pre-order fashion. Then we choose a � -subtree of
� to cover the first � nodes. Let the covered portion
of T be denoted as ��� . Then at each following step we
cover a new node 6 using � � (�� , where all nodes except
6 of � � (�� are a subset of ��� . Correspondingly, we up-
date ��� as the union of the previous ��� and � � (�� . As
can be seen, � � will grow progressively, until it covers
all nodes in � . Also, it always holds that the com-
mon part between � � and � � (�� is a ��� (' � -subtree.
Clearly, � can be covered by exactly ���B��� ���G� � (�0� ' �
� -subtrees. The correlation between two subtree pat-
terns is captured by their common part. In Figure 3(b)
we present an example of this decomposition. Newly
covered nodes are highlighted at each step. Figure 5
presents the formal algorithm of the fix-sized decom-
position algorithm.

A more formal theorem and proof of correctness
follows.

Lemma 2 Given a rooted ordered labeled tree � of

size � , it can be covered by � (���8' of its subtrees of
size � (� � �), i.e., �
 � � � �2�2�2� � � � �2�2�2� � � �	�
��
 , such
that � � � �� � �
$ O
 � $ � is a ��� (' � -subtree.

Proof:Let � �� � ' � � � �@(� �#' � be the subtree of �
covered by the first � subtrees, i.e. � �� 	 �$ O
 � $. We
will prove that one can always find a subtree � � �
 �)� �� (�S� ' such that the size of the common subtree
between � �� and �B� �
 are � (' , and further, the size of
� �� (the number of nodes) is ��� � (7' . We prove this
statement by induction.
Base Step: For � 	 ' , the first � nodes in the prefix
order of � always compose a � -subtree �
 . Clearly,
the size of � �
 	��
 is � and one of the nodes in ��

must have an edge to a node which is not covered by
�
 . (Otherwise, the tree has been completely covered
by �
 , i.e. � 	 � .)

We consider the following three cases to find a sub-
tree �� which includes the new edge �
 .
Case 1: if the edge �
 is adjacent to a non-leaf node
of �
 , then we can build � � by simply removing one
of the leaf node from �
 and augment it with the new
edge ��
 ;
Case 2: if the edge �
 is adjacent to the only leaf node
of �
 , (i.e., �
 is a path), then we can build � � by re-
moving the root node of ��
 , extend it to include the
new edge ��
 ;
Case 3: if the edge �
 is adjacent to a leaf node of �

and �
 has more than one leaf node, then we can build
� � by removing one of leaf nodes not adjacent to �
 ,
and augment it with the new edge �
 .

Clearly, every possible, co-occurrence of �
 and �

is covered in these three cases, and in each of them,
we can find at least one � -subtree � � in � such that
� � � � �
 	�� (' .
Induction Step: Next, assuming for ' � �'� �%(��� ' ,
our statement holds. For �%� ' , we have a covered
subtree � �� with �P� � (' nodes, we need to find a
� -subtree � � �
 in � such that the size of the common
subtree of � � �
 and � is � (' .

Clearly, if � � � (�S� ' , the size of the subtree
� �� is �X� � (' � � . Therefore, one of the nodes in
� �� must have an edge � � adjacent to a node which is
not covered by � �� . Also, each node in � �� has been
covered by at least one � -subtree. Let the node in � ��
adjacent to the edge � � is � . Consider � & be one of the
� -subtrees, in �
 � �� ������� � �B� , that contain the node � .
We can then build �5� �
 using the same method as in
the base step (Note that we treat � & as �
 in this case).

As a result the size of the common subtree between
�=� �
 and � �� is & �B� �
 � � �� & 	 & �=� �
 � � & & 	��?(' . The
size of � �� �
 	 � �� �?�B� �
%	 � �� � ��� � � is �]� �2('Z�@'�	
�C���#' �W� � (' .

For ��	�� (��� ' , we have the size of � ��	�
��
 to
be � (��� '*� � (' 	 �8	 & � & . This suggests we

covered the entire tree � , and therefore completes our
proof.

g
To obtain a selectivity estimate from this fix-sized

decomposition covering scheme we rely on Lemma 3
described next.

