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Abstract

One important way in which sampling for approximate
query processing in a database environment differs from tra-
ditional applications of sampling is that in a database, it is
feasible to collect accurate summary statistics from the data
in addition to the sample. This paper describes a set of
sampling-based estimators for approximate query processing
that make use of simple summary statistics to to greatly in-
crease the accuracy of sampling-based estimators. Our es-
timators are able to give tight probabilistic guarantees on
estimation accuracy. They are suitable for low or high di-
mensional data, and work with categorical or numerical at-
tributes. Furthermore, the information used by our estimators
can easily be gathered in a single pass, making them suitable
for use in a streaming environment.

1 Introduction

Interactive-speed evaluation of ad-hoc, OLAP-style queries
is quite often an impossible task over the largest databases.
Even using modern query processing techniques in conjunc-
tion with the latest hardware, OLAP-style queries can still
require hours or days to complete execution. A quick perusal
of the latest TPC-H benchmark supports this assertion [28].

One obvious way to address this problem is to rely on ap-
proximation. If an approximate answer can be given at sub-
second, interactive speeds, it may encourage the use of large
databases for ah-hoc data exploration and analysis. One of
the most often-cited possibilities for supporting approxima-
tion in a database environment is to rely on random sampling
[13,12,1, 2, 6,7, 10, 14, 19, 22, 21, 18]. Unlike other esti-
mation methods such as wavelets [29, 8, 9] and histograms
[11], sampling has the advantage that most estimates over
samples are unaffected by data dimensionality, and sampling
is equally applicable to categorical and numerical data. An-
other primary advantage of random sampling is that sampling
techniques are well-understood and sampling as a field of sci-

entific study is very mature. Fundamental results from statis-
tics can be used as a guide when applying sampling to data
management tasks [27, 20, 26, 25].

However, there is one important way in which sampling in
a database environment differs from sampling as it has been
studied in statistics and related fields. Specifically, most work
from statistics makes the assumption that it is impossible to
gather accurate summary statistics from the population that is
to be sampled from. After all, in traditional applications like
sociology and biology, sampling is used when it is impossible
to directly study the entire population.

In a database, this assumption is far too restrictive. There is
no reason that accurate and extensive summary statistics over
the underlying data set cannot be maintained. In databases,
unlike in traditional statistical inference, the entire data set is
available and can be pre-processed or processed in an online
fashion as it is loaded. The reason that approximation may be
required in a database environment is that there are too many
possible queries to pre-compute the answer to every one, and
it may be too expensive to evaluate every single query to get
an exact answer. This does not imply that it is impractical to
maintain a very comprehensive set of summary statistics over
the data.

A recent paper [14] proposed a new technique called
Approximate Pre-Aggregation (APA) that makes use of
such summary statistics to greatly increase the accuracy of
sampling-based-estimation in a database environment. APA
is useful for providing extremely accurate answers to ag-
gregate queries (SUM COUNT, AVG) over high-dimensional
database tables, with a complex relational selection predicate
attached to the aggregate query. For example, imagine we
have a database table COVPLAI NTS ( PROF, SEMESTER,
NUM_COMPLAI NTS) and the SQL query:

SELECT SUM ( NUM_COWPLAI NTS)
FROM COVPLAI NTS
WHERE PROF = ' Snmith’

AND SEMESTER = ' Fa03’;



This query asks: “How many complaints did Prof. Smith
receive in the Fall 2003 semester?” APA was shown exper-
imentally to produce estimates for the answer to this type of
query that have only a small fraction of the error associated
with other techniques such as stratified random sampling and
wavelets, especially over categorical data.

However, there is one glaring weakness with APA: it is dif-

ficult or impossible to formally reason about the accuracy of
the approach. In particular, while APA was shown experi-
mentally to produce excellent results, there is no obvious way
to associate statistically meaningful confidence bounds with
the estimates produced by APA. A confidence bound is an as-
sertion of the form, “With a probability of .95, Prof. Smith
received 27 to 29 complaints in the Fall of 2003.” The lack of
confidence bounds poses a severe limitation on the applica-
bility of APA to real-life estimation problems.
This Paper’s Contributions: In this paper, we propose a new
method for combining summary statistics with sampling to
improve estimation accuracy, called APA+. APA+ is in many
ways simpler than APA, and yet it has the overwhelming ad-
vantage of giving statistically meaningful confidence bounds
on its estimates. As we will show experimentally in this pa-
per, APA+ produces confidence bounds that are tighter and
more accurate than those that are produced using more tradi-
tional, sampling-based estimators. Furthermore, computing
an APA+ estimate is computationally very efficient, which
renders APA+ an excellent candidate for use in applications
like online aggregation [13], where an estimate must be re-
computed every second or so in order to inform a user as to
the current accuracy of the estimate.

Given the accuracy and wide applicability of the techniques

presented in the paper, we assert that APA+ should be used in
place of traditional, sampling-based estimation in any envi-
ronment where it is possible to augment a sample with simple
summary statistics over a database.
Paper Organization: Section 2 of the paper gives an
overview of APA and our new method, APA+. The simplest
version of APA+ is formally described in Section 3. Section 4
generalizes APA+ to work with more complicated and com-
prehensive summary statistics, and Section 5 discusses the is-
sue of correlation in the individual estimates that make up the
final APA+ estimator. Section 6 presents our experimental
evaluation, and Section 7 gives an overview of related work.
Finally, the paper is concluded in Section 8.

2 Overview of APA and APA+

In this Section, we will describe both APA and APA+ at a
high level in the context of the example database table de-
picted in Table 1 [14].

This table models the situation where a number of students
take a course each semester, and the number of student grad-
ing complaints is recorded.

2.1 Approximate Pre-Aggregation (APA)

In our example, we are interested in answering a query of

the form:

[S [Pof. [Sem. [Cmpl. [ S [ Prof. | Sem. [ Cmpl. |

Adams | Fa02 | 3 v/ | Smith Su0l | 7
Jones Fa02 | 2 v/ | Smith Sp0l1 | 8
Adams | Sp02 | 9 v | Adams | Fa00 | 4

v/ | Jones Sp02 | 2 Smith Sul0l | 7

v/ | Smith Sp02 | 21 Smith Fa00 | 33
Smith FaOl | 36 v/ | Adams | Su00 | 3

v/ | Jones Su0l | 1 v/ | Jones Su00 | O
Adams | Su01 | 2 Jones Sp99 | 1

Table 1. Number of complains over three years

SELECT SUM ( NUM_COMPLAI NTS)
FROM COMVPLAI NTS
WHERE PROF = ' Snith’

Imagine that we decided to answer this query using a 50%
sample of the database, where the sampled tuples are indi-
cated by a check mark in Table 1. Estimating the answer to
the query using the sample is very straightforward. The num-
ber of complaints in the sample is 36, and since the sample
constitutes 50% of the database tuples, we can estimate that
Professor Smith received 72 complaints.

