
Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex
Networks

Ruoming Jin, Scott McCallen
Department of Computer Science,Kent State University, Kent, OH, 44241

{jin,smccalle}@cs.kent.edu
Eivind Almaas ∗

Microbial Systems Group, Biosciences & Biotechnology Division,
Lawrence Livermore National Laboratory, Livermore, CA 94551-0808

almaas@llnl.gov
Abstract

Complex networks have been used successfully in scien-
tific disciplines ranging from sociology to microbiology to
describe systems of interacting units. Until recently, stud-
ies of complex networks have mainly focused on their net-
work topology. However, in many real world applications,
the edges and vertices have associated attributes that are
frequently represented as vertex or edge weights. Further-
more, these weights are often not static, instead changing
with time and forming a time series. Hence, to fully un-
derstand the dynamics of the complex network, we have
to consider both network topology and related time series
data.

In this work, we propose a motif mining approach to
identify trend motifs for such purposes. Simply stated, a
trend motif describes a recurring subgraph where each of
its vertices or edges displays similar dynamics over a user-
defined period. Given this, each trend motif occurrence
can help reveal significant events in a complex system; fre-
quent trend motifs may aid in uncovering dynamic rules of
change for the system, and the distribution of trend motifs
may characterize the global dynamics of the system. Here,
we have developed efficient mining algorithms to extract
trend motifs. Our experimental validation using three dis-
parate empirical datasets, ranging from the stock market,
world trade, to a protein interaction network, has demon-
strated the efficiency and effectiveness of our approach.

1. Introduction
The majority of recent studies of complex network have

focused on characterizing the topology, or the change in
topology, of complex networks [9, 2, 12]. However, in
many real world applications, weights are often associated
with the vertices or edges of the network. These weights
are typically changing with time, thus forming a time se-
ries for each vertex and edge. Thus, knowledge of the net-
work topology, paired with the time series data, provides

∗EA’s work was performed under the auspices of DoE by University
of California, LLNL under Contract W-7405-Eng-48, with support from
the LDRD office

a comprehensive global picture of a dynamically changing
system. Generally speaking, if each vertex of the network
has a weight, we refer to it as a vertex-weighted network
or graph, and if each edge of the network has a weight, we
refer to it as a edge-weighted network or graph. Note that,
a network can be both vertex-weighted and edge-weighted.

In the following, we will consider several systems that
can naturally be represented as weighted networks, and
where the system dynamics are captured in time series of
weights.
Financial Market: In the financial market, companies in-
teract with each other and form various relationships, typi-
cally including competitor, producer-consumer, ownership,
etc. A complex network can be built to represent the inter-
actions of all the companies in the financial market, where
each company corresponds to a vertex, and the relationship
between two companies corresponds to an edge. Each ver-
tex (company) can be weighted by the corresponding time
series of stock value. Since the price change of each stock
is often correlated with or determined by the price changes
of companies with which it has close relations, the network
representation provides a framework to simultaneously an-
alyze the dynamics of an entire financial market.
Protein Interaction Network: In the recent era of sys-
tems biology, new experimental approaches have been de-
veloped with the ability to rapidly measure thousands of
molecular interactions. Among the most heralded are the
so-called high-throughput techniques to characterize all
pairs of proteins with the ability to physically interact. It
has become customary to represent the resulting datasets as
networks, where each vertex corresponds to a protein and
two vertices are connected by an edge if the correspond-
ing proteins can bind. In addition, the high-throughput
microarray technology allow biologists to measure the dis-
tribution of gene products at different conditions and dif-
ferent time points. Thus, associating a time series from
the microarray experiment for each protein provides a more
comprehensive picture of the dynamically changing system

inside a cell.
While we have focused on the possibility that the net-

work weights will change with time in response to a sys-
tem’s dynamic processes, the topology of the underlying
network may change as well. However, for many sys-
tems the typical time scale for weight dynamics is sig-
nificantly shorter than that of the changes in the network
topology. Consequently, it is reasonable to consider the
network as a static entity. We note that, while a network
with time-varying weights contains significantly more in-
formation about the system, few methods have been de-
vised that leverage this information. Specifically, scientists
would like to know what are the basic rules that govern the
evolution and changes of the complex system, and how two
different dynamic systems can be compared.
1.1 Our approach

