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ABSTRACT

With an increasing use of data mining tools and techniques, we en-
vision that a Knowledge Discovery and Data Mining System (KD-
DMS) will have to support and optimize for the following scenarios:
1) Sequence of Queries: A user may analyze one or more datasets by
issuing a sequence of related complex mining queries, and 2) Multi-
ple Simultaneous Queries: Several users may be analyzing a set of
datasets concurrently, and may issue related complex queries.

This paper presents a systematic mechanism to optimize for the
above cases, targetting the class of mining queries involving frequent
pattern mining on one or multiple datasets. We present a system ar-
chitecture and propose new algorithms for this purpose. We show the
design of a knowledgeable cache which can store the past query re-
sults from queries on multiple datasets. We present algorithms which
enable the use of the results stored in such a cache to further optimize
multiple queries.

We have implemented and evaluated our system with both real and
synthetic datasets. Our experimental results show that our techniques
can achieve a speedup of up to a factor of 9, compared with the sys-
tems which do not support caching or optimize for multiple queries.

1. INTRODUCTION

The iterative and exploratory nature of knowledge discovery or
data mining has increasingly become a bottleneck in the KDD pro-
cess, especially in view of the need for interactive response to the
users. One of the relatively recent developments has been the focus
on constraint mining. Constraint mining involves queries with con-
straint conditions, which help reduce the execution time of mining
algorithms, and also help guide the KDD process. Many researchers
have focused on designing languages or models to express these com-
plex mining queries and developing new algorithms to evaluate each
single complex query efficiently [19, 16].

Despite such developments, evaluation of mining queries is still
relatively slow, and users often cannot perform data mining in an
interactive manner. As the amount of data available for analysis in
both scientific and commercial domains is increasing dramatically,
efficiency in the data mining process is likely to become the crucial
issue. With an increasing use of data mining tools and techniques,
we envision that a Knowledge Discovery and Data Mining System
(KDDMS) will have to support and optimize for the following sce-
narios:

o Sequence of Queries: A user may analyze one or more datasets
by issuing a sequence of related complex mining queries. This
may be due to the iterative and exploratory nature of the pro-
cess, where the mining parameters and constraints are modi-
fied till desired insights are gained from the dataset(s).
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o Multiple Simultaneous Queries: Several users may be analyz-
ing a set of datasets concurrently, and may issue related com-
plex queries.

The need for supporting and optimizing such scenarios has been
well recognized in database and OLAP systems. Views have been
used to optimize a sequence of database operations [12], and simi-
larly, techniques such as reducing common subexpressions [25, 24]
have been used. However, because the nature of the mining opera-
tions is very different from nature of database and OLAP operations,
these techniques cannot apply to a KDDMS system.

Some efforts have been made towards addressing these issues for
mining environments. Nag et al. have studied how a knowledge-
able cache can be used to help to perform interactive discovery of
association rules [18]. They maintain a cache to record (in)frequent
itemsets with their support levels, and then modify the frequent item-
set mining algorithm to utilize the itemsets in the cache. The focus of
their research is on frequent itemset mining without complex mining
conditions. Ng et al. have studied constraint association rule min-
ing [19]. In their method, multiple queries can be merged as a single
query for evaluation. Hipp and Guntzer have argued that execution
of data mining queries with constraints can be very expensive [13].
Therefore, they have proposed to use pre-computation of frequent
itemsets of certain support levels to answer constraint itemset min-
ing queries.

The above efforts have two important limitations. First, sequence
of queries and multiple simultaneous queries have not been studied
together. Second, the techniques involving the use of knowledgeable
cache have been restricted to deal with simple data mining queries.

In this paper, we focus on the problem of efficiently evaluating an
important class of complex mining queries in a query intensive envi-
ronment, where one needs to optimize multiple simultaneous queries,
as well as a sequence of related queries. The class of complex min-
ing queries we target are the ones involving frequent pattern mining
on one or multiple datasets. Particularly, we show how multiple si-
multaneous queries can be optimized, and how the results from past
mining queries can be utilized to evaluate the current ones. Due to
the complexity and characteristics of such queries, simultaneous op-
timization of multiple queries and caching of their query results is
challenging, and quite different from the existing work in this area.

Overall, this paper makes the following contributions:

1. We present a novel system architecture to deal with a query
intensive environment that needs to support and optimize both
multiple simultaneous queries and a sequence of queries.

2. We propose new algorithms to perform multiple-query opti-
mization for frequent pattern mining on multiple datasets.
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Table 1: F' Table for Datasets A, B, C' and D

3. We show the design of a knowledgeable cache which can store
the past query results from queries on multiple datasets. We
present algorithms which enable the use of the results stored
in such a cache to further optimize multiple queries.

4. We have implemented and evaluated our system with both real
and synthetic datasets. Our experimental results show that our
techniques can achieve a speedup of up to a factor of 9, com-
pared with the systems which do not support caching or opti-
mize for multiple queries.

The rest of the paper is organized as follows. In Section 2, we
will briefly introduce our target class of queries, which involve fre-
quent pattern mining on multiple datasets. We describe three dif-
ferent representations of these queries, which are using SQL, an Al-
gebra, and a new format, which we call the M-table. In Section 3,
we present our framework to deal with both multiple simultaneous
queries and a sequence of queries. In Section 4, we discuss the im-
portant properties of the M -table, which form the basis for our mul-
tiple query optimizations and caching of query results. In Section 5,
we present our optimization algorithms. In Section 6, we discuss the
major implementation issues for our system, and present our exper-
imental results. We compare our work with related research efforts
in Section 7, and conclude in Section 8. Finally, in the Appendix,
we discuss how our method can be generalized to frequent structure
mining.

2. FREQUENT PATTERN MINING ON MUL-
TIPLE DATASETS: SQL EXTENSIONS, AL-
GEBRA, AND M-TABLE

Frequent pattern mining focuses on discovering frequently appear-
ing sub-structures in datasets. The structures explored include item-
sets, sequences, sub-trees, sub-graphs, and other topological struc-
tures [29, 3, 33, 4]. Frequent pattern mining has emerged as a very
useful class of techniques for analyzing datasets from a variety of do-
mains, including retail transactions, DNA sequences, chemical com-
pounds, XML documents, among others.

An important class of frequent pattern mining tasks involve dis-
covering interesting patterns from multiple distinct datasets. For ex-
ample, a manager of a nation-wide store will like to know what item-
sets are frequent in stores in New York and New Jersey, but very
infrequent in stores in California. Similarly, biology researchers are
interested in sequences that are frequent in human gene but infre-
quent in chicken gene, and/or, the sequences are frequent in both the
species.

In this section, we briefly describe the major issues in express-
ing as well as evaluating frequent pattern mining tasks on multiple
datasets. Also, in order to simplify our discussion, we will focus on
frequent itemset mining tasks. The key ideas in extending our work
to other frequent patterns or structures, such as sequences, subtrees,
and subgraphs, are presented in the Appendix.

2.1 SQL and M-Table for Mining Multiple Datasets

Assume we have four transaction datasets A, B, C, D, and Item is
the set of all the items appearing in the four datasets. To extract the

interesting patterns from these datasets, a Frequency table F' is de-
fined with a schema F'requency(I, A, B,C, D). The column with
attribute F.I stores all possible itemsets, i.e, the power-set of Item.
The columns with attribute F. A, F.B, F.C| F.D store the frequency
of the itemsets in the four datasets A, B, C, D, respectively. Table 1
contains a portion of this F table.

