Combining Distributed Memory and Shared Memory
Parallelization for Data Mining Algorithms -

Ruoming Jin
Department of Computer and Information
Sciences
Ohio State University, Columbus OH 43210

jinr@cis.ohio-state.edu

ABSTRACT

In this paper, we focus on using a cluster of SMPs for scalable
data mining. We have developed distributed memory and shared
memory parallelization techniques that are applicable to a number
of common data mining algorithms. These techniques are incorpo-
rated in a middleware called FREERIDE (FRamework for Rapid
Implementations of Datamining Engines).

We present experimental evaluation of our techniques and frame-
work using apriori association mining, k-means clustering, and a
decision tree algorithm. We achieve excellent speedups for apriori
and k-means, and good distributed memory speedup for decision
tree construction. Despite using a common set of techniques and
a middleware with a high-level interface, the speedups we achieve
compare well against the reported performance from stand-alone
implementations of individual parallel data mining algorithms. Over-
all, our work shows that a common framework can be used for ef-
ficiently parallelizing algorithms for different data mining tasks.

1. INTRODUCTION

In recent years, cluster of SMPs have emerged as a cost-effective,
flexible, and popular parallel processing configuration. Clusters of
SMPs offer both distributed memory parallelism (across nodes of
the cluster) and shared-memory parallelism (within a node). This
imposes an additional challenge in parallelizing any class of appli-
cations on these systems.

In this paper, we focus on using cluster of SMPs for data mining
tasks. Our contributions are three fold. First, we have developed
a set of techniques for distributed memory as well as shared mem-
ory parallelization that apply across a number of popular data min-
ing algorithms. Second, we have incorporated these techniques in
a middleware which offers a high-level programming interface to
the application developers. Our middleware is called FREERIDE
(FRamework for Rapid Implementation of Datamining Engines).
Third, we present a detailed evaluation of our techniques and frame-
work using three popular data mining algorithms, apriori associa-
tion mining, k-means clustering, and a decision tree construction
algorithm.

Our work is based on the observation that a number of popular
data mining algorithms, including apriori association mining [2],
k-means clustering [12], and decision tree classifiers [15] share a
relatively similar structure. Their common processing structure is
essentially that of generalized reductions. The computation on each
node involves reading the data instances in an arbitrary order, pro-
cessing each data instance, and updating elements of a reduction

*This work was supported by NSF grant ACR-9982087, NSF CA-
REER award ACR-9733520, and NSF grant ACR-0130437.

Gagan Agrawal
Department of Computer and Information
Sciences
Ohio State University, Columbus OH 43210

agrawal@cis.ohio-state.edu

object using associative and commutative operators.

In a distributed memory setting, such algorithms can be par-
allelized by dividing the data items (or records or transactions)
among the nodes and replicating the reduction object. Each node
can process the data items it owns to perform a local reduction.
After local reduction on all nodes, a global reduction can be per-
formed. In a shared memory setting, parallelization can be done
by assigning different data items to different threads. The main
challenge in maintaining the correctness is avoiding race conditions
when different threads may be trying to update the same element of
the reduction object. We have developed a number of techniques
for avoiding such race conditions. Our middleware incorporates
techniques for both distributed memory and shared memory paral-
lelization and offers a high-level programming interface.

We present a detailed experimental evaluation of our techniques
and the framework by parallelizing three popular data mining al-
gorithms, apriori association mining, k-means clustering, and a de-
cision tree construction algorithm. We achieve excellent speedups
for apriori and k-means, and good distributed memory speedup for
decision tree construction. Despite using a common set of tech-
niques and a middleware with a high-level interface, the speedups
we achieve compare well against the reported performance from
stand-alone implementations of individual parallel data mining al-
gorithms. Our work shows that a common framework can be used
for efficiently parallelizing algorithms for different data mining tasks.
Moreover, we have also demonstrated that clusters of SMPs are
well suited for execution of mining algorithms.