Our approach to analyze the dynamic complex network
starts from local dynamics. It is based on the observation
that the weight change of a vertex in a complex network is
rarely an isolated event. They are often strongly correlated
with, or possibly determined by, the changes occuring in
its network neighbors. Similar observation can be made
for the edges as well. For instance, in the stock market, the
increase of the Intel stock price is likely correlated with the
increase (or decrease) of AMD’s stock, and both correlate
with the stock price of PC producers such as HP and Dell.
Similarly, in the protein interaction network, a biological
process is very likely to result in the co-changes of several
related proteins [14]. In other words, synchronized changes
of weights over closely related vertices or edges can serve
as a good indication of (local) dynamics or the evolution of
a system.

The central theme of this paper is the introduction and
discovery of trend motifs, which target putative patterns of
changes for a group of closely related entities. Given a
weighted (undirected) complex network, a group of such
entities corresponds to a set of connected vertices. A pos-
sible pattern of change (a trend motif occurrence) is a set
of connected vertices associated with a time span where the
time series of each vertex displays a consistent trend. Here,
we focus on two types of trends: the first corresponds to a
steady increase in the time series, and the second corre-
sponds to a steady decrease (see Section 2 for the formal
definition). Consequently, a putative pattern is likely to
correspond to a major event, or a sequence of events, occur-
ring in the system. Therefore, extracting such patterns can
help scientists identify such events, which often are hidden
in large amounts of data.

Further, we define a frequent trend motif as a putative
pattern which are over-represented in the complex network.
Frequent trend motifs can help reveal the underlying mech-
anism governing the dynamics. For instance, a line sub-
graph with each vertex showing increase may correspond
to a cascade in the system, and a clique subgraph with some
vertices showing increase with others showing a decrease
may indicate these changes are strongly correlated. Finally,
we note that the distribution of trend motifs can be used

to categorize the dynamic networks, as we can expect that
different types of networks will tend to have different types
and distributions of such motifs [11].
2. Problem Definition
2.1. Trends and Trend Intervals

Given a graph G = (V, E) of N vertices V =
{v1, v2, · · · , vN} and a discrete time span [1, T], the weight
of vertex vi is denoted as xi(t), for t ∈ [1, T]. Intu-
itively, we consider a trend as a subsequence of a time
series that shows a consistent increase or decrease. For-
mally, we define an increasing trend as a subsequence
[xi(t1), xi(t2), · · · , xi(tk)], and tj < tj+1, of the time se-
ries xi(t) with respect to two parameters δ and σ, and it
satisfies the following two conditions:

1. Weight constraints: for any time tj , xi(tj+1) −
xi(tj) ≥ δ, δ > 0;

2. Step constraints: for two time points in the sub-
sequence, tj+1 − tj ≤ σ, σ > 0.

Similarly, we can define the decreasing trend. If a sub-
sequence satisfies one of these two definitions, either in-
creasing or decreasing, it will simply be called a trend.
We define a maximal trend as a trend that is not a subset
of any other trend in the time series.

To facilitate our discussion, we define an interval [ts, te]
to be an increasing trend interval if it contains a trend
[xi(ts), · · · , xi(te)], where ts and te are the beginning and
ending points of the trend, respectively. We use the nota-
tion [ts, te]+ to represent an increasing trend interval from
start time ts to end time te. Similarly, we can define the
decreasing trend interval and denote it as [ts, te]−. Thus,
we define the maximal interval of trend as the longest time
span in {xi(t)} such that the values are consistently in-
creasing or decreasing according the definition of a trend.
2.2. Trend Motif

Given the previous definitions, we can identify the
trends which indicate the increasing and/or decreasing in-
tervals for each of the vertices individually over the entire
time series. A particularly interesting pattern, however, is
observed when multiple trends occur simultaneously, and
especially when they occur in nodes that are closely re-
lated through the network topology. To properly describe
this phenomenon, we will formally introduce the concept
of trend motif occurrence. Given the graph G = (V, E)
and a subset of vertex Vs ⊂ V , let G(Vs) be the induced
subgraph of Vs [3]. Mathematically, the induced subgraph
of Vs, G(Vs), contains all the edges in E that have both
ends in Vs.