SELECT F.I,F.A F.B,F.C,F.D

FROM Frequency (I,A,B,C,D) F

WHERE (F.A>0.1 AND F.B >0.1)
OR (F.C >0.1 AND F.D > 0.1 AND
(F.A>0.2 OR F.B>0.2))

(2) SQL query for query Q1

[ [RF[FH]
A|011]02
B | 0.1 0.2
C 0.1 | 0.1
D 0.1 | 0.1

(b) M Table for the query Q1

(SF(A,0.1)M SF(B,0.1)) = F1
U(SF(A,0.2) M SF(C,0.1) N SF(D,0.1)) = F»
U(SF(B,0.2) N SF(C,0.1) M SF(D,0.1)) = F3

(c) Necessary Information for the query Q1

Figure 1: Query Q:

Note that the F' table only serves as a virtual table or a logical view.
A frequent pattern mining task on multiple datasets is expressed as
a SQL query to partially materialize this table. The query Q1 in
Figure 1(a) is an example. Here, we want to find the itemsets that are
either frequent with support level 0.1 in both A and B, or frequent
(with support level 0.1) in both C' and D, and also frequent in either
A or B (with support level 0.2).

Consider any query whose constraint condition (the WHERE clause)
does not contain any negative condition, i.e., a condition which states
that support in a certain dataset is below a specified threshold. Clearly,
the constraint condition of such a query can be expressed in a tabu-
lar format, where 1) each row of the table represents a dataset, 2)
each column corresponds to a conjunctive-clause (involving only the
AND operation) in the disjunctive normal form (DNF) of the con-
straint condition, and 3) a cell at ¢-th row and j-th column will have
the value « if the j-th conjunctive-clause requires that the support in
the ¢-th dataset is at least a. The table thus computed is referred to
as an M-table. For example, Figure 1(b) illustrates the M -table for
the query Q1.

An M -table provides a systematic way to describe the information
required to answer a query involving multiple datasets. It turns out
that M -table can be used to 1) generate efficient query plans for a
given query, 2) detect common computations across multiple queries,
and 3) summarize the results obtained from multiple queries in a
cache. Thus, our presentation in the rest of this paper will be based
on M -table representation of the queries.

In the rest of this section, we focus on two issues. In the next
subsection, we show how we can formally express the conditions
captured by an M -table in terms of a basic mining operator, which
is the frequent itemset operator on a single dataset. Finally, in Sub-
section 2.3, we show that an M -table can also be used to represent a
class of queries involving negative conditions.



2.2 Algebra for Evaluating Frequent Mining
Tasks

In this subsection, we introduce an algebra to express the informa-
tion required to answer a mining query over multiple datasets. This
algebra contains only one mining operator SF' and two operations,
intersection (M) and union (LI). Formally, they are as follows:

The frequent itemset mining operator SF (A;, ¢) returns a two-column
table, where the first column contains itemsets in A; which have the
support level a, and the second column contains their corresponding
frequency in the dataset dataset A;.

Intersection (Fy M F»): Let Fy and F> be two tables whose first col-
umn contains a collection of itemsets, and other columns contain the
corresponding frequency (possibly empty) in different datasets. The
intersection operation (F1 N F») returns a table whose first column
contains the itemsets appearing in the first columns of both F; and
F>, and other columns contain frequency information for these item-
sets in the datasets appearing in Fi and F5.

Union (F1 U F5): The union operation (F; U F») returns a table whose
first column contains the itemsets appearing in the first columns of
either F1 or F3», and other columns contain the frequency of these
itemsets in the datasets appearing in F; or F.

Given an M -Table, the information required for answering the cor-
responding query can be described as follows. Each nonempty cell,
M; ;, maps to a SF operator, SF'(A;, M; ;). The SF operators
in the same column are connected by the intersection (') operation,
and the expressions corresponding to each column are connected by
the union (L) operation. The resulting expression is referred as the
necessary information for the query. For example, the necessary in-
formation of Q1 is shown in Figure 1(c).

2.3 Admissible Conditions and M-Table

In this subsection, we consider a broader class of queries, which
could involve negative predicates as well. We establish that under
certain restrictions, they can be represented through an M -table as
well.

For a given query, we transform the constraints into the disjunctive
normal form (DNF).

C=C1VC2V---Cg
where, C; is a conjunctive-clause, i.e., it involves AND operation
on one or more predicates. A query is considered admissible if each
conjunctive-clause in the DNF format contains at least one positive
predicate, i.e., F.A; > «. For example, a query involving the fol-
lowing condition is not admissible.

F.A; <0.1 OR (F.A3 > 0.2 AND F.A3 < 0.05))

This is because the first conjunctive-clause, F.A; < 0.1, contains
only a negative predicate.

Through a set of transformations described in a related publica-
tion [14], we are able to achieve the following:

LEMMA 1. The query constraints of an admissible query can be
expressed as an M -table.

Note that in such cases, the necessary information corresponding
to the M -table may represent a superset of the results of the query. In
such cases, a selection operation can be used to obtain the results of
the query. As an example, Figure 2(a) shows the query Q2. The M-
table representing its query constraints is illustrated in Figure 2(b),
and the corresponding necessary information is in Figure 2(c). We
can see that the first conjunctive-clause F.A > 0.1 AND F.B >
0.1 AND F.D < 0.05 has been mapped to the first two columns of
the M -table. Particularly, in the necessary information format (F%),
we use SF(A,0.1) 0 SF(B,0.1) to intersect with SF(D,0.05).
Note that such repetition of SF'(A,0.1) N SF(B,01) is for mini-
mizing the necessary information.

SELECT F.I,F.A,F.B,F.C,F.D

FROM Frequency(I,A,B,C,D) F

WHERE (F.A>0.1 AND F.B>0.1 AND F.C < 0.05)
OR (F.C >0.1 AND F.D > 0.1 AND
NOT (F.A > 0.056 OR F.B > 0.05))

(a) SQL query for query Q2

| [FB[F [F] F | F |

A |01 01 0.05

B |01]| 01 0.05
C 01| 0.1 | 0.1
D 00501 01 | 0.1

(b) M Table for the query Q2

(SF(A,0.1) MSF(B,0.1)) = Fy

LI(SF(A,0.1) M SF(B,0.1) M SF(C,0.05)) = Fy
L(SF(C,0.1) M SF(D,0.1)) = F3

L(SF(C,0.1) M SF(D,0.1) M SF(A,0.05)) = F4
L(SF(C,0.1) M SF(D,0.1) M SF(B,0.05)) = Fs

(c) Necessary Information for query Qo

Figure 2: Query Q>

3. SYSTEM ARCHITECTURE AND OPTIMIZA -

TION OVERVIEW

Let us envision a KDDMS system in which there are multiple
datasets and multiple users. If different users issue queries each of
which involves multiple datasets, it is quite likely that the queries
could have a significant overlap.

For example, consider the following two queries, Q1 and Q2,
which are issued simultaneously.