The rest of this paper is organized as follows. Section 2 reviews
parallel versions of several common data mining techniques. Tech-
niques for both shared memory and distributed memory paralleliza-
tion are presented in Section 3. Experimental results are presented
in Section 4. We compare our work with related research efforts in
Section 5 and conclude in Section 6.

2. PARALLEL DATAMINING ALGORITHMS

In this section, we describe how several commonly used data
mining techniques can be parallelized in a very similar way.

Our discussion focuses on three important techniques: apriori
associating mining [2], k-means clustering [12], and a decision tree
construction algorithm [7].

2.1 Apriori Association Mining

Association rule mining is the process of analyzing a set of trans-
actions to extract association rules and is a very commonly used
and well-studied data mining problem [3, 23]. Given a set of trans-
actions (each of them being a set of items), an association rule is an
expression X — Y ,where X and Y are the sets of items. Such

a rule implies that transactions in databases that contain the items
in X also tend to contain the items in Y.

Formally, the goal is to compute the sets L. For a given value
of k, the set L comprises the frequent itemsets of length k. A
well accepted algorithm for association mining is the apriori min-
ing algorithm [3]. The main observation in the apriori technique is
that if an itemset occurs with frequency f, all the subsets of this
itemset also occur with at least frequency f. In the first iteration
of this algorithm, transactions are analyzed to determine the fre-
quent 1-itemsets. During any subsequent iteration &, the frequent
itemsets L1 found in the (k — 1)*" iteration are used to generate
the candidate itemsets C. Then, each transaction in the dataset
is processed to compute the frequency of each member of the set
Ck. k-itemsets from Cy, that have a certain pre-specified minimal
frequency (called the support level) are added to the set L.

A straight forward method for distributed memory paralleliza-

tion of apriori association mining algorithm is count distribution [2].

The outline of the count distribution parallelization strategy is as
follows. The transactions are partitioned among the nodes. Each
nodes generates the complete C, using the frequent itemset Ly_1
created at the end of the iteration £ — 1. Next, each node scans the
transactions it owns to compute the count of local occurrences for
each candidate k-itemset in the set Ck. After this local phase, all
nodes perform a global reduction to compute the global count of
occurrences for each candidate k-itemset in the set C.

Similarly, a simple shared memory parallelization scheme for
this algorithm is as follows. One processor generates the complete
Cy using the frequent itemset Ly _ created at the end of the itera-
tion k — 1. The transactions are scanned, and each transaction (or
a set of transactions) is assigned to one processor. This processor
evaluates the transaction(s) and updates the counts of candidates
itemsets that are found in this transaction. Thus, by assigning dif-
ferent sets of transactions to different processors, parallelism can be
achieved. The only challenge in maintaining correctness is avoid-
ing the race conditions when counts of candidates may be updated
by different processors.

2.2 k-means Clustering

The second data mining algorithm we describe is the k-means
clustering technique [12], which is also very commonly used. This

method considers transactions or data instances as representing points

in a high-dimensional space. Proximity within this space is used as
the criterion for classifying the points into clusters.

Three steps in the sequential version of this algorithm are as fol-
lows: 1) start with & given centers for clusters; 2) scan the data
instances, for each data instance (point), find the center closest to
it, assign this point to the corresponding cluster, and then move the
center of the cluster closer to this point; and 3) repeat this process
until the assignment of points to cluster does not change.

In a distributed memory setting, this algorithm can be paral-
lelized as follows. The data instances are partitioned among the
nodes. Each node processes the data instances it owns. Instead
of moving the center of the cluster immediately after the data in-
stance is assigned to the cluster, the local sum of movements of
each center due to all points owned on that node is computed. A
global reduction is performed on these local sums to determine the
centers of clusters for the next iteration.