Definition 1 Trend Motif Occurrence: Given a graph
G, a trend motif occurrence of G is defined as the triple
(Vs, [ts, te], f) with (ts < te), where G(Vs) is a con-
nected subgraph, f is a function f : Vs → {+,−}, and
[ts, te] = [t1s, t

1
e] ∩ [t2s , t

2
e] ∩ · · · ∩ [tns , tne], where [tis, t

i
e] is

a maximal interval of trend for vertex vi ∈ Vs, and n is the
number of vertices in Vs.

Note that, if f(vi) = +, the corresponding interval is in-
creasing, otherwise f(vi) = −. Basically, the function f
labels each node of G(Vs). We denote the labeled graph
as Gf (Vs). Additionally, we note that the interval [ts, te]
is the intersection of all maximal intervals of trend, and the
intersection of the maximal intervals on [ts, te] has to be
nonempty. However, this intersection need not be a maxi-
mal trend interval on any of the vertices in Vs.

Based on the above definition, a very large number of
trend motif occurrences may exist in a complex network for
any time span. To reduce the number of motif occurrences,
we introduce two parameters l and w, where l is the min-
imum interval length for a trend interval of each vertex in
the motif occurrence and w is the minimal length for the in-
tersection of the motif occurrence. We denote such a trend
motif occurrence given l and w as (Vs, [ts, te], f)(l, w).

Finally, we introduce the concept of a frequent trend mo-
tif. Given two trend motif occurrences, (V1, [t

1
s, t

1
e], f1),

and (V2, [t
2
s, t

2
e], f2), V1 6= V2, we refer to them as equiv-

alent if their corresponding labeled induced subgraphs are
isomorphic Gf1 (V1) = Gf2(V2) [3]. In other words, there
exists a one-to-one mapping between Vs and V ′

s , g : Vs →
V ′

s , such that for any vi, vj ∈ Vs, (vi, vj) ∈ E(G(Vs)) ⇔
(g(vi), g(vj)) ∈ E(G(V ′

s)), and f1(vi) = f2(g(vi)). Here
E(G(Vs)) and E(G(V ′

s)) are the the edge sets of the in-
duced graph of G(Vs) and G(V ′

s), respectively.

Definition 2 Frequent Trend Motif: Given a support θ,
and two parameters l and w, if there are more than or
equal to θ distinct subset of vertices, V1, · · · , Vt, t ≥ θ,
such that each set has at least a trend motif occurrence
(Vi, [t

i
s, t

i
e], fi)(l, w) being equivalent, then we refer to

Gf
s (l, w, θ) as a frequent trend motif, where Gf

s is a labeled
subgraph that is isomorphic to Gfi(Vi), 1 ≤ i ≤ t.

Consequently, we can identify the following two related
mining tasks.

1. Extracting Trend Motif Occurrences: Given two
parameters l and w, we would like to find all the trend
motif occurrences (Vs, [ts, te], f)(l, w) in a graph G.

2. Extracting Frequent Trend Motifs: Given the sup-
port level θ and the parameters l and w, we would like
to find all the frequent trend motifs Gf

s (l, w, θ).

Clearly, these mining tasks are different from traditional
subgraph mining tasks [5, 7, 8]. In the subgraph mining,
the label of each vertex is known, and the major task is to
enumerate all the possible candidate subgraphs, counting
their number of occurrences. Here, each motif occurrence
is dynamically determined by the time series data. In ad-
dition, each induced subgraph may correspond to differ-
ent types of trend motif occurrences, as each vertex may
display different trends at different time points. If we la-
bel each vertex with either + (corresponding to increasing
trend intervals) or − (corresponding to decreasing trend in-
tervals), a vertex can have both labels. These considera-
tions show that mining trend motifs is a challenging task.

3. Algorithms
3.1 Extracting Maximal Trend Intervals

Consider we have a time series X(t), t ∈ [1, T] and two
parameters δ and σ, we would like to extract all the max-
imal trend intervals from X(t). A simple attempt will be
to extract all the maximal trends first and then generate in-
tervals defined by the starting time point and the end time
point of these maximal trends. However, this approach can
be rather computationally expensive. In addition, that the
maximal trend intervals are not necessarily the the maximal
intervals of trends.