Lemma 3 Assume we have a twig query � decom-
posed into � -subtrees, i.e., �
 , � � , . . . , � � , . . . , � � �
 �
 ,
and,

� � �
%	 �B� � ��
� �
$ O
 � $ � , 	 � � � � (�%� ' . Then

the selectivity of � may be estimated as follows:

hF��G� � 	
� �	�
��
�O
 F��G�B�A�
� �	�
$ O
 F��

�
$ �

Proof:Let � �� � ' � � � � (�#�7' � be the subtree of
� covered by the first � subtrees, i.e. � �� 	 �$ O
 � $.Therefore, our final estimator will be as follows.

hF��G� ��	 hF��G� �� �
 �%�@F��G� � �
 �
 �F�� � � �
 �
	 hF��G� ��	�
 �
 �'�@F��G� � �
 �%�@F��G� � �
 �
 �F�� � � �
 �
 �%�@F�� � �	�
 � �����

	 hF��G�
 �%� F��G� � �'�������H�@F��G� � �
 �%�@F��G� � �
 �
 �F�� �
 �%�K�������@F�� � � �
 �
 �'�@F�� � �	�
 �
	

� �	�
 �
�O
 F��G�=� �
� �	�
$ O
 F��

�
$ �g

Voting Scheme Extension: In this scheme again we
have multiple choices when decomposing the twig
query. If we keep all possible decompositions, then
at the end, we can apply the same voting scheme de-
scribed earlier. However, empirical study shows that
the benefit of voting scheme to fix-sized decomposi-
tion scheme is not as significant as it is to the recur-
sive decomposition estimator. Intuitively, the reason
is that for the recursive decomposition estimator, we
estimate the selectivity in a bottom-up fashion. The
voting scheme can efficiently reduce the propagation
of the error, especially in the first several recursions.
On the other hand, for the fix-sized decomposition es-
timator, the voting is only applied at the very end so
the errors have already propogated. As part of ongo-
ing work we are evaluating if alternate voting schemes
can help here.

3.4 Implications on Path Selectivity Estimation

The effectiveness of Markov model based XML
path selectivity estimation approaches has been shown
by [1]. Lemma 4 demonstrates that both of our de-
composition approaches subsume the Markov model
based XML path selectivity estimator as a special case.

Lemma 4 Given a TreeLattice with an � -tree sum-
mary, the selectivity estimate for an XML path � 	
�
�(� �B(��B(�2�2��(� � � � � �is given by the Markov model based formula [9, 1]:

������
	����������������������������� ��������� 	"!
�����#
$�% �

����� ��� $ ���&��� �"��������� ��� $ 	
��������� $ ���&��'(�"������������� $ 	

Proof:We prove this statement by induction. The
following proof shows that for both the recursive de-
composition estimator and fix-sized decomposition es-
timator the resulting estimate of an XML path expres-
sion will be the same as an estimate derived from the
Markov model based approaches.
Base Step: For � 	 � �#' , � 	7�
 (� � (� � (�2�2��(� � �

According to our decomposition rules, � will be
decomposed into two subpaths: �
 (� � (�2�2��(� � , and
� �](� �B(�2�2��(� � �
 ; their common part is also a path,
� �](� �B(�2�2��(� � . Thus, we have the estimate for F��G� �
as follows:

������
	�� ����� � �)� ' �"�����*�)� � 	
!+����� ' ����,(�"���)����� ����� 	
����� ' ����,(�
��������� � 	

Induction Step: Next, assuming for all � � � �
� , the lemma holds. For � ��' , we decompose �
into two � -subpaths -
 	 �
�(� �B(�2�2� (�
 and - � 	
� �](� �B(�2�2��(�
 �
 , and their common part is a � (
' -
subpath - � 	 � � (� � (�2�2��(�
 , and according to the in-
duction assumption, we may estimate the selectivity of
-
 �*- � �*- � as follows:

����/.0�)	�������21 ���&��� �����*�)�213	"!
1 ���#
$�% �

����� 1 � $ ���������4��������� 1 � $ 	
�����21 � $ �����5' �4���������21 � $ 	

����/. ' 	������� 1 �����5'"��������� 1 ���6	
!
1 ���#
$�% �

�����21 � $ �����5' �"�)�������21 � $ ��� 	
�����21 � $ ����� , �"�)�������21 � $ ��� 	

������
	�������21 ������� ���)�*���217	"!
1 ���8���#
$9% �

����� 1 � $ ���������4��������� 1 � $ 	
�����21 � $ �����5' �4���������21 � $ 	

Simplifying we get:

������"	�� ����:.;�)	"! ����/.<'�	
����/.<,)	

������21 �����5' ���)�*�)�21 ��� 	"!
1 �������#
$�% �

�����21 � $ ���&��' �"�)���*�)�21 � $ ��� 	
�����21 � $ ���&� , �"�)���*�)�21 � $ ��� 	

Therefore, the lemma holds.
g

4 Lattice Summary and Implementation De-
tails

In the previous section, we have shown how to use
basic twigs to estimate the selectivity of large queries.
These basic twigs form the statistics of the original
XML data. Here, we will briefly discuss how we build
and maintain such statistics in TreeLattice.

4.1 Building the Statistics

We rely on the lattice-based framework for enu-
merating all occurred subtree patterns as described in
Freqt [2] and TreeMiner [18]. We build the statistics in
a level-wise fashion. In other words, we collect the oc-
currence statistics of ' -subtrees first, then 	 -subtrees,�
-subtrees, and so on. Since the number of all possi-

ble subtree patterns that occur in the XML data tree
is potentially very large, we stop at a given level � ,
depending on our memory constraints. We use the re-
sulting � -lattice as the statistics of the whole XML
data tree.

4.2 Storing the Statistics

We have adopted the Freqt [2] tree mining algo-
rithm to build the lattice summary of the XML data.
The storing data structure should be very concise, and
also, it should be very convenient when estimating the
selectivity of the twig queries.

Aboulnaga et al. [1, 9] demonstrate that the use of
a hash table to store the path statistics for estimating
the selectivity of XML path queries is an efficient ap-
proach. We adopt a similar approach here to store
the lattice statistics. We also considered a prefix-tree
based approach, but found empirically, that chasing
prefix trees are not very efficient for this purpose. The
main problem with prefix trees was the fact that it re-
quired quite a bit of pointer chasing.

4.3 Pruning Derivable Statistics

The summary records the occurrence statistics of
basic twigs. There exists redundancy in the summary
that can be pruned to reduce the size of the summary.
We first formally define the notion of a � -derivable pat-
tern in this context.

Definition 2 A twig pattern is � -derivable if and only
if its true selectivity is within an error tolerance of � .
to its expected selectivity according to TreeLattice.

By definition 2, � -derivable patterns have the exact
true selectivity as their expected selectivity. It is there-
fore safe to prune away the � -derivable subtree pat-
terns from the lattice summary without sacrificing the
quality of estimations. As a result, we have more space
to store more non-derivable patterns in the lattice.

Lemma 5 The estimation given by TreeLattice with a
lattice summary

�
is exactly the same as that when � -

derivable patterns are removed from
�

.

The above idea can also be generalized to vary �
and thereby control the trade-off between accuracy and

Algorithm: Pruning � -derivable patterns
Input:

� � � � � 	 � and �
Output:

� <� , the compressed lattice summary
1. Initialize

� <� by ' and 	 -subtree patterns;
2. � 	 � ;
3. While � � �
4. For each � -subtree pattern -
5. Estimate F���-5� and compute the estimation

error � ;
6. if � ��� then add - to

� <� ;
7. �[� � ;
8. return

� <� .

Figure 6. Pruning � -derivable patterns algo-
rithm

memory utilization. Figure 6 presents the formal al-
gorithm of pruning � -derivable patterns from a given
lattice

� �
.

5 Experiments

In this section, we examine the performance of our
proposed probabilistic decomposition approach for se-
lectivity estimation on synthetic and real-life datasets.
Our results verify the effectiveness of the proposed ap-
proaches, in terms of accuracy, response time and con-
struction time of the summary for large XML datasets.
We compare our approach with TreeSketches, a state-
of-the-art scheme[14].