Q1:SELECT F.I,F.A,F.B,F.X
FROM Frequency(I,A,B,X) F
WHERE F.A > 0.2 AND F.B >0.1 AND F.X < 0.1

Q5:SELECT F.I,F.AF.B,FY,F.Z
FROM Frequency(I,A,B,Y,Z) F
WHERE (F.A>0.1 AND F.B > 0.1

AND FY > 0.1 AND F.Z < 0.01)
OR (F.Z>0.2 AND FY <0.01)

These two queries overlaps on the datasets A and B. The question
for us is, “How can we exploit the overlap in the two queries to
generate query plans that are more efficient than the independently
generated query plans for each query?”.

Furthermore, we consider the following possibility. As we had
described earlier, it is very likely that a single user issues a sequence
of related queries. For example, the system might have evaluated
the query Q (described in the previous section), before it receives
the queries Q1 and Q. In such a case, we have the following two
additional questions: “How can we effectively store the results from
the recent queries in a cache?”, and, “How can we efficiently utilize
such cached results to speedup computation of new queries?”.

Before discussing how we address these issues, we describe our
system architecture. This architecture is shown in Figure 3. Our
system primarily contains four components, a Query queue, a Query
plan optimizer, a Query evaluation engine, and a Cache. The queries
issued by the users of the system are initially stored in the query
queue. The query plan optimizer receives all the queries appearing
in the queue, and then generates efficient query plans for all of them,
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Figure 3: System Framework

simultaneously. In the process, the query plan optimizer utilizes the
information in the cache, which maintains the results from a set of
recent queries. The query evaluation engine evaluates the queries,
based on the query plan that uses the mining operators and the op-
erations defined in the Algebra. This component is also responsible
for retrieving the necessary information from the cache. Finally, the
query evaluation engine updates the cache, based upon the results of
the current queries.

As we discussed above, we have two major goals, which are si-

multaneous optimization of multiple queries, and maintaining and
exploiting a cache to optimize for a sequence of queries. In this sec-
tion, we give a brief overview of our work. The rest of this paper
provides a more detailed account.
1. Simultaneous optimization of multiple queries: The basic idea
here is to reduce the common computations appearing in different
queries. This is similar to what is done for database queries. How-
ever, our method for detecting and optimizing the common compu-
tations is quite different from the traditional database approach. Our
method is based on M -table. Each mining operator in the query plan
is mapped to an M-table representation. The containment relation-
ships on the M -table are defined to capture the common or overlap-
ping computations. Further, different M -tables can be merged to-
gether into one large table and a global query plan can be generated
for the large M -table.

Based on the characteristics of the M -table, we propose two dif-

ferent approaches. The first approach utilizes the containment re-
lationship of the M-tables to detect the overlapping computations
across multiple queries. Here, each mining query will generate its
own query evaluation plan. Then, we will detect and merge the com-
mon computations among different evaluation plans. The second ap-
proach involves merging the M -tables of different queries into a sin-
gle M-table, and then generating an efficient global query plan.
2. Knowledgeable cache: Our cache stores the results of each min-
ing operator. Compared to the previous effort on the use of a cache
for supporting knowledge discovery [18], an interesting aspect of
our cache is as follows. It not only stores the itemsets with their
frequency, but also maintains a high-level knowledge or summary of
the information being stored. Therefore, when a new query comes in,
the cache can systematically determine which part of the query can
be directly answered from the cache. Such knowledge is maintained
through the use of M-table. We show how we can use the M -table
to summarize, update, and utilize the information in the cache.

In the next two sections, we provide a detailed account of these
two issues. Specifically, in Section 4, we focus on the properties of
the M -table which enable the above optimizations. In Section 5, we
discuss the detailed optimizations and cache management.

4. PROPERTIES OF »-TABLE FOR QUERY
OPTIMIZATION

[ My [ Mo || M5 || Ma || Ms |

A | 0.1 || 008 | 0.1 0.2
B | 0.1 || 0.05 | 0.05 | 0.05 | 0.05
C 0.1 0.1
D

Table 2: M-Tables with Containment Relationships

In this section, we study the properties and operations of M -table,
which form the basis for optimizing multiple mining queries and
caching their results.

4.1 Containment Relationships of r7-Tables

We begin with a set of containment relationships defined on the
M -tables. These relationships provide a simple mechanism to detect
common computations among different queries.

For the next two definitions, we assume we have two M -tables,
M, and M5, with the same number of rows (n), and the same row in
the two tables corresponds to the same dataset.

DEFINITION 1. If M1 and M> are both single-column, M1 is
contained in M if for each corresponding pair of cells, M1[i] and
M>[i],1 < i < m, either both the cells are empty, or both the cells
are non-empty and M [i] > Ms[i].

If M; is contained in M2, we denote this as My C Ms,. For
example, in Table 2, we have M1 C M>.

The intuition behind this definition is as follows. If the desired
support levels are higher for the column M, then the answer set for
the query corresponding to M is a subset of the answer set for the
query corresponding to Ms. Thus, the former can be computed from
the latter by relatively inexpensive selection operations.

DEFINITION 2. If M1 and M> are multi-column M -tables, M
is contained in M if each column in M is contained by some col-
umn in Ms.

Again, the intuition behind the definition is the same. If each col-
umn in M; is contained by some column in M, the answer set for
the query corresponding to M; can be obtained by the answer set for
the query corresponding to M>, using relatively inexpensive selec-
tion operations.

Given these definitions and the mapping between mining operators
and M -tables, we have the following lemma.

LEMMA 2. Consider two mining queries Q1 and @2, and let
their associated M -tables be denoted as M1 and M, respectively.
Ifthe M -table M is contained in Mo, i.e., M1 C Ms, the necessary
information of Q1 can be derived from the necessary information of
Q2 by a selection operation (o).

This lemma helps us detect the common computations among queries.

Next, we study a more generalized containment relationship among
M -tables, which is based on the cells of M-tables. The motivation
for this is as follows. In many cases, the results of a query cannot be
completely answered by one or more of the past queries, but part of
its result can be derived from them. This containment helps answer
these questions.

To facilitate our discussion, we first define the following inequal-
ities for empty cells. Let e be the empty cell and let  be a positive
(non-zero) threshold. Then, our discussion assumes the following
inequalities, e > e, r > e,0 > e,and,e > 0.

For the following definition, we again assume that we have two
M -tables, M1 and Ms>, with the same number of rows (n), and the
same row in the two tables corresponds to the same dataset.



DEFINITION 3. Consider a cell ¢, which is at the row 1 in the
column C1 of the M -table M. This cell is contained in Mo if there
exists a column in Ma, denoted as Cs, such that: 1) C1[i] and C>[i]
are both non-empty, and 2) C1[j] > C[j],V¥j,1 < j < n.

We denote such containment as ¢ C M>. Intuitively, c is contained
in M if we can use the corresponding cell in the column C'; to color
the cell ¢. The reason we require C1[j] > Ca[j], for each pair of
corresponding cells in the two columns, is that we need information
in Cs to be a superset of the information required for the cell c.

As an example, in Table 5, the cell at the row three in the single-
column M -table corresponding to Oy, denoted as O4 [3], is contained
in the M-table for Oz. Formally, we say, O4[3] C O-.

Based upon the above definition, we have the following definition
to relate one M -table to a set of M -tables.

DEFINITION 4. An M-table, M', is cell-contained in the group
of M-tables, My, - - - , My, if each non-empty cell in M’ is contained
by at least one M -table in the set M1, - , M.