Algorithm 1 ExtractT rendIntervals(δ, σ, X)

1: Q← ∅ { sorted list holds the last σ elements seen}
2: for t = 1 to |X| do
3: inc(t) ← min{inc(q)|X(q) + δ ≤ X(t), X(q) ∈ Q}

{inc(t) is the earliest time that [inc(t),t] is an interval of
increasing trend}

4: dec(t) ← min{inc(q)|X(q) ≥ X(t) + δ, X(q) ∈ Q}
{dec(t) is the earliest time that [dec(t),t] is an interval of
decreasing trend}

5: Q← Q ∪ {X(t)} {add to the queue}
6: if |Q| > σ then
7: Q← Q \ X(t− σ) {remove the earliest}
8: if ∀X(q) ∈ Q, inc(q) > inc(t− σ) then
9: interval[+]← interval[+]∪{[inc(t−σ), t−σ]}

10: end if
11: if ∀X(q) ∈ Q, dec(q) > dec(t− σ) then
12: interval[−]← interval[−]∪{[dec(t−σ), t−σ]}
13: end if
14: end if
15: end for
16: return interval;

Here, we introduce an algorithm with a linear time com-
plexity to simultaneously extract all maximal intervals of
both increasing and decreasing trends in one pass through a
time series. The ExtractTrendIntervals algorithm is shown
in Algorithm 1. The algorithm maintains a list Q that stores
the last σ seen elements at any time point t, from the given
time series X . We iteratively look at each of the n elements
in Xi (The for loop at line 2). The key of this algorithm is
for each time point t, we will derive two values, inc(t)
and dec(t), which correspond to the intervals of increas-
ing trend and decreasing trend, respectively. Essentially,
inc(t) is the earliest time point which can form an interval
of increasing trend together with t. This is equivalent to
say that [inc(t), t] is the longest interval which contains an
increasing trend starting from inc(t) and end at the current
time point t. This is achieved by appending X(t) to all the
elements in Q, which satisfy the weight increasing con-
straint (Subsection 2.1) between X(t) and X(q), q ∈ Q.
Among those satisfying the constraint, we will choose the
one which has the earliest time point forming the interval
of increasing trends (Line 3). The processing for dec(t) is
similar (Line 4). Finally, we note that the computational
complexity of this algorithm is |X |σ.

3.2 Algorithm for Trend Motif Occur-
rence Discovery

One of the major difficulties in enumerating all the trend
motif occurrences is the massive search space which spans
both the topology dimension and the time dimension: any
subset of connected vertices (topology dimension) com-
bining with an interval (time dimension) can be treated as
a candidate of trend motif occurrence. However, only a
small portion of these candidates will become the true oc-
currences.

In order to efficiently discover these motif occurrences,
we have to aggressively prune the search space. Here, we
apply several techniques to reduce the search space. The
first technique is based on the down-closure property: for
any motif occurrence (Vs, [ts, te], f), any subset of con-
nected vertices V ′

s ⊆ Vs will correspond to a motif occur-
rence whose interval contains [ts, te]. This will enable us
to apply a depth-first search strategy to enumerate the mo-
tif occurrences from a single vertex to larger patterns. Sec-
ondly, we will enumerate all the motif occurrences which
correspond to the same subset of vertices Vs and share the
same labeling function f together. We refer to these motif
occurrences as the same type of motif occurrences. This
essentially enables us to enumerate the same type of motif
occurrences in an efficient way.

Further, to reduce the cost of trend interval discovery,
we extract all the maximal intervals of both increasing
trends and decreasing trends for each vertex in the graph
G using ExtractTrendIntervals. Then, for each vertex v,
we record all the maximal intervals of increasing trends
and decreasing trends (whose lengths are no less than l)
in v.interval[+] and v.interval[−], respectively. Thus,
we discover all the intervals of trends for each vertex only
once. In addition, if a vertex does not have any interval, we
remove them from the original graph G. This can help to
reduce the search space.