However, as we see from Table 1, the actual number of
students who came to see Professor Smith was 121 (yield-
ing 40.5% relative error). The problem is the variance in the
number of students who complained to Professor Smith each
semester. This ranges from a low of 7 to a high of 36, and it
happens that our sample missed the two semesters when the
greatest number of students complained to Professor Smith.

APA makes use of additional summary statistics to reduce
sampling’s vulnerability to variance. The APA process begins
by using the relational selection predicate of the query to di-
vide the data space into 2™ quadrants, where n is the number
of clauses in the predicate. APA then associates a probabil-
ity density function with each quadrants, and uses the addi-
tional summary information that is available to create a set of
constraints on the means of these distributions. A Maximum
Likelihood Estimation (MLE) is then used to adjust the means
in order to correct violations of the constraints. Depending on
the dimensionality of the summary information used, differ-
ent variations of APA are possible. For example, APAO makes
use of zero-dimensional facts about the data, or assertions
of the form ( SUM( COMPLAI NTS) ) = 148. APA1 makes
use of one-dimensional facts about the data, or assertions of
the form ( SUM ( COMPLAI NTS) ) WHERE ( SEMESTER =
" Fa02’ ) =5, which have one clause in their relational se-
lection predicate.

2.2 APA+

The fundamental weakness of APA is a lack of a formal
analysis of the accuracy of the approach, which in turn pre-
cludes analytically-derived confidence bounds on APA esti-
mates. Such an analysis is difficult for several reasons:

1. First, it can be difficult in general to reason about the
accuracy of maximum likelihood estimators. While
MLEs are usually Minimum Variance Unbiased Esti-
mators (MVUES) and are typically normally distributed



[16], this only provides a lower bound on the variance
of the MLE using the Carmer-Rao inequality; it does not
say whether or not the MLE actually achieves this lower
bound.

2. Second, things are even more difficult in the case of
APA, which uses a constrained MLE where the space of
possible solutions is restricted by the available summary
statistics. It is far from clear how to formally reason
about the effect of this on the accuracy of the approach.

3. Finally, the various estimators that are combined in APA
are correlated, and this correlation is ignored by APA.
If one sample falls in the quadrant associated with Pro-
fessor Smith, than it cannot fall in the quadrant holding
tuples not associated with Professor Smith. Considering
this correlation is absolutely necessary in order to de-
velop confidence bounds for APA, and yet it makes the
analysis even more difficult.

In this paper, we provide a simple alternative to APA, called
APA+, APA+ is similar to APA, except that it does not rely
on MLE and is far more amenable to a rigorous statistical
analysis of its accuracy.

At the highest level, just like APA, APA+ also makes use of
additional summary statistics, but in a fundamentally different
way. APA+ relies on the idea of a negative estimator to make
use of summary statistics. In APA+, the original, straightfor-
ward estimate of 72 is called a positive estimator, in that it
is derived by directly considering the tuples that match our
relational selection predicate. However, it is also possible
to produce a negative estimator by first estimating the num-
ber of complaints not attributed to professor Smith (which is
2x (204 1+ 0+ 3 +4) = 20), and subtracting this quan-
tity from 148, which is the total number of complaints. Thus,
148 - 20 = 128 is our negative estimator for the number of
complaints attributed to Professor Smith.

If we denote the positive and negative estimator by £, and
# respectively, then

t=at, + (1 - ),

is itself an unbiased estimator of the number of complaints
for Professor Smith for any value of « where 0 < a < 1. By
choosing a so as to minimize the variance of £, it is possible
to develop an extremely accurate estimator.

This alternative method for incorporating summary statistics
into our estimate has several obvious advantages:

1. Intuitively, the accuracy of APA+ should be very good,
just like for APA. The reason is that the ensemble ap-
proach leverages more information into the estimation.
By using the information from the negative domain, we
can reduce the variance of our estimation. Considering
that our ensemble estimator is unbiased for the answer
of the query, the error associated with it must be small,
leading to very accurate estimates.

2. Unlike APA, APA+ relies on simple arithmetic in order
to make use of summary information, and is thus very
amenable to statistical analysis, including the derivation
of confidence bounds.

3. Just like for APA, it is possible to extend APA+ to work
with more complicated summary information involv-
ing specific subsets of the data and more complicated
queries. In the general case, APA+ makes use of many
negative estimators, all of which are combined to form a
single, unbiased estimator for the answer to the query.

An additional advantage of APA+ is its capability to deal
with both categorical and numerical attributes in WHERE
clause. In our technical report [15], we have shown how
APA+ can be extended to handle numerical attributes.

Similar to the different versions of APA, i.e., APAQO, APAL,
etc., we also have different versions of APA+, which are re-
ferred to as APAO+, APAl+, and so on. The version that
uses i-dimensional aggregates is referred to as APAi+. In the
remainder of the paper, we formally describe APA+ and the
derivation of its associated confidence bounds with a focus
on categorical attributes in the WHERE clause. In the next
section, we first study APAO+.

3 Negative Estimatorsand APAO+

To facilitate our discussion, we first introduce some defini-
tions.

Let N be the total size of dataset, and 7' be the zero-
dimensional fact that describes the total value of the attribute
that is to be aggregated over all tuples in the database (in our
example, 7" is SUM( COVPLAI NTS) = 148). Let S denote
a sample of size n, extracted from the complete data set using
sampling without replacement [27].

Given a WHERE clause (or relational selection predicate) p,
the domain of p (denoted D)) is the set of data points in the
complete dataset which satisfy the clause. The domain sam-
ple is the set of samples from S that satisfy the predicate p.
The size of the domain sample is denoted as n 4. The i-th unit
in the domain sample is represented by ;. In our example, the
selection clause WHERE PROF =" Smmi t h’ specifies the do-
main sample {21,7,8}. The domain sample can be extended
to the domain data space by assigning 0 to all the samples
from S that do not satisfy the predicate. In our example, the
domain data space is {0,21,0,7,8,0,0,0}. We will use u;
to represent the ¢-th unit in the domain data space, and @ to
represent the mean of the domain data space, computed as
(7 i) /n. )

Given these definitions, let ¢, be the naive estimator for the
value of a SUM query over D,. This can be formally ex-

pressed as
. N N
t, = — ;= — U;
P n;yl n; 1

Note that in this paper, we also call this estimator a positive
estimator, since its estimate is only based on the samples sat-
isfying the predicate p. Also, ¢, is unbiased:



Lemma 1 The estimation of £, is unbiased, i.e. the expec-
tation of this estimator equals to the true value, E(¢,) =
tp [27].