Formally, we denote this as
M' Ce{Mi,---, My}

As an example, in Table 2, we have M5 C. {Ms, M4}.

Given this definition, we have the following lemma to detect if
the necessary information of a query can be derived from a group of
other queries.

LEMMA 3. Let Q' be a query with an M-table, M’, and let
Q1,- -+, Qx be a group of queries with the corresponding M -tables
M, --- , My, respectively. If M' is cell-contained in M, - - - , My,
then the necessary information of Q' can be derived from the neces-
sary information of Q1, -+ , Qk.-

Our discussion in this subsection has so far assumed that the M-
tables have the same number of rows, and the same row in each table
corresponds to the same dataset. However, this is not a serious lim-
itation. If two M -tables do not satisfy this condition, we can align
them to meet this condition. Briefly, this alignment procedure is as
follows. First, we take a union of the two sets of datasets. Then, we
extend the two M -tables to have the same number of rows, corre-
sponding to the union of the set of datasets. This will involve adding
rows where each cell will be empty. Finally, we shuffle the rows in
the two M -tables to let each row represent the same dataset.

4.2 The Merge Operation for 1/-Tables

We now define the merge operation for the M -Tables. This op-
eration helps in replacing multiple queries by a single large query,
and also helps maintain a high-level summary of the contents of the
cache. Again, our definition assumes that the M -tables being merged
have been aligned, i.e., they have the same number of rows and the
same row in each table corresponds to the same dataset.

DEFINITION 5. The merge operation, denoted as &, on two M-
tables, M1 and Mo, results in a table with the same rows, and a set
of columns that is the union of the set of columns in M1 and Ma.

As an example, Table 3 shows the merged table, M1 & M2, where,
M, and M, are M -tables for the queries Q1 and Q, respectively.
Clearly, the original tables are contained in the merged table, that
is
My, M> C M1 ® M

The implication of the above observation is as follows. For two
M -tables M and M>, corresponding to the queries, @1 and @2, re-
spectively, the answering set of both ()1 and Q)2 can be derived from
the result of the merged M table, M1 @ M. This fact will be used
to process multiple queries, as well as to update the knowledgeable
cache with different mining operators.

M (Q1) M (Q2)
A[102]02 Al101]| 0.1
B |01]0.1 B | 0.1 0.1
X 0.1 Y| 01| 0.1 0.01
Z 001|021 02
| | M1 @ M |
A102(102]01] 0.1
B|01|[01]01] 0.1
X 0.1
Y 0.1 | 0.1 0.01
Z 001 02| 02

Table 3: Merge Operation for M-Tables

5. MULTIPLE QUERY OPTIMIZATION AP-
PROACH

In this section, we present our optimization algorithms which are
based on M-tables. Specifically, in Subsection 5.1, we first review
how the query plan for a single query is generated from an M-
table. In Subsection 5.2, we study how each mining operator can
be mapped to the M -table and how the redundant mining operators
can be detected. In Subsection 5.3, we discuss how local plans from
several queries can be optimized together. In Subsection 5.4, we
introduce another approach for optimizing multiple queries, which
involves merging multiple queries into one query, and then generat-
ing a global query plan. Subsection 5.5 focuses on how M -table can
be used to summarize and update the cache, and how the cache can
help us reduce the evaluation costs.

5.1 Single Query Plan Generation

We begin with introducing a new mining operator C'F'. We intro-
duce this operator because using only the SF' operator to evaluate
queries can be very expensive.

Frequent itemset mining operator with constraints CF(A;, o, X)
finds the itemsets that are frequent in the dataset A; with support
a and also appears in the set X. X is a set of itemsets that satisfies
the down-closure property, i.e., if an itemset is frequent, then all its
subsets are also frequent. This operator also reports the frequency of
these itemsets in A;. Formally, CF(A;, @, X)) computes the follow-
ing view of the F' table:

Xn SF(A]‘,OL)

Note that we can also define and use other mining operators to speedup
the evaluation process [14]. For simplicity, we will only use C'F' and
SF in this paper. Our overall approach can be easily extended to
include other mining operators as well.

Now, we focus on query plan generation using the M-table. One
of the important features of M table is it can capture the evalua-
tion process for a query by a simple coloring scheme. This coloring
scheme is as follows. Initially, all the cells are black. Each invoca-
tion of a mining operator (like SF' and C'F') can color a number of
non-empty cells red. This implies that the information correspond-
ing to these cells has been computed. The query evaluation process
is complete when all non-empty cells are colored red.

As arunning example, consider applying SF(A,0.05), SF(C,0.1),
CF(B,0.1,SF(4,0.1)), and CF(D,0.1, SF'(C,0.1)) consec-
utively on an initially black-colored table M of the query Q. Table 4
shows the resulting colored table (unshaded for black-colored, and
shaded for red-colored). In the following, we look at how the SF
and C'F operators color the table.

Frequent mining operator SF(A;, &): An invocation of the frequent
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Table 4: Colored M Table for the query Q

mining operator on the dataset A;, with support a, will turn each
non-empty cell at row ¢ who is greater than or equal to « red. In our
example, the first operator, SF'(A,0.05), will turn the cells M 1,
M 2, and M 4 red, and the second operator, SF(C,0.1), will turn
the cells M3 3, M3 4, and M3 5 red.

Frequent mining operator with constraint CF(A;, a, X): The col-
oring impacted by this operator is dependent on the current coloring
of the table M. Let X be the set of frequent itemsets defined by all
the red cells, and let S be the set of columns where these red cells
appear. Then, by applying this operator on dataset A; with support
a, all cells on row 4 whose column is in the set .S, and whose value
is less than or equal to v, will turn red.

In our running example, the third operator CF (B, 0.1, SF1(A4,0.1))

picks the red cells M1,1 and M 2 by the parameter
X = SF'(4,0.1)

The set S includes the first two columns. Therefore, this operator
turns the cells M>1 and M » red. Similarly, the fourth operator

turns the cells My 3, My 4, and My 5 red.

By the above formulation, the query evaluation problem has been
converted into the problem of coloring the table M. Different oper-
ators can be used, and in different order, to color the entire table red.
Generating optimal query plan is NP-hard, and a number of heuris-
tic algorithms have been developed to find efficient query plans [14].
Here, we will only discuss one of the algorithms, the Algorithm-CF,
which uses SF and CF operators to optimize the query evaluation.
Algorithm-CF splits the evaluation into two phases. In the first phase,
we use the SF(A;, ) operators so that each column has at least one
red cell. In the second phase, we use the CF(A;, o, X') operators to
compute all other non-empty cells in the table.

The sketch of Algorithm-CF is listed is in Figure 4. It involves
minimizing costs for each of the two phases. Since precise cost func-
tions for each operator are not available, a simple heuristic based on
the support level is used to estimate the cost. In general, for a single
dataset, higher support level for the the SF' operator implies lower
computation.

Input: table M without coloring
Phase 1
Enumeration of possible SF' operators to find the least cost
to cover at least one cell red for each column
Phase 2
Find datasets whose corresponding rows have black cells;

On each row, invoke the C'F" operator with

the lowest support level:
Across the rows, invoke the operator in the decreasing order
of support level used for the C'F’ operator.