Algorithm 2 Build(Node v, Set N, Set E)

1: N ← (N ∪Neighbor(v))− E {N : the set of vertices that
can join to the occurrence; E: the set of vertices that are
neighbors but cannot join to the occurrence; v: parent node;
Neighbor(v): the vertices connect to v}

2: for each n ∈ N do
3: E ← E ∪ {n}
4: for each k = {+,−} do
5: z ← Join(v.interval, n.interval[k], w) {z: inter-

vals of trends; w: intersection constraints}
6: if z 6= ∅ then
7: create a new node v′ for (n, z, k)
8: add v′ to parent’s (v) children list
9: end if

10: Build(v′, N, E)
11: end for
12: end for

The key procedure in enumerating the trend motif oc-
currence is illustrated in the Build method (Algorithm 2),

which employs a depth-first search (DFS) strategy. All the
occurrences are recorded in a tree structure. Each node of
the tree corresponds to a vertex with certain trend, increas-
ing (+) or decreasing (-). A path starting from the root to
the given node v encodes one type of motif occurrence, and
this node also records all the trend intervals of this type of
motif occurrence in v.interval.

The Build() operation begins with a root node r that
has no children, a set of neighbors N of the current motif
occurrences and an excluded set E that records which ver-
tices can no longer joined to the current occurrence. Both
of the sets are initially empty (Build(r, ∅, ∅)). In addition,
we assume the root node r has all the vertex in G as its
neighbors: Neighbor(v) = V (G), and r.interval records
only one interval [1,∞], suggesting it can intersect with
any trend intervals without reducing their length.

For each time being invoked, the Build() procedure
will find the new neighbors from the last vertex being
added to the current motif occurrence (Line 1). Then, the
algorithm iterates through the vertices in N and decides
which of the remaining vertices can join with it (Line 2).
For each vertex, we have to consider two cases, the increas-
ing trend intervals and the decreasing trend intervals (Line
4). We compute the intersections of the intervals from the
current motif occurrence with these new intervals (Imple-
mented by Join() operation, which finds the common in-
tervals of two sets of trend intervals). If a vertex with one
type of trend intervals can join with current motif occur-
rence (the intersection set is not empty, Line 6), we will
create a new node in the tree to record the vertex together
with the trend intervals and we record this new node as
a new child of the current motif occurrence(Line 7 − 8).
Thus, a new type of motif occurrence is being discovered
and stored. We will invoke Build() recursively to expand
this new motif occurrence (Line 10). Note that in order to
enumerate each motif occurrence only once, after we visit
each vertex in the set N , we will add to the E list (Line
3). Therefore, this vertex will not be included in the motif
occurrences which are being expanded later (Line 1).
3.3 Algorithm for Frequent Trend Motif

Discovery

Before we set up to introduce the algorithm to find all
frequent trend motifs, we will visit the frequency concept
first. In the original Definition 2, any subset of vertices
whose induced subgraphs are isomorphic to each other will
be counted towards the frequency of a motif. However, a
lot of them may have significant overlaps. A slightly dif-
ferent approach will only consider non-overlapped occur-
rences [8]. Here, we will allow any two occurrences share
at most one vertex [13]. In other words, no edge can be
shared between two occurrences for a given trend motif.
Note that such a frequency concept will allow us to use the
down-closure property for the motif enumeration. Given
this, the major challenge in finding frequent trend motif
is how to utilize the motif occurrence tree and the down-
closure property to speedup the mining process.

Algorithm 3 ExtractFrequentMotifs(Root r, Support θ)

1: C1 ← ∅; R← ∅; k← 1
2: Count(C1, r) {count the first level}
3: while |Ck| 6= 0 do
4: Ck+1 ← ∅
5: for each c ∈ Ck do
6: c.count← max independent set(c.motifocc list)
7: if c.count ≥ θ then
8: R← R∪{c} {record the motif c in resulting set R}
9: end if

10: if c.count ≥ θ or k = 1 then
11: for each v ∈ c.motifocc list do
12: Count(Ck+1, v)
13: end for
14: end if
15: end for
16: k← k + 1
17: end while
18: return R

Procedure Count(Set C, Node v)
19: for each v′ ∈ v.children do
20: if v′.interval 6= ∅ then
21: code← canonicalcode(v′)
22: c← search(C, code) {c is created if it does not exist}
23: c.motifocc list← c.motifocc list ∪ {v′}
24: end if
25: end for