5.1 Experimental Setup

Datasets: We have used four publicly available
datasets in our experiments: NASA, a real-life dataset
converted from legacy flat-file format into XML and
made available to the public; IMDB, a real-life
dataset from the Internet Movie Database Project;
PSD(Protein Sequence Database), a real-life dataset of
integrated collection of functionally annotated protein
sequences; and XMark, a synthetic dataset that models
transactions in an on-line auction site. We would like
to note that for the PSD dataset, since TreeSketches
takes a long time to process, we present results on a
sample. The main characteristics of the datasets are
summarized in Table 1.
Query Workloads:

To generate the positive query (queries with non-
zero selectivity) workloads we adopted the following
strategy. We enumerate the set of all possible queries
(subtrees) for a given dataset. Should the number of
resulting subtrees per level be too large (evaluated at
each level of the lattice) then we sample the patterns
at a given level to formulate the workload. This level-
by-level characterization and sampling also enable us

to evaluate the performance of our strategies, in par-
ticular their error propagation, in a controlled manner.
The distribution of tree patterns at different levels is
presented in Table 2. As can be seen from the table,
for all four XML datasets, the number of patterns be-
low level � is fairly low. This is because usually the
label set of an XML document is small even the orig-
inal document is huge. However, the number of tree
patterns at higher levels will still blow up easily.

To generate the negative query workloads (queries
with zero selectivity), we modify the positive work-
loads by randomly replacing node labels in the twig
in accordance with their frequency of occurrence. Ba-
sically, more frequent labels are used for replacement
more often so there is a greater chance for erroneous
predictions. Then we filter those queries whose selec-
tivity is above � .

Experimental results show that TreeLattice almost
always, greater than ����� of the time, returns the cor-
rect answer(�). This is as expected considering the er-
ror only happens when all subtrees of a twig H are in
the original data tree, but H itself does not in the data
tree, and it’s easy to verify that this probability is very
low. For the same workload TreeSketches reports a
100% accuracy since their algorithm is designed to do
well on such queries.
Error Metric: We quantify the accuracy of estima-
tions using the absolute error metric which is defined
as & F;(hF & / max(s, F), where the sanity bound � is
used to avoid the artificially high percentages of low
count queries. Following common practice [14, 15],
we set � to be the ' � -percentile of true query counts.
In addition, if � is less than ' � , then we set it as ' � .
Hardware: All the experiments were conducted on a
Pentium '����	� machine with '���
 RAM and run-
ning Linux 2.4.19.

5.2 Results

All results presented in this section assume the use
of a � -lattice as the summary in TreeLattice unless oth-
erwise noted.
Accuracy of the Estimators: In this experiment,
we evaluate the effectiveness of our proposed esti-
mators in estimating the selectivity of complex twig
queries with branching path expressions. Figures 7a-d,
show the average selectivity estimation error on vari-
ous workloads for Nasa, IMDB, PSD and XMark re-
spectively. Note that in Figure 7(d) the Y-axis is in
the log scale since the difference between the two ap-
proaches is extremely large. We see that for all work-
loads, the average estimation error of TreeSketches is
extremely high. For all workloads except that at level
� , the errors are above ' � ��� . For the workload at level
, the error is even beyond '�� � � � %. In contrast, Tree-

Lattice performs fairly well on this dataset. For all

workloads, the errors are below 	�� %.
For Nasa and XMark, all three estimators of Tree-

Lattice outperform TreeSketches on all workloads
tested. For PSD, all three estimators of TreeLat-
tice outperform TreeSketches on workloads of rela-
tive small queries. When the query size exceeds � , the
fix-sized decomposition estimator is outperformed by
TreeSketches, while the recursive decomposition esti-
mators (with/without voting) are still able to outper-
form TreeSketches. For IMDB, TreeSketches is out-
performed by the recursive decomposition estimator
with voting on queries below level � , and after that,
TreeSketches is better.