Furthermore, we also know that the variance of V (£,) can be
estimated as:
N-n_,
S
N Su

where, s2 = 1/(n—1) >, (u; —@)? is the sample variance
in the domain data space [27].

In our example, #, estimates the number of Prof. Smith’s
complaints to be 2 x (21 + 7 4 8) = 72. However, the cor-
rect number of Prof. Smith’s complaints is 121. Clearly, the
naive estimator significantly under-estimates the target vari-
able. For this example, the standard error (SE), which is the

square root of the variance, (SE(£,)=1/V (,) ), is 68.2. In
practice, such large relative standard errors can be commaon.

In the following subsections, we will describe how to utilize
the zero-dimensional fact 7' to improve the naive estimator of
the total of the domain D,,. Section 4 will show how these
results can be generalized to make use of facts that provide
more detailed information.

3.1 The Negative Estimator

Let p be the negation of the clause p. Thus, p specifies those
tuples from the data set that are not in the domain D,,. Clearly,
t5 is also an unbiased estimator for t5, the total of the do-
main Dz. In our running example, the negation of the original
clause produces the following query:

V(iy) = N*(

SELECT SUM ( NUMLCOVPLAI NTS)
FROM COVPLAI NTS
VWHERE PROF # ' SM TH

Just as £, is a naive estimator for the number of complaints
received by Professor Smith, #; is a naive estimator for the to-
tal number of complaints for all the professors except Smith:
t; =16/8 x (24+14+0+3+4) = 20.

A simple but important fact connects ¢,, the total of the do-
main D,, and ¢, the total of the domain Dj:

T=t,+tp

Given this, we introduce a new estimator based on the nega-
tive clause:

Definition 1 The negative estimator of the domain total ¢,

Just as the positive estimator is unbiased, so is the negative
estimator:

Lemma 2 The negative estimator f;, is an unbiased estimator
for t,, the total of domain D,, and its variance is the same as
the variance of ¢, i.e. V(t},) = V (tp).

Proof: From Lemma 1, we can see that #; is an unbiased
estimator of ¢, i.e. E(f;) = t;. Therefore, E(t,) = E(T —
tz)= E(T)— E(t5)=T —tp=t,,. Further, by the linear property
of variance [3], V(#,) = V(f5). O

Also, directly from the above discussion, the variance of the
negative estimator can be estimated as:

V(t,) = V(i)

Applying this new estimator to our example, the negative
estimate for the number of complaints for Professor Smith is
148 — 20 = 128, significantly reducing the standard error
to 13.4. The improved accuracy can be attributed to the fact
that the sample variance of the domain sample for the neg-
ative predicate is much smaller than the one for the original
predicate in this example.

3.2 An Optimized Unbiased Estimator

So far, we have introduced two unbiased estimators, £, and
f; for the total of domain D,,. In this subsection, we study
how to combine these two estimators together to have an op-
timized unbiased estimator whose variance is lower than the
variance of either of the existing estimators.

Let the new estimator be the linear combination of two ex-
isting estimators, £, and £/,:

tAAPAO = Ozfp + (1 — a)t}

where, 0 < a < 1. By the linearity of expectation, this new
estimator is clearly unbiased as well:

Lemma 3 The new estimator £ 4 p 40 is an unbiased estimator
for the domain total ¢,,.

Now the question is how to find an optimized o to mini-
mize the variance of ¢ 4p40. For simplicity, in this section
we will assume the positive estimator and negative estimator
are independent. In this case, Lemma 4 states the existence
of an optimal unbiased estimator. Note that the two estimator
are actually correlated. In Section 5, we will discuss how to
incorporate this correlation into our estimation approach.

Lemma4 Assume V ({,) + V(tp) # 0, leta = %
P P

the estimator i%p, 4 = @y + (1 — @)é,,0 < a < Lisan
unbiased estimator of the domain total ¢,,, and minimizes the
variance of t 4pag.

Proof: We know that:
V(tapao) = *V(tp) + (1 — )V (tp)

To minimize the variance of £ 4 p 40, We first look at the first
order derivative of V(¢ 4p4o) With respect to variable a. By
forcing the derivative to 0, we have:



Also, the second order derivative of £ 4p 40 is always larger
than 0, when V' (t,,) + V(t5) # 0. Therefore, the variance of
tap Ao is minimized at our specified o. O

We call above estimator the optimal estimator. Since the
variances of ¢, and #; are usually unknown, it is not possi-
ble to compute « exactly; rather, the natural estimator & =

Av(if) _
V(tp)+V(ip) ) .

Applying this new estimator to our running example, the
optimized & is 0.0373, and the estimated total is 125.95, with
a reduced standard error 13.1.

3.3 Constructing a Confidence Interval

The standard method for describing the accuracy of an es-
timate is to associate a confidence interval with the estimate.
For example, to associate a 95% confidence interval with our
estimate, we choose a range of values so that with probability
95%, the true answer to the query will fall within this range.
In practice, in order to provide a tight confidence interval the
distribution of the estimator must be known.

As a result of the central limit theorem (CLT), the distri-
bution of the positive estimator fp is approximately normal
(Gaussian) with mean ¢, and variance V(fp) for large n [20].
Thus, a large-sample 100(1 — )% confidence interval (CI)
for the domain total ¢,, is:

is used.

[fp - za/2SE(fp)a fp + Za/st(fp)]

where z, /5 is the (1 — a/2)"" percentile of the standard nor-
mal distribution. The size (or width) of confidence interval is
2% za/QSE(fp). For example, for a95% ClI, a is 5% and 25 5
is 1.96. Therefore, an approximate 95% CI for the estimator
t, is given by:

[tp — 1.96SE(ty),t, + 1.96SE(t,)]

The following Lemma establishes an important property of
of the distributions of the negative and optimal estimators.

Lemma 5 If the distribution of the naive estimator on the
negative domain is normal with mean ¢, then the distribu-
tion of the negative estimator f; is normal with mean ¢, and
variance V (#5). Furthermore, if the distribution of the naive
estimator on the positive domain is also normal with mean

t,, the distribution of the optimal estimator % 4, is normal

with mean ¢, and variance V ({%5 40)-

As aresult, the confidence intervals for £, and #%5 4, can be

derived as described above.