The ExtractFrequentMotifs() algorithm, shown in
Algorithm 3, takes the root of the motif occurrence tree
r and finds all of the motifs that appear at least θ times.
This is done in a level-wise fashion, similar to Apriori [1].
A key idea in this algorithm is to record each type of motif
occurrence (corresponding to a node in the occurrence tree)
when counting the frequency of each motif. This allows us
to efficiently count the motif frequency for the next level
without repeatedly accessing the same node many times.
4 Experimental Results

Due to the space limitation, we only report our discover
for the the global economics. Interested readers can look
at the full paper [6] for the complete experimental re-
sults. This dataset is created from the publicly available
Expanded Trade and GDP Data [4]. The data represents the
yearly imports and exports, total trade and gross domestic
product of 196 countries spanning the 52 years 1948-2000.
The time series for each county is the proportion of its share
in the global economy according to its gross domestic prod-
uct(GDP) for that year. In other words, the time series for
GDP-Norm is the normalized value of each individual an-
nual GDP, divided by the total GDP for all countries during
that year. The topology for the graph was created by com-
paring the yearly total trade for each country and its trade
with each of the other countries. If the trade between coun-
try A and country B in any given year accounts for more
than 10% of either country’s total trade for that year, an
edge is created between the the two countries.

Output and Performance In the experiments, all trends
were found with either σ = 2 or σ = 3 as the maximum

Figure 1. Example Motif Occurrences

time step, since a series that increases or decreases by δ at
least every two or three steps can reasonably be considered
as moving consistently. Additionally, the maximum depth
was constant at six, ensuring that we would enumerate all
occurrences of motifs that contain up to 6 vertices. In Ta-
ble 1, we can see the results of the experiments at different
support levels. Given different parameters σ, δ, l and w, we
first show the total number of maximal intervals of increas-
ing trends I+ and decreasing trends I−. We also show the
number of vertices which have intervals of both increasing
and decreasing trends, denoted as |N+,−|, and only have
intervals of increasing trends, decreasing trends and none,
denoted as |N + |, |N − |, and |None|. Then, we vary the
support level from high to low, and report the total number
of frequent trend motifs at each support level (Count) and
the running time T ime. Clearly, as the support level is re-
duced, more motifs are being discovered and the running
time is increasing.

Significant Trend Motifs Here, we show several rep-
resentative examples from our experimental results, and
list them in Tables 2. Besides providing their frequency
(count) in the corresponding datasets, we also compare
them with randomized networks. Since our datasets com-
bine both network topology and time series data, we will
construct three types of randomized networks. The first
type of randomization, referred to as RS, shuffles the time
series data for each vertex and the underlying network
topology remains the same. The second type, referred to as
RN , shuffles the edges and labels (corresponding trends)
among the vertices while preserving the degree distribution
of each vertex [10], and the time series data remains the
same. Finally, the third type of randomization, referred to
as RS/RN , is a combination of the first two. We build 200
randomized networks for each type of randomization, and
compute the average and standard deviation of frequencies
for each trend motif in the 200 networks. Finally, we com-
pute the Z-score for the significance of each motif as com-
pared to the specific type of randomization.

The GDP-Norm dataset contains very interesting mo-
tifs. In the GDP-Norm motifs shown in Table 2, we see a
very distinct dependence relationship among the countries.
Very few motifs were found where all vertices were well
connected, leading to the notion that the country with the
highest degree can greatly affect its dependent neighbors.
This would be further validated when we look at the spe-
cific trend motif occurrences.

Table 1. GDP-Norm
δ = 0.00014, σ = 2, l = 10, w = 8

I+ I− |N+,−| |N + | |N − | |None|
48 79 18 24 48 106

Support 60 40 15 6 1
Count 66 193 301 405 1055
Time 0.01s 0.07s 1.01s 50.27s 128.7s