The wide gap in performance especially on the
XMark dataset was surprising to us and the author of
TreeSketches4 To examine this in more detail we plot-
ted the cumulative probability distribution function of
the errors in Figures 8a-d. The results are consis-
tent with Figures 7 however they do reveal that for a
small fraction of queries in our workload TreeSketches
grossly overestimates the selectivity thus resulting in
this wide disparity in performance on the XMark
dataset. We discuss this behavior in the next section
with a simple example.

After accounting for these outlier queries, the cu-
mulative distribution function of errors still reveals
that for the Nasa and XMark datasets, all three of our
estimators clearly outperform TreeSketches. Our de-
composition strategies and TreeSketches are compara-
ble on the PSD dataset although the voting scheme per-
forms slightly better. On IMDB, the fix-sized and re-
cursive decomposition estimators are outperformed by
TreeSketches while the recursive decomposition esti-
mator with voting closely approaches the performance
of TreeSketches.

Overall, the results show that TreeLattice is reason-
ably effective in summarizing the distribution of the
underlying twigs. For all datasets, when the work-
load consists of relative small queries, TreeLattice es-
timates the selectivity quite accurately. When the
query size keeps increasing, the quality of the esti-
mates given by TreeLattice decreases correspondingly
due to the error propagation. Overall, the recursive de-
composition estimator augmented with voting scheme
yields the best estimate in most cases, though the re-
cursive decomposition estimator and fix-sized decom-
position estimator can yield reasonable estimates also.
Response Time: In this experiment, we compare our
estimators against TreeSketches in terms of the re-
sponse time. Figures 9a-d, present the response time of
different approaches on different workloads for Nasa,
IMDB, PSD and XMark respectively. As can be seen
from the figures, both the recursive decomposition es-
timator and fix-sized decomposition estimator execute

4We shared these results with them.

orders of magnitude faster than TreeSketches for rel-
atively small queries. Furthermore, the fix-sized de-
composition estimator is typically a couple of factors
faster than recursive decomposition estimator, since
the latter has the additional overhead of recursion.
Both estimators scale very well as we increase the size
of twig queries to be estimated.

When we apply the voting optimization on recursive
decomposition estimator, the response time degrades.
The degradation of response time becomes more sig-
nificant as we increase the size of the twig queries.
This is not surprising, since the number of possible de-
compositions combinatorially increases with the num-
ber of recursion levels. However, overall the voting-
based recursive decomposition estimator is still able
to outperform TreeSketches.
Summary Size and Construction Time: In this ex-
periment, we evaluate the summary size and the cost
of constructing the summary. Table 3 reports the sum-
mary sizes for the different datasets. We can see that
the sizes of the summary are reasonably small com-
pared to the original datasets for both approaches. For
all TreeSketches experiments we set the summary size
as � � KB. From the data, we see that we use much
less space than � � KB for Nasa, PSD and XMark. For
IMDB we use more than � � KB space.

Now let us look at the cost of constructing the sum-
mary. In TreeSketches, this is a very expensive oper-
ation since it involves a bottom-up clustering of simi-
lar substructures in the XML data tree. In contrast, in
our approach, we just need to run the off-the-shelf ef-
ficient tree mining algorithms to collect the summary.
Table 3 presents the summary construction time of two
approaches for different datasets. The advantage of
our approach over TreeSketches is striking–anywhere
from one to two orders of magnitude improvement.
Effect of Pruning � -derivable Patterns: Our prun-
ing strategy of removing derivable patterns from the
lattice summary, and enables us to store more non-
derivable patterns in the summary. In this section we
examine the effects of this approach. Figure 10(a)
presents the space savings on different datasets when
we prune � -derivable patterns from their � -lattice sum-
mary. The savings can be clearly seen for all four
datasets. Specifically the savings on Nasa, PSD and
XMark are very striking. This implies that the con-
ditional independence assumption holds very well on
these three datasets. In this case, the saved space from
pruning � -derivable patterns can be used to store the
information of more non � -derivable patterns.