For each row, find the lowest support level among the black cells;

Figure 4: Algorithm-CF for Query Plan Generation

Algorithm-CF will generate the following query plan for the query
Q.

Phasel :
Phase2 :

SF(A,0.1),SF(C,0.1);

CF(A,0.05, SF(C,0.1)T);
CF(B,0.05,(SF(A,0.1) USF(C,0.1)));
CF(D,0.05,((SF(A,0.1) M SF(B,0.1)) USF(C,0.1))1);

L [0 [O:] 05 [ Oa]
A0l 0.1
B 0.05 | 0.05 || 0.05
C 0.1 01 [ 01
D 0.1

Table 5: M-Tables of different mining operators

Note that F! returns the first column of table F, i.e. the set of
itemsets recored in F'.

5.2  Mapping Mining Operators to v-Tables

Each mining operator in a query plan can be uniquely mapped to
an M -table. This mapping plays an important role in multiple query
optimization and cache management. This is because common com-
putations among the mining operators can be easily captured using
M -table, and similarly, the result of each mining operator can be
uniformly expressed using M -tables.

We had earlier described how the two operators, SF' and CF,
contribute to the coloring of the table, and help generate query plans.
Since part of our goal is to use an M -table to capture the cache, we
define rules to map each different mining operator in a query plan to
a unique M -table.

Frequent mining operator SF(A;,a): An invocation of this opera-
tor on dataset A; and support @ will generate a single column M-
table whose row j is «, and other rows are empty.
Frequent mining operator with constraint CF(A;, a, X): Recall
that the CF' mining operator is used to color a set of columns, de-
noted as S, who have at least one cell to be colored red, and the cell
at the row j for each column in S is black. Then, the M-table gen-
erated by the C'F’ operator is composed of these columns in the set
S, with the following exception. The cells which are still black after
the C'F' mining operator will become empty in this new M -table.
Consider the following incomplete query plan for the query Q.

01 : SF(A,0.1);

Oz : SF(C 0.1);

O3 : CF(B,0.05,(SF(A,0.1) U SF(C,0.1))1);
04: CF(D,0.1,CF1(B,0.1,SFI(C,0.1));

Table 5 shows the corresponding M -tables for the mining operators
in the above query plan.

The significance of associating an M -table with each mining oper-
ator is that the common computation among mining operators can be
treated the same way as the query results. In particular, Lemmas 2
3 can be modified to apply to mining operators, instead of mining
queries. In next subsection, we will use such methods to reduce the
redundant computations among different query plans.

5.3 Optimizing Local Plans

To optimize multiple simultaneous queries, this approach gener-
ates local query plans for each query, and then tries to remove the
common computations among the query plans. The common com-
putations are categorized into two groups. In the first group, a mining
operator in a query plan can be derived from another mining opera-
tor in one of the other query plans. In the second group, a mining
operator in a query plan can be derived from a group of mining op-
erators which are in other query plans, or are in the same query plan
but scheduled before this operator. As discussed in Subsection 4.1,
we can detect these common computations by the containment rela-
tionship defined on the M-tables.

The difficulty of this approach is that different query evaluation
order will result in different ways to remove the common computa-



tions. For example, assume one query plan has the mining operator,
CF(X,0.1,(SF(A,0.1) U SF(B,0.2))")
and another query plan includes
CF(4,0.1,SF(X,0.1)"), CF(B,0.2, SF(X,0.1)")

Since the two sets of mining operators are equivalent, depending on
which query plan is evaluated first, we have different ways to elim-
inate the common computations. Note that in order to simplify the
above problem, we are not considering combining local plans to-
gether into a global plan. This will be the topic of the next subsec-
tion.

Input: local query plans @1, -, Qn
S={Q1, - Qn}:
While (S # () Do
Foreach ); € S
Eliminate Containment:
If any mining operator in Q; is contained in S — {Q;}
Eliminate Cell-Containment:

If any mining operator in Q; is cell-contained in
mining operators in S — {Q;} or in Q; but
scheduled before this operator

Find the savings from the above eliminations;
Let @; in S have the maximal savings;
Eliminate the contained mining operators from Q;;
Scheduled Q; after S — Q;;

§=5-{Q;}.

Figure 5: Greedy Algorithm to Remove Containment in Multiple
Query Plans

To find the evaluation order for n queries to achieve the maximal
savings from removing the common computations, a simple enumer-
ation method will have the time complexity O(n!). If n is large,
this method is very expensive. Therefore, we propose a greedy algo-
rithm, which is sketched in Figure 5. This greedy algorithm utilizes
the following property. If a query plan, @, is scheduled after a set
of query plans, S, then the contained mining operators in @ do not
depend on how the contained mining operators are removed within
the set S. This is based on the transitive property of the containment
relationships. To utilize this property, our algorithm finds the query
plan which has the maximal savings when it is scheduled as the last
one. Such a plan is then scheduled last, and then the order of the re-
maining operations is determined. Note that since the exact savings
cannot typically be determined, we use simple heuristics, such as the

number of mining operators, as the cost function.
Consider applying the greedy algorithm on the query plans of
query Q1 and 92, which are as follows:

Qi : SF(A,0.2
CF(B,0.1,SF(A,0.2)!
2

)
)

3

)
)
CF(X,0.1,(SF(A,0.2) N SF(B,0.1))!)
)i
)
)
)

Qs : SF(A,0.1),SF(Z,0.
CF(B,0.1,SF(A,0.1)!

CF(Y,0.01,((SF(A,0.1) M SF(B,0.1)) U SF(Z,0.2))!
CF(Z,0.01,((SF(A,0.1) N SF(B,0.1) N SF(C,0.1))!

)

3

)

The algorithm will schedule the query Q» before Q1, and the first
two mining operators in the query plan of Q1 will be eliminated.

5.4 Global Query Plans
A drawback of the above approach is that it is very sensitive to the
local plans, and often cannot find efficient query plans. For example,

consider the new query Q5 which is created by replacing the sub-
condition in the query Qs, F.B > 0.1 by F.B > 0.15. The query

A|02|02] 01 | 0.1

B |01]0.1]0.15|0.15

X 0.1

Y 0.1 | 0.1 0.01
zZ 001 02| 02

Table 6: Merged M-Table for Query Q; and Q)

A |01 0.05 || 0.1 0.1

B 0.05 | 0.05 || 0.1

C 0.1 ]| 0.1 0.1 0.1
D 0.05 | 0.05
E

Table 7: M Table for the Cache

plan for Q5 is as follows.
SF(B,0.15),SF(Z,0.2);
CF(A,0.1,SF(B,0.15)7);
CF(Y,0.01,((SF(A,0.1) N SF(B,0.15)) U SF(Z,0.2))7);
CF(Z,0.01,((SF(A,0.1) N SF(B,0.15) M SF(C,0.1))1);

If we are evaluating queries Q1 and Q% together, the above approach
can not find any common computations between the two query plans,
and the mining operators will be invoked 8 times.

However, the M -table format of queries enables us to perform
more aggressive optimizations. This new approach does not depend
on the local query plans. Instead, this approach combines the local
M -tables from different queries into a single large M -table by the
merge operation (). Then, it generates a global query plan based
on this merged M-table. Consider the merged M -tables for query
Q1 and QY in Table 6.

We can have the following global query plan which needs only 6
mining operators.