δ = 0.0002, σ = 3, l = 15, w = 10

I+ I− |N+,−| |N + | |N − | |None|
21 69 6 14 59 117

Support 40 20 10 3 1
Count 65 134 154 202 322
Time 0.01s 0.02s 0.11s 3.38s 9.10s

Table 2. GDP-Norm Motifs
δ = 0.00014, σ = 2, l = 10, w = 8

Motif RS RN RS/RN
+

+ +

Count: 15
µ± σ : .12 ± .68 2.30 ± 2.55 .01 ± .16
Z score: 21.9 4.99 96.6

+

− − −

Count: 7
µ± σ : 0 ± 0 .65 ± 1.49 0± 0
Z score: 7 4.26 7

−

− −

− −

Count: 7
µ± σ : 0 ± 0 1.82 ± 2.44 0± 0

Z score: 7 2.12 7

Interesting Trend Motif Occurrences In Figure 1 we
show some interesting trend motif occurrences that were
found in GDP-Norm dataset. The first motif (a), dis-
plays the partnership between the United States (USA),
United Kingdom (UK), and Japan (JAP) during the 1980’s
which shows significant market share growth for all three
countries. In (b), however, we see that countries that
depended on the United States (USA), such as Mexico
(MEX), Argentina (ARG), and South Africa (SAF), were
losing global market share during that same period. We be-
lieve this displays a shift in the global economic structure.
Finally, in (c), we note that several regional patterns also
developed as motifs. Here we see a trend where the United
Kingdom (UK) is decreasing, while the European coun-
tries that depend on it, such as Germany (GFR), Switzer-
land (SWZ), Poland (POL), and Hungary (HUN), are also
decreasing during the 60’s. Another interesting fact is that
major motif occurrences found in GDP-Norm were occur-
ring on approximately the 1955-1965 time span, and then
again in the 1980 to 1990 time span. We believe that these
two distinct time-based patterns can be due to the recon-
struction efforts and emerging countries after World War II
and then again during the waning years of the Cold War.
Both eras marked major changes in the global economy
and are portrayed through our identified motifs.

We are convinced that these motifs not only are sta-
tistically significant, but they identify key characteristics
about the underlying dynamics of these complex systems.
Clearly, the GDP-Norm motifs display highly correlated

subgraphs that show the major shifts in global economics.

5. Conclusions
In this paper, we have developed a data mining ap-

proach, making it possible to analyze evolving weighted
complex networks. A list of new concepts and new al-
gorithms enable the analysis from individual vertex (trend
discovery), to a group of correlated vertices (trend motif
occurrence), and to the common patterns of change (fre-
quent trend motif) in a dynamic complex network. The
detailed experimental study on three real datasets have
demonstrated the significance of these patterns in uncover-
ing significant events in the dynamic system, and to under-
stand their characteristics. We hope our methodology will
open a new avenue in applying motif mining to analyze the
dynamics of complex systems.
References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, 1994.

[2] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xiangyang
Lan. Group formation in large social networks: membership, growth, and
evolution. In KDD, pages 44–54, 2006.

[3] Reinhard Diestel. Graph Theory. Springer-Verlag, 2000.

[4] Kristian S. Gleditsch. Expanded trade and gdp data,. J. Conf. Res., 46:712–
724, 2002.

[5] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining of
frequent patterns from graphs: Mining graph data. Mach. Learn., 50(3):321–
354, 2003.

[6] Ruoming Jin, Scott McCallen, and Eivind Almaas. Trend motif: A graph
mining approach for analysis of dynamic complex networks. Technical Report
TR-KSU-CS-2007-05, Kent State University, 2007.

[7] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In
ICDM ’01: Proceedings of the 2001 IEEE International Conference on Data
Mining, pages 313–320, 2001.

[8] Michihiro Kuramochi and George Karypis. Finding frequent patterns in a large
sparse graph. In SDM, 2004.

[9] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD,
pages 177–187, 2005.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594):824827, October 2002.

[11] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr,
Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved and
designed networks. Science, 303:1538 – 1542, 2004.

[12] Gergely Palla, Albert-Laszlo Barabasi, and Tamas Vicsek. Quantifying social
group evolution. Nature, 446(7136):664–667, April 2007.

[13] F. Schreiber and H. Schwbbermeyer. Towards motif detection in networks:
frequency concepts and flexible search. In Proc. Intl. Wsh. Network Tools and
Applications in Biology (NETTAB’04), pages 91–102., 2004.

[14] Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R. Iyer,
Kirk Anders, Michael B. Eisen, Patrick O. Brown, David Botstein, and Bruce
Futcher. Comprehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell,
9:3273–3297.