For the Nasa dataset using the same space of storing
all patterns in the � -lattice(� KB), we can store all the
non � -derivable patterns of the � -lattice. Figure 10(b)
presents the experimental results when we use the new
lattice summary for the Nasa dataset. We run recur-
sive decomposition estimator with voting. Overall, we

observe a significant improvement in estimation accu-
racy. Even for the workload consisting of relatively
large queries(size= �), the error is below ' ��� . In con-
trast, the error of TreeSketches is well above � � ��� for
the same workload. Considering TreeSketches uses
much more space (� � KB) than TreeLattice, the ben-
efits are striking. The results for PSD and XMark are
very similar and thus omitted here.

On the other hand, for IMDB, the space saving
is not that significant compared with the other three
datasets. This indirectly implies that the conditional
independence assumption does not hold by and large
for this dataset which may explain why our approach
did not do as well as TreeSketches. If accuracy is tol-
erable one can resort to pruning more relaxed deriv-
able patterns to reduce the size of the summary. This
will sacrifice accuracy further, since there is some in-
formation loss. Figure 10(c) shows the space sav-
ings due to different � -derivable patterns pruning. Fig-
ure 10(d) presents the estimation quality of using the
corresponding summary structures at the different �
levels. When we increase � , we will achieve more
space savings. On the other hand, the estimation accu-
racy will degrade. However it seems the degradation is
tolerable for � 10% which incidentally result in a sum-
mary that is smaller than the TreeSketches summary
(from Figure 10(c)).
Experimental Summary: Qualitatively, TreeLattice
is very effective on estimating the selectivity of the
twig queries. Recursive decomposition estimator and
fix-sized decomposition estimator yield reasonable es-
timates in a very short time. The voting scheme can
be applied if we want more accurate estimates. It is
also more expensive to compute. Quantitatively, Tree-
Lattice is orders of magnitude faster than TreeSketches
both in terms of the time to estimate and in terms of the
summary construction costs for the datasets we have
evaluated to date. The pruning of � -derivable patterns
enables us to tradeoff accuracy when there is a mem-
ory budget.

5.3 Discussion

From the experimental results, we find that TreeLat-
tice compared favorable with TreeSketches. Funda-
mentally we wanted to understand the reason behind
this. We take an example that is drawn from our ex-
perimental results (suitably abstracted for expository
simplicity).

Figure 11 illustrates the difference between the
TreeSketches approach and our approach. A document
� is presented in a concise format in Figure 11(a). The
number associated with a node 3 represents the num-
ber of occurrences for the subtree which has 3 as its
root. Therefore, the node � associated with a number,�
, in Figure 11(a) suggests the subtree where node �

Table 1. Dataset Characteristics
Dataset Elements File Size(MB)

Nasa 476646 23
IMDB 155898 7

XMark 565505 10
PSD 242014 4.5

has four � as its children appears three times.
Figure 11(b) is the synopsis generated by

TreeSketches for the document � . The synopsis
is a directed graph, � ��2��� � . Each vertex in the vertex
set corresponds to a set of nodes with the same label
in the original document. A vertex in is labeled
by the label shared by all nodes in the corresponding
set. Each edge in the edge set � associates a weight.
An edge � �)� � � with the weight � represents that in
average, each node in the original document in the set� has � children in the set � . For example, the vertex �

in the Figure 11(b) corresponds to a set of four nodes
in the document � : three of node � where each of them
contains four node � as children, and one node � which
has two node � . Therefore, the vertex corresponding
the set in the synopsis has an edge to the vertex � , and
the weight is � � � � �7' � 	 �)(�� � �#' � 	 � � � .

Assume our twig query is Figure 11(d). Clearly,
the true selectivity of this query in the document �
is � . Using the TreeSketches synopsis in Figure 11
to estimate the selectivity of this query, we will have	 � '`� 	 � � � � � �F� 	-� � 	 ���-� � . Compared with
the true selectivity, the error produced by this method
is more than 100%.