4 Generalization

In practice, it is easy to compute and store more compli-
cated pre-aggregated results than those used in APAO+. This
information can be used to achieve much greater estimation
accuracy. In this Section, we will study how to build opti-
mal estimators when more complicated pre-aggregation re-
sults are available. We refer to a fact with 4 predicates in its

SEX <> ‘MALE’ AND
DEPARTMENT <> ‘ACCOUNTING’
AND JOB_TYPE <> ‘'SUPERVISOR’

babyaby O

by AbyAby
. / SEX =
byAbynb, P \MALE’
DEPARTMENT =
*ACCOUNTING’
b, Ab,AD
1mr2ers JOB_TYPE =
-or- *SUPERVISOR’
SEX = ‘MALE’ AND
DEPARTMENT = ‘ACCOUNTING’
AND JOB_TYPE = ‘SUPERVISOR’

Figure 1. Spatial representation of query pred-
icates

relational selection clause as an i-dimensional fact, and we
refer to the version of APA+ that makes use of 4-dimensional
facts as APA:+. We begin this section with a few definitions,
specifically, we define the idea of a negative clause with re-
spect to more complicated pre-aggregation results.

We assume a relational selection clause p that can be ex-
pressed as a conjunction of m boolean predicates, by, - - -, by,
For example, consider the following query [14]:

SELECT SUM ( SALARY)
FROM EMPLOYEE
WHERE SEX=" M
DEPARTMVENT=" ACCOUNT’
AND JOB_TYPE=' SUPERVI SOR

In this case, we have by = (SEX = "M), by
( DEPARTMENT = " ACCOUNT' ), b3 = (JOB_TYPE
" SUPERVI SOR ) . We will also consider the negation of
each of these predicates: by, bo,bs. Note that if we take all
possible meaningful combinations of these predicates, the en-
tire dataset can be partitioned into 2™ non-overlapping do-
mains, specified by 2™ clauses. We call such clauses domain
clauses. In our example query, the 22 = 8 domain clauses
are by A by Abs, by Aby Abs, by Aba Abs,by Aby Abg, by A
by A b3, by A by A bg,by A by Abs,by A by Abs. Note that
each of these clauses corresponds to a single cell in the mul-
tidimensional data cube defined by b1, b2, and b3 (see Figure
2) [14].

Any conjunction over a subset of {b1, b, ---, by, } can be
expressed as a disjunction of the various domain clauses. Let
the conjunctive clause b;, A --- A b, be denoted by p;, ... ;.
For APA:+, the fact involving such a conjunctive clause with
i predicates is referred to as an ¢-dimensional fact, and is as-
sumed to be available. This fact is an aggregate over the do-
main specified by this clause. In order to utilize ¢-dimensional
facts, we introduce the following definitions.



Definition 2 The set of 2™~% domain clauses whose disjunc-
tion is equivalent to pj, ... ;, is called the set of domain
clauses with respect to pjq.... js.

In our example, the domain clauses with respect to the con-
junctive clause p; = by (equivalent to SEX = MALE) are
b1 Aby Ab3, by /\bQAE, by /\E/\ bs, by /\E/\E; the domain
clauses with respect to the conjunctive clause p2 3 = ba A b3
are by A ba A b3 andE/\bz/\bg.

This definition is important, because it will allow us to de-
fine a negative clause that will be used to form the negative
estimators in higher-order versions of APA+:

Definition 3 The set of domain clauses with respect to
Pj1,.-.,ji except the predicate p is called the set of negative
clauses with respect to pj, ... ;,, Ofr DW.I.t. p;, ... ;, for short.

In our example, pW.r.t. py is (by Aby Abs) V (by Aba Ab3)V
(bl N E A E), and pw.rt. D23 is E A by A bs.

Finally, we use t;, ... ;, to denote the sum of the target
attribute over the domain specified by pj,,...;; , and use
t5,,.....;, to denote the total of the domain defined by p w.rt.
Dju,---ji- FOr example, ¢, ., - refers to the sum of the tar-
get attribute over the domain specified by the domain clause
b1 A by A b3, and t,, refers to the answer to our query. Note
that ¢;, ... ;, is an i-dimensional fact.

The next four Subsections describe how to extend the tech-
niques of Section 3 to develop APA1+. A generalization to
APAG+ for arbitrary values of i is given in Section 4.5.

4.1 Negative Estimators in APA1+

Just like APAQO+, APA1+ relies on the idea of a negative
estimator. However, unlike APAO+, APA1+ will make use
of many negative estimators. In APALl+, we assume that we
have access to all one-dimensional facts over the data set. In
our running example, this means that the totals ¢4, ¢, t3 are
available. Using the notation given above, the positive esti-
mator for the sum of the target attribute over the domain D,
is denoted by £, = tj, Ap,nbs- AN estimator for the sum of
the target attribute over the domain of a negative clause can
be defined similarly, for example:

~ ~

to1 =ty Abanbs T toynbanbs T toy ABaABs

Since in APA1+ it is assumed that ¢; is available, ¢; and fﬁl
can easily be combined to form a new estimator for the an-
swer to our query:
fpl = tl - £51
This is an example of a negative estimator in APA1l+. In
general:

Definition 4 #,, = t; — &;. is the APAL+ negative estimator
for t, where p = by A by - -- by, and p; is the disjunction of
all negative clauses with respect to the clause b;, 1 < i < m.

Thus, there are a total of m negative estimators available in
APA1+. Based on the same argumentas in Lemma 2, we have
the following lemma:

Lemma 6 Each APAL+ negative estimator £,, is an unbi-
ased estimator for ¢, the sum of the target attribute over D,,.
The variance of ¢, is the same as the variance of t5, i.e.

V(ty) = Vip,).

4.2 Combining Positive and Negative Estimators in
APAl+

Just as in APAO+, the positive estimator and the negative
estimators in APA1+ can be combined together to produce a
new estimator with smaller variance.

The basic approach is similar to the method described in
Subsection 3.2. We first introduce a new family of estimators
based on the linear combination of the existing estimators.
Formally, for a selection clause p = by A by - - - by, the new
estimators are of the form:

tAAPAl = Oé()??p + alfpl + -+ amfpm

where £, is the positive estimator, £,,, is the negative estimator
fori > 0,and ag + @1 + --- 4+ am = 1. Clearly, tapa; is
unbiased as well:

Lemma 7 The new estimator £ 4 p 45 is an unbiased estimator
for the domain total ¢,,.