A simple shared memory parallelization strategy will be as fol-
lows. The data instances are read, and each data instance (or a set of
instances) are assigned to one processor. This processor performs
the computations associated with the data instance, and then up-
dates the center of the cluster this data instance is closest to. Again,
the only challenge in maintaining correctness is avoiding the race

conditions when centers of clusters may be updated by different
processors.

2.3 RainForest Based Decision Tree Construc-
tion

The final set of data mining techniques we examine is decision
tree classifiers [15]. In a decision tree, each leaf node is associ-
ated with a class label, and each internal node is associated with
a split condition on an attribute. A decision tree is primarily built
by recursively splitting the training dataset into partitions, until all
or most of the records in the partitions have the same class label.
The two most time consuming phases in a decision tree construc-
tion algorithm are: 1) finding the best split point for each internal
node, and 2) performing the split, which means that the data items
associated with the node split are divided into two partitions.

RainForest is a general approach for scaling decision tree con-
struction to larger datasets, while also effectively exploiting the
available main memory [7]. This is done by isolating an AVC
(Attribute-Value, Classlabel) set for a given attribute and a node
being processed. The size of the AVC-set for a given node and
attribute is proportional to the number of distinct values of the at-
tribute and the number of distinct class labels. Given a node of the
decision tree, AVC-group is the combination of AVC-set for all at-
tributes. The key observation is that though AVC-group does not
contain sufficient information to reconstruct the training dataset, it
contains all information that is required for selecting the criteria for
splitting the node. Since the number of attributes and the distinct
values they can take is usually not very large, one can expect the
AVC-group for a node to easily fit in main memory. With this ob-
servation, processing for selecting the splitting criteria for the root
node can be easily performed even if the dataset is disk-resident.
By reading the training dataset once, AVC-group of the root is con-
structed. Then, the criteria for splitting the node is selected.

Parallelization of RainForest based algorithms is quite similar to
the parallelization of apriori and k-means algorithms, on distributed
memory as well as shared memory settings. The key observation is
that updates to AVC-sets involve associative and commutative op-
erators only. For distributed memory parallelization, the training
records could be partitioned between the nodes. Each node can up-
date its own copy of AVC-group, and these copies can be combined
together during a global combination phase. For shared memory
parallelization, training records can be assigned to different threads
and AVC-sets can be updated. In doing this, race conditions must
be avoided when more than one thread tries to update the same field
of a AVC-set.

3. PARALLELIZATION TECHNIQUES

In this section, we focus on techniques for shared memory and
distributed memory parallelization of the data mining algorithms
we described in the previous section. Initially, we describe tech-
niques for shared memory parallelization. Then, we focus on com-
bining shared memory and distributed memory parallelization.

3.1 Shared Memory Parallelization

In the previous section, we have argued how several data mining
algorithms can be parallelized in a very similar fashion. The com-
mon structure behind these algorithms is summarized in Figure 1.
The function op is an associative and commutative function. Thus,
the iterations of the foreach loop can be performed in any order.
The data-structure Reduc is referred to as the reduction object.

The main correctness challenge in parallelizing a loop like this
on a shared memory machine arises because of possible race con-
ditions when multiple processors update the same element of the

{* Outer Sequential Loop *}
While() {
{* Reduction Loop *}
Foreach(element €) {
(i,va) = process(e);
Reduc(i) = Reduc(i) op va ;
}
}

Figure 1. Structure of Common Data Mining Algorithms

reduction object. The element of the reduction object that is up-
dated in a loop iteration (z) is determined only as a result of the
processing. For example, in the apriori association mining algo-
rithm, the data item read needs to matched against all candidates to
determine the set of candidates whose counts will be incremented.
In the k-means clustering algorithm, first the cluster to which a data
item belongs is determined. Then, the center of this cluster is up-
dated using a reduction operation.