Consider applying our method to this document
with � -lattice. Basically, we record all the subtrees
with their count (selectivity) up to � -node trees. Fig-
ure 11 shows three subtrees recorded in the lattice. In
our method, these trees can be used to estimate the
selectivity of the twig query in Figure 11(d). Note
that the tree �
 is the common subtree of � � and ��� ,
and combine �� and ��� will generate our interested
twig. Therefore, our estimation will be ��� 3 �5� �G� � � �

��� 3 �5� �G��� �)(��� 3 �5� �G�
 � 	 ��� � � . In this example, our
method produces much more accurate results than the
previous method.

Why does our approach perform much better in this
example? Note that in the synopsis, an edge � �)� � �
with the weight � represents that in average, each node
in the original document in the set � has � children in
the set � . Assume we have � nodes in the set � , and
the nodes have �
 ������� ��� � , children in the set � , re-
spectively. In order to compress the XML document,
the variance of � � can be quite large. Further, to es-
timate the selectivity, the weights on multiple edges
need to be multiplied. As we can see in our example,
the error propagation in the multiplication can be very
fast, and results in relatively large error.

Table 2. No. of Subtree Patterns
Level Nasa IMDB PSD XMark

1 61 88 64 27
2 82 120 78 40
3 213 877 289 147
4 688 9839 1313 503
5 2296 97780 6870 1333

Dataset Time (Seconds) Utilization (KiloBytes)
TreeLattice TreeSketches TreeLattice TreeSketches

Nasa 59 7535 20 50
IMDB 53 942 212 50
PSD 39 614 33 50
XMark 540 79560 13 50

Table 3. Summary Construction Time and
Memory Utilization

�
�

� �

	

�

�

� �

�

�

� �

	

�

�

� �

� �� ��� �

���

� ���

��� �

��� �
��� �

��� �

��� �

��� �

�

�

� �

	

��� �

��� �
��� �

��� �

��� �

��� �

�

�

� �

	

��� �
��� �

������� � ������� �

��� �

��� �

�"!$#&%('*) ��+ �,!�#&%('�) �(� �,!$#&%'�) �,-

�

�

� �

� ���
�/.10�243 #5	� 76
	�/8 �:9

Figure 11. (a) Document T in Concise Format;
(b) TreeSketches (c) Trees in Lattice (d) Twig
Query

0

50

100

150

200

250

300

350

400

450

500

4 5 6 7 8

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8
A

v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

0

5

10

15

20

25

30

35

40

4 5 6 7 8

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

1

10

100

1000

10000

100000

4 5 6 7 8

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

(a) (b) (c) (d)
Figure 7. Average selectivity estimation error:(a)Nasa (b)IMDB (c)PSD (d)XMark

0

20

40

60

80

100

120

0.1 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
(%

)

Average Relative Error(%)

Recursive Decomp Estimator
Fix-sized Decomp Estimator

Recursive Decomp Estimator + Voting
TreeSketches

0

20

40

60

80

100

120

0.1 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
(%

)

Average Relative Error(%)

Recursive Decomp Estimator
Fix-sized Decomp Estimator

Recursive Decomp Estimator + Voting
TreeSketches

0

20

40

60

80

100

120

0.1 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
(%

)

Average Relative Error(%)

Recursive Decomp Estimator
Fix-sized Decomp Estimator

Recursive Decomp Estimator + Voting
TreeSketches

0

20

40

60

80

100

120

0.1 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
(%

)

Average Relative Error(%)

Recursive Decomp Estimator
Fix-sized Decomp Estimator

Recursive Decomp Estimator + Voting
TreeSketches

(a) (b) (c) (d)
Figure 8. Average Relative Error Distribution:(a)Nasa (b)IMDB (c)PSD (d)XMark

0

20

40

60

80

100

4 5 6 7 8

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

0

10

20

30

40

50

60

70

80

90

4 5 6 7 8

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

0

20

40

60

80

100

120

140

4 5 6 7 8

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Query Size

Recursive Decomp Estimator
Recursive Decomp Estimator + Voting

Fix-sized Decomp Estimator
TreeSketches

(a) (b) (c) (d)
Figure 9. Average response time:(a)Nasa (b)IMDB (c)PSD (d)XMark

 0

 50

 100

 150

 200

 250

PSDXMarkIMDBNasa

4
-L

a
tt
ic

e
 S

u
m

m
a
ry

 S
iz

e
(K

B
)