4.3 Minimizing the Variance of 4 p;

Because several negative estimators can contain the estimate
associated with each cell in the cube illustrated in Figure 1,
they will be strongly correlated. In order to derive the ap-
propriate parameters to minimize the variance of ¢ 4p 1, we
first decompose each negative estimator based on the negative
clause so that we can manage this correlation. For example,
in our running example, the negative estimator f51 can be de-
composed as:

U5, =ty nbanbs T Loy nbanbs T Lo ABaATs

By decomposing each APALl+ negative estimator in this
fashion, we can group like terms in order to reduce the pair-
wise correlation. The process is demonstrated in the follow-
ing steps over the APA1+ estimator for our example query:

tAApA1 = Otofbl/\bz/\bs +

o (tr — (fbmbzAE + tAbl/\E/\bs + fbl/\E/\E)) +

az(ts — (b, nby g + T avanbs T Lo nsanss)) +

as(tz — (fﬁAbgAbs + £b1/\5/\bs + fﬁ/@/\bs)) =
Oiofbl/\(m/\(m - (Otl + a2)tAb1/\b2/\E - (al + a3)tAb1/\E/\b3
—(a2 + as)fmeAbs - alfblAEAE

~ ~

—OéthAbZ/\E - a3tH/\E/\b3 + Oéltl + Otztz + a3t3

In this way, the APA1+ estimator is transformed into the
linear combination of estimators for the totals on a set
of non-overlapping domains. Since the domains are non-
overlapping, for the moment we will assume that all of the



estimators used in 4p4; are pair-wise independent. In re-
ality, the estimators of the non-overlapping domain totals are
correlated, and we will study correlation in Section 5. Us-
ing the pair-wise independence assumption, we can derive the
variance for the new estimator:

V(fAPAl) = a(z)V(tAbl/\bz/\bs) + (041 + a2)2v(fb1/\b2/\g) +
(o1 + 043)2V(£b1/\5/\b3) + (a2 + aS)QV(fE/\bz/\bs) +

217 (f 2v (£ V(@
ayV (ty, noznng) T 02V (o npsnbg) T 23V (G5 a5 Abs)

To minimize the variance, in most of the cases, we can sim-
ply use Lagrange multipliers to optimize the values of the
various « parameters. This procedure involves using a lin-
ear solver to solve a m x m linear equation, with cost O(m?).
If the parameters («;) are invalid, i.e., they are negative, we
can apply quadratic programming [14] to find the minimal
variance. We refer to the estimator with the minimal variance
as the optimal estimator, and denote it as £% 4,

4.4 APAl+ Confidence Intervals

As discussed before, in order to provide a confidence inter-
val, we have to know the distribution of the estimator.

Using the same argument as in Lemma 5, we have the fol-
lowing important property of optimal estimator tfﬁ) A7

Lemma 8 The distribution of the optimal estimator £%7°5 ,,

is normal if the distributions of each positive estimator for
the total of each non-overlapped domain (the domain total
specified by each conjunctive clause) are normal.

Thus, just as in APAO+, for sufficiently large n each positive
estimator of the domain total is approximately normal. There-
fore, the distribution of the new optimal estimator is also ap-
proximately normal, with variance V (£%5 ., ).

The confidence interval of the new estimators can be de-
rived the same as the positive estimator, i.e. a 100(1 — a)%
confidence interval (CI) for the domain total ¢,, is:

[£576 a1 — 2a/2SE(EFp41), E0 a1 + 2a/2SE(EF a1)]
where z, /5 is the (1 — a/2)'" percentile of the standard nor-
mal distribution.

4.5 Generalizing the Method

The methods developed in this Section can be generalized
to utilize higher-dimensional facts. For example, we can de-
fine APA2+ to be the version of APA+ that makes use of
facts having two clauses in their relational selection predicate:
SUM( SALARY) WHERE ( SEX ="M AND DEPARTMENT
=’ ACCOUNT' ) =$2. 1M For APA2+ we have:

tapA2 = aotp + aiatp,, + ai13tp,; + a23tp,,

where ag + ai2 + a2z + a3 = 1and 0 < aia, a3, 03 <
1. In a manner similar to APA1+, the optimal estimator for
APA2+ is:

opt .
thp A2 = oty Abonbs + 12(t12 — tbl,\bﬂ\g) +

aiz(tiz — tbl/\g,\b3) + ao3(tas — tg/\g,\lm)
= Q0lby AbaAbs — 012y Apy ABy —
13l Aponbs — Q23T AbaAbs T Q12t12 + i3tz + 23tas

with each « chosen so as to minimize the variance.

It is also possible to extend the method to develop a hierar-
chical version of APA where we make use of APAO+, APA1+,
and perhaps higher-order pre-aggregation together. For exam-
ple, to use APAO+, APA1+, and APA2+ together we make use
of the following linear combination:

t = aty + aot) + arty, + cotp, + asty, +
al?fpm + al3fp13 + a23tAp23

where £, is the positive estimator of the domain total t,; i is
the negative estimator using APAQ; tpl, per and t,,3 are the
negative estimators of APAL+; and t,,,, tp,,, and ,,, are the
negative estimators for APA2. As in APAO+ and APA1+, we
have the constraint that o + ag + @1 + a2 + az + @12 + @13 +
a3 =1,
5 Dealingwith Correlation

In Sections 3 and 4, we assumed the estimators on each
individual domain are pair-wise independent. However, the
correlation does exist among these estimators. In this Sec-
tion, we will first derive the closed formula of the correlation
(covariance) among them (Subsection 5.1). Then we study
how to incorporate the correlation factor into our estimators
to improve their accuracy (Subsection 5.2).
5.1 Correlations among Estimators

In this Subsection, we first study the correlation for the esti-
mators of the domain totals specified by a clause and its nega-
tion. This corresponds to the situation in APAO+, where the
combined estimator is based on a pair of these clauses. Then
we will study the general case, where we compute the corre-
lation between two estimators on the non-overlapped domain
totals. This corresponds to the situation where higher-order
pre-aggregation information is used by the APA+ methodol-
ogy.

We capture the correlation by computing the covariance.
The covariance (Cov) between two estimators ¢, and t, is
defined as follows [3]:

CO’U(tl,tz) = E(tltz) - E(tl)E(tQ)

We begin by considering the case of APAO+, where we have
a domain clause and its negation. Let £, and #; be the esti-
mators of the totals for the domains specified by a selection
clause p and its negative clause p; t,, and t; are the true totals
of these domains, respectively. Lemma 9 states the covari-
ance of these two estimators:

Lemma9 The covariance between the two estimators, #,
and ¢, is:
N —n

Cov(ty, tz) = m)

- (tptﬁ)(



Proof: Please see our technical report [15]. O
Since N is typically very large, the covariance can be ap-
proximated as:
Cov(ty, ty) ~ _bfp
n
Note that the covariance depends on the totals of the domain
of p, and its negative p, which are estimation targets. We will
use the naive estimator to replace them, and therefore, we
have: L
Couv(t,, ty) ~ oty
n
In the general case, we have two estimators #,, and %,
which are estimators of the totals for the domains specified by
two clauses p; and p, where p; and p, are non-overlapping.
Let ¢,, and t,, be the true sum of the target attribute over
these domains, respectively. Lemma 10 shows that the co-
variance of these two estimators is actually the same as the
case in which they are negations of one another, i.e. p = pr.