SF(A,0.1), SF(Z,0.2);

CF(4,0.1,SF(B,0.1)");

CF(X,0.1,((SF(4,0.2) N SF(B,0.1))));
CF(Y,0.01,((SF(A,0.1) N SF(B,0.15)) LU SF(Z,0.2))]);
CF(Z,0.01,((SF(A,0.1) N SF(B,0.15) N SF(C,0.1))1);

Compared with the first approach, this global query plan replaces

the four mining operators SF(B,0.15), SF(A,0.2), CF(A,0.1,
SF(B,0.15)"), SF(B,0.1, SF(A,0.2)") by two mining opera-
tors, SF(A,0.1), CF(A,0.1, SF(B,0.1)7). This is likely to be
more efficient.

5.5 Knowledgeable Cache Management and Uti-
lization

We now discuss how the M -table can be used for summarizing our
cache. Assume in our system, there are a total of p distinct datasets.
Then, our cache can use an M -table with p rows, where each row
corresponds to a dataset, to represent the past evaluation results that
are stored in the cache. The set of columns of the M-table are dy-
namically changed after each invocation of a mining operator.

This update procedure is quite simple. Earlier, we had described
how each mining operator in a query plan is mapped to an M -table.
After invocation of a mining operator, besides inserting the mining
results in the cache, the M-table for the mining operator will be
merged with the M -table that summarized the cache earlier.

Consider the query plan for the query Q described earlier, and
assume the cache is empty initially. Then, the M -table of the cache
after the evaluation of this query plan is shown in Table 7.
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Table 8: Pre-Colored M-Table for Query Q; and Q5

The high-level knowledge of our cache can be used to answer
which part of a new query can be answered directly from the cache.
Further, to help with the query plan generation, this information is
represented by pre-coloring the M -table for the new queries. This is
done by using the generalized containment relationship of M -tables
based on cells. For each non-empty cell in the M -table for queries,
we search the M-table of the cache to see if a column contains it.
If such a column exists, the cell will be turned red. As an example,
assume we have a cache with an M -table shown in Table 7. The pre-
coloring of the merged M-table for queries Q1 and Q) is shown as
Table 8.

After such pre-coloring, less cells need to be colored, and more
efficient query plans can be generated. For the first approach to opti-
mize multiple queries (Subsection 5.3), different local query plans
are generated from the pre-colored M -tables, and then the com-
mon computations among them are removed. For the second ap-
proach (Subsection 5.4), a global query plan is generated from the
pre-colored merged M-tables. For queries Q1 and Q%, both ap-
proaches will generate the following query plan:

SF(Z,0.2);

CF(X,0.1,(SF(A,0.2) N SF(B,0.1))7));

CF(Y,0.01,((SF(A,0.1) M SF(B,0.15)) LU SF(Z,0.2))!)
CF(Z,0.01,((SF(A,0.1) N SF(B,0.15) M SF(C,0.1))!);

)

6. SYSTEM IMPLEMENTATION AND EX-
PERIMENTAL EVALUATION

This section reports a series of experiments we conducted to demon-
strate the efficacy of the optimization techniques we have developed.
Particularly, we were interested in the following questions:

1. What are the performance gains from two different approaches
to simultaneously optimize multiple mining queries ?

2. What are the performance gains from the knowledgeable cache,
and/or from pre-computation of frequent itemsets with certain
threshold ?

Initially, we briefly describe how we have implemented our cache,
and the datasets and the queries used for our experiments.

6.1 Cache Implementation

In our current implementation of the cache, we use a memory-
based hash-tree like data structure to maintain the itemsets with their
frequency counts. For each dataset, we maintain an independent
hash-tree. We define three primitives to access the cache. These
are: the add operation, which adds a set of itemsets and their fre-
quency in the cache, the get operation, which takes as parameter the
support level o, and gets the set of itemsets with support level higher
than or equal to « from the cache, and finally, the remove operation,
which removes the itemsets whose support is lower than the given
parameter for the specified dataset.

6.2 Datasets

Our experiments were conducted on two groups of datasets, each
of them comprising four distinct datasets:

Query Conditions |

01 A>aAB>a

Qz (A201VBZC¥2)/\C<ﬁ1

Qs | (A>2ai AB<B)V(B>asANA<B)

Qi |[(A>aiAB>awaAC<PFiAD< BV
(C>a1AD>asNA< B1 AB<B)

Qs A>a1AB>aitAC>a1 AD< B

6 || A>a1 AB<BiAC<asAD<pB)V
(B>asNA<B3AC <asAND < pB4)V
(C>as NA<Bs AB <asAD < Bs)V

Table 9: Test Query Templates for Our Experiments
IPUMS: The first group of datasets is derived from the JPUMS 1990-

5% census micro-data, which provides information about individu-
als and households [1]. The four datasets each comprises 50,000
records, corresponding to New York, New Jersey, California, and
Washington states, respectively. Every record in the datasets has 57
attributes.

IBM’s Quest: The second group of datasets represents the market
basket scenario, and is derived from IBM Quest’s synthetic datasets [2].
The first two datasets, dataset-1 and dataset-2, are generated from
the 720.18. N2000 dataset by some perturbation. Here, the number
of items per transactions is 20, the average size of large itemsets is
8, and the number of distinct items is 2000. For perturbation, we
randomly change a group of items to other items with some proba-
bility. The other two datasets, dataset-3 and dataset-4, are similarly
generated from the 720.710.N2000 dataset. Each of four datasets
contains 1,000,000 transactions.

6.3 Test Queries

We use a collection of query templates involving a different num-
ber of datasets, ranging from one to four. Each template involves
several different thresholds. For convenience, the thresholds are clas-
sified into two groups. A threshold is positive if it is in a positive
predicate, and negative if it is in a negative predicate. Table 9 il-
lustrates several templates used in our experiment, where we use
and f to represent the positive and negative thresholds, respectively.
To generate a query from these query templates, we assign values to
each threshold in the query template. For IPUMPS datasets, a pos-
itive threshold ranges from 50% to 90%, and a negative threshold
from 30% to 60%. For Quest datasets, a positive threshold ranges
from 0.1% to 0.9%, and a negative threshold from 0.05% to 0.2%.

6.4 Experimental Settings

In our experiments, we evaluate three methods to deal with mul-
tiple mining queries. The first is the naive method, which generates
efficient query plan for each single query, without considering their
common computations. The second method is as described in Sub-
section 5.3. It tries to remove the common computations among the
local query plans and greedily selects an evaluation order. The third
method is as described in Subsection 5.4. It merges the local queries
into one single query by using the M table format, and then gener-
ates an efficient global query plan. For our discussion, we denote
them as S@Q (single query plan), L@ (local query plan), and GQ
(global query plan), respectively. In each of these methods, we use
the Algorithm-CF to generate our query plans.

We also consider the following experimental settings to study the
impact of pre-computation and caching.

Setting-1: No pre-computation and caching,
Setting-11: Use pre-computation only,
Setting-111: Use Caching only, and

Setting-1V: Use both pre-computation and caching.

Note that in our experiments, we do not consider cache replace-
ment. This is a topic for future research.