The major factors that make these loops challenging to execute
efficiently and correctly are as follows:

e |t is not possible to statically partition the reduction object
so that different processors update disjoint portions of the
collection. Thus, race conditions must be avoided at runtime.

e The execution time of the function process can be a signif-
icant part of the execution time of an iteration of the loop.
Thus, runtime preprocessing or scheduling techniques can-
not be applied.

e In many of algorithms, the size of the reduction object can
be quite large. This means that the reduction object cannot
be replicated or privatized without significant memory over-
heads.

e The updates to the reduction object are fine-grained. The
reduction object comprises a large number of elements that
take only a few bytes, and the foreach loop comprises a large
number of iterations, each of which may take only a small
number of cycles. Thus, if a locking scheme is used, the
overhead of locking and synchronization can be significant.

We focus on three techniques we have developed for paralleliz-

ing data mining algorithms. These techniques are, full replication,
optimized full locking, and cache-sensitive locking. For motivating
the optimized full locking and cache-sensitive locking schemes, we
also describe a simple scheme that we refer to as full locking.
Full Replication: One simple way of avoiding race conditions is to
replicate the reduction object and create one copy for every thread.
The copy for each thread needs to be initialized in the beginning.
Each thread simply updates its own copy, thus avoiding any race
conditions. After the local reduction has been performed using all
the data items on a particular node, the updates made in all the
copies are merged.

We next describe the locking schemes. The memory layout of
the three locking schemes, full locking, optimized full locking, and
cache-sensitive locking, is shown in Figure 2.

Full Locking: One obvious solution to avoiding race conditions is
to associate one lock with every element in the reduction object.
After processing a data item, a thread needs to acquire the lock as-
sociated with the element in the reduction object it needs to update.

In our experiment with apriori, with 2000 distinct items and sup-

port level of 0.1%, up to 3 million candidates were generated [13].

In full locking, this means supporting 3 million locks. Supporting
such a large numbers of locks results in overheads of three types.
The first is the high memory requirement associated with a large
number of locks. The second overhead comes from cache misses.
Consider an update operation. If the total number of elements is
large and there is no locality in accessing these elements, then the
update operation is likely to result in two cache misses, one for
the element and second for the lock. This cost can slow down the
update operation significantly.

The third overhead is of false sharing [11]. In a cache-coherent
shared memory multiprocessor, false sharing happens when two
processors want to access different elements from the same cache
block. In full locking scheme, false sharing can result in cache
misses for both reduction elements and locks.

Optimized Full Locking: Optimized full locking scheme over-
comes the the large number of cache misses associated with full
locking scheme by allocating a reduction element and the corre-
sponding lock in consecutive memory locations, as shown in Fig-
ure 2. By appropriate alignment and padding, it can be ensured
that the element and the lock are in the same cache block. Each
update operation now results in at most one cold or capacity cache
miss. The possibility of false sharing is also reduced. This is be-
cause there are fewer elements (or locks) in each cache block. This
scheme does not reduce the total memory requirements.
Cache-Sensitive L ocking: The final technique we describe is cache-
sensitive locking. Consider a 64 byte cache block and a 4 byte re-
duction element. We use a single lock for all reduction elements in
the same cache block. Moreover, this lock is allocated in the same
cache block as the elements. So, each cache block will have 1 lock
and 15 reduction elements.

Cache-sensitive locking reduces each of three types of overhead
associated with full locking. This scheme results in lower mem-
ory requirements than the full locking and optimized full locking
schemes. Each update operation results in at most one cache miss,
as long as there is no contention between the threads. The problem
of false sharing is also reduced because there is only one lock per
cache block.

One complication in the implementation of cache-sensitive lock-
ing scheme is that modern processors have 2 or more levels of cache
and the cache block size is different at different levels. Our imple-
mentation and experiments have been done on machines with two
levels of cache, denoted by L1 and L2. Our observation is that if
the reduction object exceeds the size of L2 cache, L2 cache misses
are a more dominant overhead. Therefore, we have used the size of
L2 cache in implementing the cache-sensitive locking scheme.