Lemma 10 The covariance between the two estimators, #,,
and ¢p,, is

Covliperipn) = ~(tptys) (=)

Proof: Please see our technical report [15]. O
Using the same techniques as we did in case of APAO+, we
can approximate the covariance as follows:

Cov( pist

5.2 Using the Covariance

In this subsection, we study how to improve the new esti-
mators developed in Section 3 and Section 4 after consider-
ing the correlation among each individual estimator. Note we
will only discuss the variance of these new estimators since
the expectation of these estimators is not affected by correla-
tion.

APAO+: For the estimator fapao = atp+(1—a)f),0 < a <
1, considering the correlation between £, and £, we have

V(tapao) = V(ady + (1 - a)(T — 1))
= V(aty — (1 - @)tp)
=V (t,) + (1 — @)?V(t) — 2a(1 — @)Cov(ty, t5)

To minimize the variance, we can use the standard mathe-
matical methods, i.e. looking at the first and second order
derivatives with respect to «, to find the desired parameter.

APAi+: Recall that in Section 4, we assumed the estima-
tors on the domain clauses are pair-wise independent. As
we showed in Subsection 5.1, they are in fact correlated.

The covariance between any two estimators on the non-
overlapped domains, tp1 and tm, can be approximated as

COU( P1a n
Given thls we can mcorporate the correlation factor into our
new estimators as follows. Consider the new estimator based
on APA2+ as given in Subsection 4.5. The variance of the
new estimator taking correlation into account is as follows:

) o _tny tpz

V(tapaz) = agV (fo, abanbs) + 0oV (Ey, nponss) +
a13V( b1/\b2/\b3) + a23V( 1/\b2/\b3)
Bs) ~

ao12C00(p; AbsAbg > Ty, Aby A

>

3

agaszCov

(t

aoalgCov( b1 AbaAbs3 b1/\b2/\b3)
( 1/\b2/\1737£1/\b2/\b3
( R

)+
al2a1300v /\bz/\bg7 bl/\bz/\ba)
)

Q12023 CO’U( =+

b1 Abo /\b3 ? b1 /\bz Nb3z

Q13023 CO’U( t

b1 AbaAbs > HAE/\bg)

Given this formula, an approach similar to the one given in
Section 4 can be used to find the desired parameters to mini-
mize the variance.

One issue that still needs to be explored is the effect of the
covariance on the distribution of the various APA+ estimators.
So far, we have relied on the CLTas justification of the nor-
mality of the APA+ estimators. However, after incorporating
the correlation factor, the distribution of the combined estima-
tor may not necessarily be normal, even if the CLT holds for
each of the component estimators. It turns out that such dis-
tributions are very close to the class of spherically symmetric
distributions [17], of which normal distribution is a special
case. The analytical formula of the distribution of combined
estimator is available in a technical report [15]. Though the
exact confidence interval for such distributions is still hard to
derive, our analysis and later experimental evaluation (Sub-
section 6.5) give strong evidence that normal distributions can
serve as a good approximation for such distributions. There-
fore, in the experimental results presented in Section 6, we
simply utilize normal distributions to derive confidence inter-
vals. Our experimental results validate this approach.

6 Experimental Results

This section presents an experimental benchmark of the
methods proposed in the paper. Traditionally, benchmarks
of approximate query processing techniques have focused on
testing the absolute or relative error of the estimates provided
by an approximation methodology. While we are guilty of
publishing a few benchmarks of this type ourselves [14], we
assert that this style of benchmarking can be of limited practi-
cal value. In practice, any useful approximation methodology
must be able to differentiate among the cases when the esti-
mation accuracy is likely to be good and when the accuracy is
likely to be poor. In other words, an accurate estimate is of lit-
tle use unless the methodology can recognize that the estimate
is very accurate and the user can be notified accordingly.



As a result, this section focuses on studying the ability of
APA+ to provide accurate estimates, and to recognize when
those estimates are accurate. This is done by studying the
confidence bounds provided by APA+. Specifically, our study
focuses on two important questions:

1. How accurate are the confidence bounds provided by
APA+? In other words, if APA+ guarantees a certain
accuracy on an estimate, what are the real chances that
the estimate meets those accuracy guarantees?

2. How tight are the bounds of our confidence intervals,
as compared to traditional methods that could be used
as an alternative to APA+? In other words, how much
accuracy is APA+ able to guarantee, compared to the
obvious alternatives?

6.1 Approximation Techniques Tested

In our experiments, we compare APA+ with two sampling-
based alternatives. We concentrate on sampling for several
reasons. Samples are widely used in the data management
literature, and there is an extensive statistical literature rele-
vant to associating confidence bounds with samples [27, 20].
Furthermore, sampling is arguably the most widely applica-
ble approximation technique. Unlike other methods such as
wavelets [29, 8, 9], samples are unaffected by data dimen-
sionality, and work equally well with categorical and numeri-
cal data. Thus, the following approximation techniques were
used in our comparison:

Simple Random Sampling: The sample is extracted from
the original data set using the sampling without replace-
ment method. The estimator is the naive unbiased esti-
mator, and confidence bounds are derived using the cen-
tral limit theorem (CLT).

Stratified Sampling: Stratification is a standard statistical
technique that can be used to boost sampling-based es-
timation accuracy, and has previously been applied to
problems in data management [4]. Stratified sampling
works by partitioning the data set into a set of non-
overlapping strata. In order to increase estimation ac-
curacy, partitions can be chosen so as to minimize sub-
sequent estimation variance. In our experiments, we use
a uniform allocation of samples to strata. Experiments
were conducted with 2 different sizes for each strata: 10
samples per strata and 100 samples per strata (in general,
for a fixed number of total samples, using more strata
and fewer samples per strata tends to increase estimation
accuracy). Given a uniform allocation, the partitions are
chosen so as to minimize the variance of the estimate of
an aggregate query over the entire data space.

APAO+: We also implemented and tested APAO+, as de-
scribed in this paper. APAQO+ uses zero-dimensional
facts to produce confidence bounds for each query. Re-
call that zero-dimensional facts are facts of the form
SUM COVPLAI NTS) = 123. The additional memory

exp. %DB | 1 2 3 4 5 6 7 8
match query] pred | pred | pred | pred | pred | pred | pred | pred
10% 4% 4% | 4% | 4% 1% | 4%

1% 4% | 4% | 4% | 4% | 4% | 4%
0.1% 4% | 4% | 4% | 4% | 4% | 4% | 4%
0.01% 4% | 4% | 4% | 4% | 4% | 4%

Table 2. Distribution of Testing Queries

cost of this method is minimal compared to simple ran-
dom sampling; e.g. in the datasets that we tested with it
was only a few bytes. APAO+ takes into account the co-
variance of its various sub-estimators while performing
the estimation, as described in Sections 3 and 5.