Batch Setting-I Setting-IT Setting-IIT Setting-IV Batch Setting-I Setting-II Setting-IIT || Setting-IV
Size SQ JLQGQ [ LQ [GQ [ LQ | GQ || LQ | GQ Size SQILQJGQ[LQJGQJLQ[GQ [ LQ | GQ
2 391 | 362 | 234 || 288 | 207 || 160 | 149 || 149 | 125 2 88 76 69 57 52 13 11 10 10
3 587 | 462 | 254 || 398 | 231 || 239 | 224 || 224 | 162 3 132 | 98 89 78 72 20 | 17 16 14
4 783 | 607 | 305 || 502 | 274 || 319 | 299 || 299 | 192 4 175 | 118 | 102 || 93 82 26 | 20 22 18
6 1175 | 798 | 339 || 684 | 316 || 479 | 448 || 448 | 232 6 260 | 146 | 123 || 126 | 111 39 | 29 32 | 29

Table 10: Group-I Results on Synthetic (Quest) Datasets (All Ex-
ecution Times in Seconds)

Batch Setting-I Setting-IT Setting-IIT || Setting-IV
Size SQILQJGQ[LQJGQ [ LQJ]GQ I LQ]J GQ
2 83 71 58 44 | 40 29 | 25 24 | 21
3 126 | 101 | 80 66 | 59 43 | 32 36 | 26
4 167 | 112 | 79 71 65 58 | 40 47 | 41
6 250 | 171 | 109 || 121 | 88 88 | 55 72 | 48

Table 11: Group-I Results on Real (IPUMS) Datasets (All Exe-
cution Times in Seconds)

6.5 Experimental Results

In the following, we first report two groups of experimental re-
sults. The first group, (Group-1), assumes that queries are issued in a
random fashion. Specifically, we randomly generate 24 queries from
the query templates, and put them in the query queue. Our system
will evaluate them in a batch fashion, where the batch size varies
from 2 to 6. The second group, (Group-2), emulates a mining ses-
sion. Each mining session is defined as a sequence of queries with
the same query template but different thresholds. This simulates the
situation in which a user issues a sequence of related queries, in order
to find the desired results. Specifically, we randomly pick 24 query
templates, and then randomly generate 6 queries from each template.
In our experiment, we vary the batch size to evaluate the total of 144
queries generated in this fashion. Each batch contains 2, 3, 4, or 6
queries from different mining sessions.

Tables 10 and 11 show the Group-1 experimental results. Ta-
bles 12 and 13 show the Group-2 experimental results. Each table
contains four different experimental settings: Setting-I, Setting-II,
Setting-III, and Setting-1V, as described above. The number in the ta-
ble represents the average evaluation time for each batch of queries.
Note that in each of these these tables, for pre-computation, we select
the frequent itemsets with support level 0.5% for the Quest datasets,
and with support level 60% for the IPUMS datasets.

From these tables, we can see that GQ (global query plan) always
performs better than L) (local query plan). In the Setting-I (no pre-
computation and caching), compared with SQ, the average speedups
of LQ for all batch size in Tables 10, 11, 12, and 13 are 1.3, 1.3,
1.3, and 1.4, respectively. GQ gains an average speedup of 2.5, 1.9,
2.4, and 1.7, respectively. Also, as the batch size becomes larger, the
gains from GQ and L@ also become larger. For example, when the
batch size is 6 in Table 10, the speedups of L and GQ are 1.5 and
3.5, respectively. This is because with a larger number of queries
in a batch, more common computations can be removed. This ob-
servation also validates the effectiveness of our methods to optimize
multiple queries.

Batch Setting-I Setting-IT Setting-IIT Setting-IV
Size SQ JLQJGQ [ LQ [GQ [ LQ | GQ || LQ | GQ
2 412 | 365 | 263 || 273 | 202 || 84 | 53 81 51
3 619 | 523 | 301 || 389 | 237 || 126 | 77 120 | 75
4 825 | 638 | 333 || 497 | 250 || 168 | 90 163 | 87
6 1238 | 815 | 364 || 662 | 282 || 251 | 141 || 248 | 135

Table 12: Group-II Results on Synthetic (Quest) Datasets: (All
Execution Times in Seconds)

Table 13: Group-II Results from Real (IPUMS) Datasets (All Ex-
ecution Times in Seconds)

Batch Size | 24 Queries | 48 Queries | 96 Queries | 144 Queries
1 13 11 10 6

2 25 21 17 13

3 32 33 26 18

4 40 38 31 24

6 55 52 44 34

Table 14: Caching Effects: IPUMS(in Seconds)

From the experimental results, we can see that pre-computation
and caching also help reduce the evaluation costs. In our experi-
ments, Setting-IV which combines pre-computation and caching is
always the best. Setting-III (purely caching) is also quite effective,
and delivers a speedup quite close to Setting-IV. Compared with

Setting-I (no caching and pre-computation), Setting-II (Pre-computation)

achieves an average speedup of 1.2, 1.4, 1.3,and 1.2, in Tables 10,
11, 12, and 13, respectively; The gains from the Setting-IIT amount
to a factor of 1.8, 2.2, 3.8,and 5.0, respectively. Finally, the Setting-
IV achieves the highest gains, with an average speedup of 1.9, 2.6,
4.0, and 5.9, respectively.

In the Setting-1V, caching and pre-computation maximize the gains
for the both local and global query plans. Specifically, compared with
SQ in the Setting-1, the average speedups of L@ in the Setting-IV
are 2.6, 3.5, 5.1, and 8.3, in the Tables 10, 11, 12, and 13, re-
spectively. GQ@ obtains an average speedup of 4.0, 4.5, 8.8, and 9.2,
respectively.

An interesting property of caching is if there is no cache replace-
ment, as is the case in our system, it reduces the average query eval-
uation time as more queries are being evaluated. Table 14 shows
this caching effect. Here, global query plans are used. Each row of
the table corresponds to a different batch size, ranging from 1 to 6.
The columns in the table correspond to the number of queries being
evaluated. We issued four sets of queries, with a total of 24, 48, 96,
and 144 queries, respectively, to the query queue in our system. We
can see that as more queries are processed by the system which is
using the cache, the average of the batch processing time is reduced.
Specifically, the average evaluation time has reduced from 9.2 sec-
onds per query when there are 24 queries, to only 5.0 seconds per
query when there are a total of 144 queries.

7. RELATED WORK

This section compares our work with related research efforts.

A number of constraint frequent itemset mining algorithms have
been developed, with the goal of using additional conditions and
pruning the search space [8, 16, 19, 21, 27]. More recently, Yan et.
al have studied the use of connectivity constraints to mine frequent
graphs [31]. However, these algorithms cannot efficiently answer our
target class of queries, since the conditions in our queries correspond
to a set of (in)frequent patterns. Moreover, they have not considered
the multiple query optimization problem.

Raedt and his colleagues have studied the generalized inductive
query evaluation problem [15, 17, 23]. Although their queries tar-
get multiple datasets, they focus on the algorithmic aspects to apply
version space tree and answer the queries with the generalized mono-
tone and anti-monotone predicates. In comparison, we are interested



in answering queries involving frequency predicates more efficiently.

Our research is also different from the work on Query flocks [28].
While they target complex query conditions, they allow only a single
predicate involving frequency, and on a single dataset. The work on
multi-relational data mining [7, 10, 22, 32] has focused on designing
efficient algorithms to mine a single dataset materialized as a multi-
relation in a database system.