Dataset

4-Lattice with 0-derivable Patterns
4-Lattice without 0-derivable Patterns

0

100

200

300

400

500

600

4 5 6 7 8 9

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

Query Size

Recursive Decomp Estimator + Voting + OPT
Recursive Decomp Estimator + Voting

TreeSketches

 0

 20

 40

 60

 80

 100

 120

 140

 160

3020100

4
-L

a
tt
ic

e
 S

u
m

m
a
ry

 S
iz

e
(K

B
)

Delta(%)

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7 8

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r(

%
)

Query Size

delta=0%
delta=10%
delta=20%
delta=30%

(a) (b) (c) (d)
Figure 10. Derivable Patterns:(a)Removing 0-derivable Patterns (b)Average Relative Error(Nasa)
(c)Summary Size(IMDB:Varying �)(d)Estimation Quality(IMDB:Varying �)

6 Conclusions and Future Work

In this paper, we have described a new approach,
TreeLattice, to estimate the selectivity of twig queries.
TreeLattice is shown to be comparable or better than
TreeSketches in terms of estimation accuracy. More-
over, this new approach is also significantly faster both
in terms of summary construction and in terms of se-
lectivity estimation. Further, we have provided theo-
retical foundations for the estimation process and have
also shown that the TreeLattice approach is a gener-
alization of the successful Markov model based ap-
proach for XML path selectivity estimation.

In the future, we will study the following issues.
First, we would like to extend the TreeLattice ap-
proach to work on the selectivity estimation for the
twig queries with value predicates. Second, an error
bound associated with the estimation would be very
useful and we have made some initial progress towards
this end. Third, we would also like to adapt TreeLat-
tice, in a manner similar to XPathLearner where infor-
mation learned from on-line workload can guide what
is to be maintained in the summary structure.

References

[1] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton.
Estimating the selectivity of xml path expressions for internet scale
applications. In VLDB, 2001.

[2] Tatsuya Asai and Kenji Abe et al. Efficient substructure discovery
from large semi-structured data. In SDM, 2002.

[3] Zhiyuan Chen and H.V.Jagadish et al. Counting twig matches in a
tree. In ICDE, 2001.

[4] Zhiyuan Chen, Flip Korn, and et al. Selectivity estimation for
boolean queries. In PODS, 2000.

[5] Juliana Freire and Jayant R. Haritsa et al. Statix: Making xml count.
In SIGMOD, 2002.

[6] H.V. Jagadish, Olga Kapitskaia, and et al. Multi-dimensional sub-
string selectivity estimation. In VLDB, 1999.

[7] H.V. Jagadish, Raymond T.Ng, and et al. Substring selectivity esti-
mation. In PODS, 1999.

[8] Wei Jiang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. Con-
tainment join size estimation: Models and methods. In SIGMOD,
2003.

[9] Lipyeow Lim and Min Wang et al. Xpathlearner: An on-line self-
tuning markov histogram for xml path selectivity estimation. In
VLDB, 2002.

[10] Jason McHugh and Jennifer Widom. Query optimization for xml. In
VLDB, 1999.

[11] P.Krishnan, Jeffrey Scott Vitter, and Bala Iyer. Estimating alphanu-
meric selectivity in the presence of wildcards. In SIGMOD, 1996.

[12] Neoklis Polyzotis and Minos Garofalakis. Statistical synopses for
graph-structured xml databases. In SIGMOD, 2002.

[13] Neoklis Polyzotis and Minos Garofalakis. Structure and value syn-
opses for xml data graphs. In VLDB, 2002.

[14] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Ap-
proximate xml query answers. In SIGMOD, 2004.

[15] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Selec-
tivity estimation for xml twigs. In ICDE, 2004.

[16] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. Bloom
histogram: Path selectivity estimation for xml data with updates. In
VLDB, 2004.

[17] Y. Wu, J. M. Patel, and H. Jagadish. Estimating answer sizes for xml
queries. In EDBT, 2002.

[18] Mohammed Zaki. Efficiently mining frequent trees in a forest. In
SIGKDD, 2002.