APA1+: In this method, one-dimensional facts are used.
Each one-dimensional fact has exactly one clause in the
WHERE predicate associated with the fact. For exam-
ple, a one-dimensional fact is SUM SALARY) WHERE
(SEX="F') = $1.9M The additional memory re-
quirements of APA1+ compared to simple random sam-
pling are still small, in practice only on the order of a few
kilobytes. Just like the APAO+, APA1+ accounts for the
covariance that possibly exists between the estimator’s
sub-cubes (Figure 4).

6.2 Experimental Setup

The four datasets used in our benchmark are derived from
four real high dimensional data sets, previously used in [14].
The four data sets are: Forest Cover data (from the UCI KDD
archive), River Flow data, William Shakespeare data (word
proximity information), and Image Feature Vector data. The
transformation of these datasets for our experiments were pre-
viously described in [14].

Some basic features of our experimental data sets are as
follows. The first data set has 8 categorical attributes, and
the last three have 30 categorical attributes each. These at-
tributes are the ones that we use for selection. Each of
the categorical attributes has five different categories. Each
dataset also has 2 numerical attributes which are designated
as our measure attributes. Selection attributes only appear in
the relational selection predicates (WWHERE clauses), whereas
measure attributes appear in the aggregation functions of
the SELECT clauses. Each SELECT clause is of the form
SELECT SUM ATT) . We create a total of 2000 queries for
each data set, 1000 for each measure attribute. The WHERE
clause in each predicate is a conjunction of boolean equality
predicates on various categorical values. The number of pred-
icates in each such conjunction varies from one to eight and
are generated to vary the expected selectivity as shown in Ta-
ble 2. The sampling rate used for our experiments was fixed
at 10%.

6.3 Confidence Interval Accuracy

This subsection reports the results of a set of experiments
designed to test the accuracy of the guarantees provided by
each method. For each method and each query, a confidence
interval is computed using a 95% user-specified confidence
level. This confidence interval is considered to be correct if



[ DataSet [ APAO+ | APAL+ | Sampling [ ss=10 [ ss=100

RiversAtt1 | 72.34% | 96.80% 79.30% 74.80% | 76.10%
RiversAtt2 | 72.34% | 92.57% 78.47% 74.85% | 75.05%
Forest Attl | 71.73% | 92.33% 64.75% 59.64% | 59.53%
Forest Att2 | 66.71% | 92.57% 68.05% 57.82% | 57.83%
ImageAttl | 51.37% | 77.37% 57.83% 51.59% | 49.37%
ImageAtt2 | 57.77% | 82.97% 59.31% 54.17% | 51.31%
Shakes Att 1 | 44.55% | 90.14% 60.36% 56.14% | 54.02%
Shakes Att 2 | 39.24% | 89.40% 60.46% 55.03% | 54.93%

Table 3. Observed Confidence When 95% Confidence Is
Specified (ss stands for strata size used in conjunction with
the stratified sampling approach).

the exact answer to the query falls within the bounds of the
interval bounds. Since a user-specified confidence level of
95% is used, if each method works exactly as is theoretically
expected, we should find that 95% of the confidence inter-
vals were correct. The actual percentage of correct intervals
for each of the data sets and approximation methodologies is
reported in Table 3.

Discussion

The specified confidence for all of these methods was 95%,
but it is clear from the results that only APA1+ comes close
to achieving this confidence level experimentally. The con-
fidence level achieved by APA1+ averaged 89.27% over all
tests, which was 23.2% higher than simple random sampling
(the next best alternative in terms of accuracy). The differ-
ence between APA1+ and the stratified-sampling-based tech-
niques is even greater. Not only did APA1+ achieve the high-
est experimental confidence level, but it also comes very close
to achieving the theoretically-expected 95% confidence based
on the parameter settings (90+% confidence was observed for
5 out of 8 cases tested).

A few other points worth mentioning are:

e One possible explanation for the poor accuracy of the
non-APA+ estimates is that the CLT-based intervals used
turned out to be overly aggressive. The CLT is a limit-
ing theorem, which is only guaranteed to hold given an
infinite number of samples from a distribution. In prac-
tice, the CLT often holds after only a few dozen sam-
ples. However, under adverse circumstances (particu-
larly with very skewed or bi-modal distributions) many
more samples can be required. Given that several of our
data sets were rather poorly-behaved (particularly the
Image Feature Vector data set), this may be a cause of
the problems that are evident in Table 3. On possible so-
lution would be to use less-aggressive bounds (such as
Chebychev or Hoeffding bounds). However, while this
would improve the accuracy of the bounds, it will also
increase the width of the associated confidence intervals,
which already do not compare favorably with APA1+
(see Section 6.4).

A factor that seems to cause problems with all five al-
ternatives is that the variance used in computing the ac-
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curacy of any sampling-based estimate is always itself
an estimate, that may or may not be accurate. This is
a difficult problem without an easy solution, and is al-
ways present in practical statistical inference. The fact
that stratified sampling demonstrates a confidence level
that is lower than that of simple random sampling (with
an average drop off of 5.93% over all data sets) seems to
support this fact. Since the size of each strata is small,
the variance estimate for each strata is likely to be more
inaccurate than for simple random sampling, which ef-
fectively uses only a single strata. However, APAl+
seems to be least-affected by this problem.

Finally, it is interesting to note that with APA1+ per-
formed by far the best, APAO+ was on par with (or
slightly worse than) stratified sampling in terms of the
accuracy of the confidence level given. The key reason
is that APAO+ uses only one negative estimator, as com-
pared to APA1+, which uses 2™ — 2. While one negative
estimator can prove to be inaccurate, the degree of inac-
curacy of multiple (APA1+) negative estimators would
be far less. Therefore, we see an improved accuracy
when a linear combination of them is taken in £%5 .
6.4 Confidence Interval Width

Not only should the confidence bounds provided by an es-
timation methodology be accurate, they should also be tight,
in the sense that the actual answer to the query should be con-
strained to fall in a very small interval. In this subsection we
analyze tightness of confidence interval bounds produced by
various methods. We perform pair-wise comparisons between
APAO+ and APA1+ and each of the other three estimators, in
order to determine which one produces smallest confidence
intervals. For both APAO+ and APA1+, we compute the me-
dian change in confidence interval width that would have been
obtained had another estimator been used instead. Specifi-
cally, we compute the percentage change for those queries
that both estimators being compared answered correctly (that
is, both estimators produced a correct confidence interval).
The reason we focus on cases where both estimators were
correct is that we do not want to reward an estimator for pro-
ducing a very tight bound on an incorrect estimate.