3.2 Distributed Memory Parallelization

The data mining algorithms we discussed in the previous sec-
tion can all be parallelized in a distributed memory setting in a
very similar fashion. The data items or training records are par-
titioned between the nodes and the reduction object is replicated.
Each node can process the data items it owns to perform a local re-
duction. After local reduction on all nodes, a global reduction can
be performed.

Based upon the three shared memory parallelization techniques
we described in the previous subsection, we implemented four dif-
ferent versions for distributed memory parallelization.

Optimized Full Locking (without copying): This scheme is based
upon using optimized full locking for shared memory paralleliza-
tion. Recall that in this approach, locks are allocated on the same
cache block as the reduction elements. In distributed memory par-
allelization, the entire reduction object (including the locks) are
communicated for global reduction. Thus, the communication vol-

Reduction El ements

Locks

Full Locking

NN N
N N N
NN N
LA A N

Optimized Full Locking

- HEEEE

A\
- EEEEE

Cache-Sensitive Locking

Figure2: Memory Layout for Various L ocking Schemes

ume increases two-fold. This approach is denoted as of | .
Optimized Full Locking (with copying): To avoid the overhead
of communicating the locks, the reduction object is initially copied
on each node to extract only the reduction elements. Then, the
copied reduction elements are communicated. Thus, this approach
trades in extra copying for reducing communication volume. This
approach is denoted as of | - c.

Cache Sensitive Locking: The cache sensitive locking scheme in-
volves only a small memory overhead of locks, as a single lock is
used on each cache block. Therefore, for distributed memory par-
allelization, we communicate the entire reduction object, including
the locks. We did not create separate versions with and without
copying. This approach is denoted as csl .

Full Replication: After merging the replicated reduction objects
within a node, the resulting reduction object is communicated. There
is no extra communication or copying overhead because of the
locks. This scheme is denoted as f r .

4. EXPERIMENTAL RESULTS

In this section, we evaluate our techniques and framework using
three popular data mining algorithms that were described in Sec-
tion 2. We created four versions for each of the three algorithms,
corresponding to the four approaches described in Section 3.2.

We used 8 Sun Microsystem Ultra Enterprise 450°s, each with 4
250MHz Ultra-I1 processors. Each node has 1 GB of main mem-
ory which is 4-way interleaved. Each node has a 4 GB system disk
and a 18 GB data disk. The data disks are Seagate-ST318275LC
with 7200 rotations per minute and 6.9 milli-second seek time.
The nodes are connected by a Myrinet switch with model number
M2M-OCT-SWS.

4.1 Results from Apriori Association Mining
We used a 1 GB dataset to evaluate our implementations of apri-

ori association mining. The dataset was generated using a synthetic

generator tool developed at IBM Almaden [2]. This tool has been

4000

Il 1 thread
[0 2 threads
[3threads

3500 Il 4 threads |

3000

2500

2000

Time (s)

1500

1000

500

2 4 8
No. of Nodes

Figure 3: Performance of Apriori (f r version)

widely used in evaluating previous work on association mining. In
the dataset we used, the average transaction length was 10 and the
number of distinctive items was 1000. A support level of 0.5% was
used for our experiments.

The performance from four versions, full replication, optimized
full locking without copying, optimized full locking with copying,
and cache sensitive locking, are shown in Figures 3, 4, 5, 6,
respectively. We show experimental results using 1, 2, 3, and 4
threads, and 1, 2, 4, and 8 nodes of the cluster. The 1 thread, 1 node
version using full replication has no measurable overheads over the
sequential version, and is used as calculating absolute speedups.