Table 4 illustrates the shows median change in width of the
confidence intervals produced by each of the three traditional
methods compared to APAO+. For example, if, for a given
query, both estimators produce correct confidence intervals
with the size of APAO+ interval denoted by CI, and size of
the other method’s confidence interval denoted by C1, then
the change (decrease) in confidence interval width for that
pair would be (CI — CI,)/CI.

Similarly, next table illustrates the shows median change
in width of the confidence intervals produced by each of the
three traditional methods compared to APA1+.

Discussion

For the data sets tested, APAO+ always produces tighter
confidence intervals than simple random sampling. Across



[ DaaSet | Sampling | ss=100 | ss=10 |
Rivers Att 1 3.72% -7.43% -15.15%
Rivers Att 2 18.34% 15.30% 0.67%
Forest Att 1 15.08% 12.12% 4.46%
Forest Att 2 29.10% 9.79% 6.87%
Image Att 1 21.70% -4.26% 8.21%
Image Att 2 29.88% -8.30% -14.14%
Shakes Att 1 16.39% 8.84% -17.01%
Shakes Att 2 31.18% 12.62% 6.79%

Table 4. Confidence Interval Width Compared to APAO+
(ssstands for strata size used in conjunction with the stratified
sampling approach).

| DaaSet | Sampling [ ss=100 | ss=10 |
Rivers Att 1 50.93% 33.60% | 21.60%
Rivers Att 2 58.76% 50.25% | 30.13%
Forest Att 1 34.82% 30.97% | 20.99%
Forest Att 2 43.45% 23.43% | 20.50%
Image Att 1 49.26% 23.43% | 15.04%
Image Att 2 56.00% 35.81% 6.19%
Shakes Att 1 62.36% 23.53% 13.58%
Shakes Att 2 55.97% 32.00% 23.09%

Table 5. Confidence Interval Width Compared to APA1+
(ssstands for strata size used in conjunction with the stratified
sampling approach).

all data sets, APAO+ produced confidence intervals that were
14.81% smaller than for simple random sampling. The av-
erage improvement with APAL+ is even better. APALl+ pro-
vides confidence intervals that are on average 51% smaller
than for simple random sampling, which means that when
both estimators are predicting correctly, APA1+ will pro-
duce a confidence interval 1/2 the size of that produced by
random sampling. APAL+ is also clearly better than strati-
fied sampling. Using 100 samples per strata results in inter-
vals averaging 31.63% wider than those provided by APA1+,
which translates into APAL+ intervals being about 2/3 the
size of those produced by this particular stratified sampling
approach. Comparing APA1+ to stratified sampling approach
using 10 samples per strata, the average of the median de-
crease (across data sets) is 18.89%, which translates into
APA1+ intervals being about 4 /5 the size of their counterparts
produced by stratified sampling. Furthermore, as demon-
strated in the previous subsection, the APA1+ intervals are
also far more accurate than the intervals produced using strat-
ification.

6.5 Empirical Distributions for the APA+ estima-

tors

Our experimental evaluation has shown that utilizing the
normal distribution with the variance derived from APA+ es-
timators provides acceptable approximation of confidence in-
tervals for our estimators. In the following, using two exam-
ples, we show that the empirical distributions of the APA+
estimators are indeed very close to the normal distributions.
Figure 2 illustrates the empirical distribution (histogram) for
two different queries on the Forest Cover dataset. The left one
uses the APAO+ estimator and the right one uses the APAL+
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Figure 2. Empirical distributions for APAO+ (a)
and APA1+ (b)

estimator. The curves in both the figures are the normal distri-
butions (in the histogram scale) with mean and variance de-
rived from APAO+ and APA1+ estimators, respectively. In
other words, the point in the curve is the number of obser-
vations that would appear in a bucket-size area for the cor-
responding normal distributions. These plots show that our
estimators have a strong tendency towards the normal distri-
butions.

7 Related Work

Sampling methods have been widely used in the database
community for approximate query answering [1, 2, 4, 7, 10,
13, 12, 14] and selectivity estimation [7, 18, 19]. Though con-
fidence intervals have found importance in aggregation esti-
mation [13], this issue was not addressed in these previous
research [1, 4, 7, 14]. In particular, most of these methods
rely on stratified sampling to improve the estimation accu-
racy. Our approach focuses on providing accurate confidence
intervals associated with the estimation results by utilizing
additional summary information. Note that such information
has been used in [14] to improve the estimation accuracy.
As discussed in previous sections, our work is significantly
different from previous approaches with respect to both the
goals and the details of the methods.

Improving the accuracy of confidence intervals has been an
active research topic in statistics. The typical approaches in-
clude stratified sampling [27, 20] and bootstrapping [5]. Our
approach has shown better performance than stratified sam-
pling in terms of providing tighter and more accurate confi-
dence intervals. Bootstrapping requires resampling hundreds
of times in order to improve the confidence intervals, and
therefore is computationally expensive. Recently, Pol and Jer-
maine have developed a middleware to support bootstrapping
in a database system [23]. Compared with bootstrapping, our
approach is very simple and computationally efficient. It is
very easy implement, and also applicable in a streaming en-
vironment (the summary information can be collected in a
single pass). Our approach is essentially a composite-based
estimation from statistics [24, 17], which targets the accuracy
of the estimation. In particular, most of composite estimations
in statistics consider only a very small number of estimators
(usually two, one unbiased, one biased) [24, 17] and the confi-



dence intervals are very hard to provide for such estimations.

Finally, Garofalakis et. al. have studied wavelet synopses
with maximal error guarantees [8, 9]. However, such ap-
proach is not meant for categorical attributes [14]. In com-
parison, our approach can handle both categorical attributes
and numerical attributes in the WHERE clauses.

8 Conclusionsand Future Work

The sampling-based estimators described in this paper are
very useful in a database environment when it is possible to
collect summary information in addition to the sample. The
estimators have the advantage of being unaffected by data di-
mensionality, and are suitable for use with categorical and
numerical data. Furthermore, since the information used by
the estimators can be collected in a single pass over a data set,
the estimators are suitable for use in a streaming environment.

One important issue that we have not considered in this pa-
per is use of the estimators for queries other than SUMand
COUNT queries. In particular, extending our methods to work
with AVERAGE queries is an important problem for future
work. AVERAGE queries can be treated as a ratio of a SUM
and a COUNT query, but since the two estimators will be cor-
related if they are the result of the same sample, it becomes
necessary to use relatively pessimistic confidence bounds in
the absence of a rigorous study of the correlation of the two
estimators.
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