All versions achieve good shared memory and distributed mem-
ory speedups. In the f r version, the speedups using 1 thread on 2,
4, and 8 nodes are 1.85, 3.60, and 7.27, respectively. The speedups
using 3 and 4 threads on 1 node are 2.58 and 2.84, respectively. The

4500

Hl 1 thread
[2 threads

[3threads ||
Bl 4 threads

4000 -

3500

3000

2500

(s)

ime

T

2000

1500

1000 -

2 4 8
No. of Nodes

Figure 4. Performance of Apriori (of I version)

4500

Il 1 thread
[2 threads
[3threads ||

4000 Bl 4 threads

3500
3000

—~ 2500
D)

me

= 2000

1500 -

1000

2 4 8
No. of Nodes

Figure5: Performance of Apriori (of | - ¢ version)

overall speedup using 4 threads and 8 nodes is 23.76. Almost lin-
ear speedups are obtained in distributed memory settings and using
up to 3 threads on shared memory settings. The use of the fourth
thread on a 4 processor node does not give significant additional
speedup. This is because our implementation uses an additional
producer thread for managing 1/0 and coordinating between other
threads.

The relative speedups obtained by the other three versions achieve
very similar performance for apriori. However, they all involve an
additional 5-15% overhead because of the use of locks. Because
sufficient memory is available on each node to replicate the reduc-
tion object, full replication gives the best performance. For the
dataset or support levels where the number of candidates becomes
very large, we can expect full replication to have significant over-
heads because of thrashing. In comparing of I and of | - ¢ ver-
sions, the performance is very similar. Because of the amount of
computation involved, the additional costs of communicating the
locks or extra copying are not significant.

4.2 Results from k-means Clustering

We next describe experimental results from our implementations
of k-means clustering. We used a 200 MB datasets comprising
three dimensional points, and 100 as the value of k.

4500

Hl 1 thread
[2 threads
[3threads ||

4000
Bl 4 threads

3500

3000

2500

(s)

ime

T

2000

1500

1000 -

500

2 4 8
No. of Nodes

Figure 6: Performance of Apriori (csl version)

400

Il 1 thread
[2 threads
[3threads
I 4 threads []

300

1001

50

No. of Nodes

Figure 7: Performance of k-means (f r version)

The results from full replication, optimized full locking (without
copying), optimized full locking (with copying), and cache sensi-
tive locking are presented in Figures 7, 8, 9 and 10, respectively.

k-means clustering is a simpler code than apriori and decision
tree classifier, and excellent speedups are seen from all versions,
on both distributed memory and shared memory settings. Simi-
lar to apriori, the replicated reduction objects fits well in memory,
and therefore, the f r versions gives the best performance. Using
8 nodes and 4 threads on each node, it achieves a speedup of 28.7.
The relative speedups achieved by other versions are almost identi-
cal, but some initial overhead is incurred because of locking.

4.3 Results from Decision Tree Construction

Finally, we present experimental results from our implementa-
tion of RainForest based decision tree construction algorithm.

The dataset we used for our experiments was generated using a
tool described by Agrawal et al. [1]. The datasets was nearly 600
MB, with 16 million records in the training set. Each record has
9 attributes, of which 3 are categorical and other 6 are numerical.
Every record belongs to 1 of 2 classes.

The results from full replication, optimized full locking (without
copying), optimized full locking (with copying), and cache sensi-
tive locking are presented in Figures 11, 12, 13 and 14, respec-

I 1 thread
[2 threads
[3threads ||
B 4 threads

No. of Nodes

Figure 8: Performance of k-means (of | version)

450
Hl 1 thread
[2 threads
[3 threads ||

4001
0 I 4 threads

350

250

Time (s)

200~

150~

1001

50

No. of Nodes

Figure9: Performance of k-means (of | - ¢ version)

tively.

As compared to the other algorithms, this algorithm is I/O bound.
As a result, shared memory scalability is limited. All the versions
have a relative speedup of nearly 2.5 by using 4 threads on 1 node.
Also, the communication volume is relatively high in decision tree
construction. Therefore, distributed memory speedup is also lim-
ited to nearly 5 on 8 nodes. The best absolute speedup using 8
nodes and 4 threads on each node is nearly 10, and the best relative
speedup is nearly 12.

In comparing across the different versions, of | - ¢ performs sig-
nificantly better than of | on 8 nodes. Because of the size of
the reduction object, removing the overhead of communicating the
locks results in significant improvements. csl version does not
have the overhead of copying the reduction object or communica-
tion the locks. Therefore, it has higher relative distributed memory
speedups than the over two locking versions. However, this version
involves extra computation for calculating the address of the lock
corresponding to an element. Therefore, the absolute speedups are
not very high.

5. RELATED WORK

We now compare our work with related research efforts.
Significant amount of work has been done on parallelization of

I 1 thread
[2 threads
[3threads ||
B 4 threads

No. of Nodes

Figure 10: Performance of k-means(csl version)

800

Il 1 thread
[2 threads
[3threads

7001~ I 4 threads [

600~

100~

No. of Nodes

Figure 11: Performance of decision tree (f r version)

individual data mining techniques. Most of the work has been on
distributed memory machines, including association mining [2, 9,
10, 23], k-means clustering [6], and decision tree classifiers [4,
8, 14, 18, 20]. Recent efforts have also focused on shared mem-
ory parallelization of data mining algorithms, including association
mining [22, 16, 17] and decision tree construction [21].

We are not aware of any previous work on parallelizing k-means
or decision tree construction on cluster of SMPs. There is a lim-
ited amount of work on parallelizing apriori association mining on
cluster of SMPs [23]. In addition, our work is significantly differ-
ent because we have developed parallelization techniques that are
applicable across a number of data mining algorithms. Our shared
memory parallelization techniques are also significantly different
from the one previously developed for apriori association mining
and decision tree construction.

Becuzzi et al. [5] have used a structured parallel programming
environment PQE2000/SKIE for developing parallel implementa-
tion of data mining algorithms. However, they only focus on dis-
tributed memory parallelization. The similarity among parallel ver-
sions of different data mining techniques has also been observed by
Skillicorn [19]. Our work is different in offering a middleware to
exploit the similarity, and easing parallel implementations.

Il 1 thread
[2 threads

[3threads ||
B 4 threads

2 4 8
No. of Nodes

Figure 12: Performance of decision tree (of | version)

900

Hl 1 thread
[2 threads
[3 threads ||

8oor B 4 threads

700

600~

500

Time (s)

400~

300~

200

100~

0

No. of Nodes

Figure 13: Performance of decision tree (of | - ¢ version)

6. SUMMARY

In this paper, we focused on developing and evaluating tech-
niques and a framework for parallelization of data mining algo-
rithms. We have presented techniques for shared memory as well
as distributed memory parallelization that apply across algorithms
for a variety of data mining tasks.

Using 8 nodes and 4 threads on each node, we achieved a speedup
of 28 on k-means clustering and 23 on apriori association mining.
For decision tree construction, we are limited to distributed mem-
ory speedup of 5 on 8 nodes and shared memory speedup of 2.5
using 4 threads, because of high communication volume and 1/0
bandwidth limitations, respectively. In most cases, the four differ-
ent approaches for combining shared memory and distributed mem-
ory parallelization we implemented had similar relative speedups.

In comparing our work with the existing work on parallel data
mining, the speedups we achieve compare well against the reported
performance from stand-alone implementations of individual par-
allel data mining algorithms, despite our using a common set of
techniques and a middleware with a high-level interface. Thus, our
work has shown that a common framework can be used for effi-
ciently parallelizing algorithms for different data mining tasks.

7. REFERENCES

1400

Bl 1thread
[2 threads
[3threads
B 4 threads ||

1200

1000

800

Time (s)

600

400

200

2 4 8
No. of Nodes

Figure 14: Performance of decision tree (csl version)

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining:
A performance perspective. IEEE Transactions on
Knowledge and Data Eng., 5(6):914-925,, December 1993.

[2] R. Agrawal and J. Shafer. Parallel mining of association
rules. IEEE Transactions on Knowledge and Data
Engineering, 8(6):962 — 969, June 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. conf. Very Large
DataBases (VLDB’94), pages 487-499, Santiago,Chile,
September 1994.

[4] K. Alsabti, S. Ranka, and V. Singh. Clouds: Classification
for large or out-of-core datasets.
http://www.cise.ufl.edu/ ranka/dm.html, 1998.

[5] P. Becuzzi, M. Coppola, and M. Vanneschi. Mining of
association rules in very large databases: A structured
parallel approach. In Proceedings of Europar-99, Lecture
Notes in Computer Science (LNCS) Volume 1685, pages
1441 - 1450. Springer Verlag, August 1999.

[6] Inderjit S. Dhillon and Dharmendra S. Modha. A
data-clustering algorithm on distributed memory
multiprocessors. In In Proceedings of Workshop on
Large-Scale Parallel KDD Systems, in conjunction with the
5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 99), pages 47 — 56,
August 1999.

[7] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a
framework for fast decision tree construction of large
datasets. In VLDB, 1998.

[8] S. Goil and A. Choudhary. Efficient parallel classification
using dimensional aggregates. In Proceedings of Workshop
on Large-Scala Parallel KDD Systems, with ACM
SIGKDD-99. ACM Press, August 1999.

[9] E-H. Han, G. Karypis, and V. Kumar. Scalable parallel
datamining for association rules. In Proceedings of ACM
SIGMOD 1997, May 1997.

[10] E-H. Han, G. Karypis, and V. Kumar. Scalable parallel
datamining for association rules. IEEE Transactions on Data
and Knowledge Engineering, 12(3), May / June 2000.

[11] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Inc., San Francisco, 2nd edition, 1996.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

Ruoming Jin and Gagan Agrawal. Shared Memory
Parallelization of Data Mining Algorithms: Techniques,
Programming Interface, and Performance. In Proceedings of
the second SIAM conference on Data Mining, April 2002.
M. V. Joshi, G. Karypis, and V.Kumar. Scalparc: A new
scalable and efficient parallel classification algorithm for
mining large datasets. In In Proc. of the International
Parallel Processing Symposium, 1998.

S. K. Murthy. Automatic construction of decision trees from
data: A multi-disciplinary survey. Data Mining and
Knowledge Discovery, 2(4):345-389, 1998.

Srinivasan Parthasarathy, Mohammed Zaki, and Wei L.i.
Memory placement techniques for parallel association
mining. In Proceedings of the 4th International Conference
on Knowledge Discovery and Data Mining (KDD), August
1998.

Srinivasan Parthasarathy, Mohammed Zaki, Mitsunori
Ogihara, and Wei Li. Parallel data mining for association
rules on shared-memory systems. Knowledge and
Information Systems, 2000. To appear.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable
parallel classifier for data mining. In Proceedings of the 22nd
International Conference on Very Large Databases (VLDB),
pages 544-555, September 1996.

David B. Skillicorn. Strategies for parallel data mining. IEEE
Concurrency, Oct-Dec 1999.

A. Srivastava, E. Han, V. Kumar, and V. Singh. Parallel
formulations of decision-tree classification algorithms. In In
Proc. of 1998 International Conference on Parallel
Processing, 1998., 1998.

M. J. Zaki, C.-T. Ho, and R. Agrawal. Parallel classification
for data mining on shared-memory multiprocessors. IEEE
International Conference on Data Engineering, pages
198-205, May 1999.

M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li. Parallel
data mining for association rules on shared memory
multiprocessors. In Proceedings of Supercomputing’96,
November 1996.

Mohammed J. Zaki. Parallel and distributed association
mining: A survey. IEEE Concurrency, 7(4):14 — 25, 1999.