A number of researchers have developed techniques for mining the
difference or contrast sets between the datasets [6, 9, 30]. Their goal
is to develop efficient algorithms for finding such a difference, and
they have primarily focused on analyzing two datasets at a time. In
comparison, we have provided a general framework for allowing the
users to compare and analyze the patterns in multiple datasets.

As discussed in Section 1, some efforts have been made toward
addressing the issues arising from sequence of queries and multiple
simultaneous queries in mining environments. Nag ef al. have stud-
ied how a knowledgeable cache can be used to help perform interac-
tive discovery of association rules [18]. Hipp and Guntzer have pro-
posed to use pre-computation of frequent itemsets of certain support
levels to answer constraint itemset mining queries [13]. Goethals
and Bussche have developed methods to support an interactive data
mining session [11]. Compared with our work, these efforts have not
addressed both of the issues, sequence of queries and multiple simul-
taneous queries, together, and the knowledgeable cache is restricted
to simple data mining queries.

Multiple query optimization has been widely studied in database
systems [25, 20, 24, 26]. Here, the focus has been on finding ef-
ficient query plans by dealing with the trade-offs between materi-
alization and re-computation of common subexpressions. Zhao et
al. have studied simultaneous optimization of a restricted kind of
queries, called multi-dimensional queries [34]. The main differences
between their study and our approach is that we assume that common
computations will always be materialized, and we have developed an
efficient way to detect and utilize such common computations.

Andrade et al have studied how to simultaneously optimize a group
of related scientific data processing queries [5]. However, their meth-
ods are mainly based on the spatial properties of the queries and can-
not applied to the mining tasks we have focused on.

8. CONCLUSIONS

The work presented in this paper is driven by the need to efficiently
process a large number of data mining queries, which are being is-
sued by a number of users. To speedup the evaluation of queries in
such a scenario, we need to not only evaluate each single query ef-
ficiently, but also need to optimize multiple queries simultaneously.
Furthermore, we need to be able to utilize mining results from past
queries in a systematic fashion.

In this paper, we have presented a novel system architecture to
deal with such a query intensive environment. We have proposed
new algorithms to perform multiple-query optimization for frequent
pattern mining queries which involve multiple datasets. We also de-
signed a knowledgeable cache which can store the past query results
from queries, and enable the use of these results to further optimize
multiple queries. Finally, we have implemented and evaluated our
system with both real and synthetic datasets. Our experimental re-
sults have demonstrated a speedup of up to a factor of 9.
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APPENDIX

A. MINING GENERALIZED PATTERNS ON
MULTIPLE DATASETS

In the past several years, the field of frequent pattern mining has
gone beyond frequent itemset mining. Algorithms have been devel-
oped to mine a very rich class of patterns or structures, including se-
quential pattens, sub-graphs, sub-trees, and other topological struc-
tures [29, 3, 33, 4]. Also, in order to discover interesting patterns,
comparing and analyzing interesting patterns from multiple datasets
is often required. We refer to the patterns mined by algorithms for
frequent pattern mining (besides itemsets) as complex patterns.

In this section, we briefly outline how our framework and tech-
niques for optimizing operations for frequent itemset mining can be
extended to handle complex patterns. Specifically, we focus on the
following three questions. First, can our SQL extensions and Alge-
bra be used for operations on complex patterns ? Second, can our
mining operators, the M -table representation, and query plan gen-
eration algorithms still be used to optimize queries on the complex
patterns ? Third, what are the key implementation issues in handling
complex patterns in our system ?

A.1 SQL and Algebra for Mining Complex Pat-
terns on Multiple Datasets

Let {A1, Aa,--- , Ay} be the set of datasets, which contain com-
plex patterns that we are interested in analyzing and comparing. The
datasets are homogeneous, in the sense that the same item, or the
same vertex/edge label, has the same name across different datasets.
Let T be the set of all possible patterns in all datasets. We can then
define the following schema,

Frequency(T, A1, As, -+, Ap)

For a table F' of this schema, the column with attribute F.T stores all
possible patterns, and the column with attribute F.A; holds the fre-
quency of the patterns at their corresponding rows on the dataset A;.
Note that itemset mining has become a special case of this definition,
where the first column stores all the frequent itemsets (F.1).

As was the case for itemset mining, the table F' usually cannot
be materialized because of the large number of potential patterns. It
only serves as a virtual table or a logical view. Similar to mining
itemsets, an SQL query will be used to partially materialize the vir-
tual frequency table F', which has the following format.

SELECT F.T,F.A;1,F. A, - ,F.A;s
FROM Frequency (T,A1, -+ ,Am) F
WHERE Condition C

where, {As1,---,Ais} C {A1, -+, An}, and Condition is de-
fined the same as in itemset mining.

To deal with the complex patterns, we can define the basic opera-
tor as SFT(A;, @), which mines frequent complex patterns on the
dataset A; with support level o. The basic operations (Ll and M) will
remain the same. Therefore, the above SQL queries can be translated
into the algebra format and then be normalized to the standard form.

A.2 New Operators and Query Plans

Recall that in mining itemsets on multiple datasets, the standard
form of a query is mapped to the M -table format. M-table captures
the relationships among the basic operators and operations. Using
the M -table representation, we can explore the search space of query
plans and find the efficient ones. However, efficient query plans of-
ten rely on the additional mining operators, such as the C'F' operator.
Therefore, the main challenge for complex pattern mining using the
approach presented in this paper is, “Can new mining operators sim-
ilar to C'F be defined for complex pattern mining?

We have an affirmative answer to this question. The reason is that
the new frequent complex pattern mining algorithms are all based
on the down-closure property, i.e., if a complex pattern is frequent,
then all its sub-patterns are also frequent. Therefore, new frequent
pattern mining operator C' F'T' can be defined in very similar ways to
the operator C'F'.

Frequent complex pattern mining operator with constraints
CFT(Aj,a,X) finds the complex patterns that are frequent in the
dataset A; with support o and also appears in the set X. X is a set
of complex patterns that satisfies the down-closure property. This
operator also reports the frequency of these patterns in A;. Formally,
CFT(Aj,a,X) computes the following view of the F' table:

X M SFT(A;j,a)

The efficiency of this operator comes from the fact that by deeply
pushing the set X into the frequent pattern generation procedure,
where X can serve as the search space for the frequent pattern gen-
erating, the extra computation for the itemsets not in X can be saved.

A.3 Implementation

There are two key issues in extending our system to work with the
complex patterns. The first issue is that we need efficient implemen-
tations of the new operator CF'T for different patterns. The second
issue is to efficiently cache complex patterns in our knowledgeable
cache.

Implementation of the operator CF'T (or other similar operators)
is fairly straight-forward. They can be implemented based on the fre-
quent pattern mining operator (SF'T'), for which algorithms and their
implementations are available. For example, consider implement-
ing the frequent complex pattern mining operator with constraints,
CFT(A;j,a,X). We can put the set of complex patterns X into
a hash table. Then, in either vertical mining or level-wise mining
approach (for SF'T'), as we we try to generate a possible candidate
complex pattern, we will first test if the candidate pattern appears in
the hash table. If it is not in the set X, we will simply prune this
candidate.

Similar to itemset mining, a prefix-tree like data structure can be
used to cache mining results from complex patterns. The reason is
as follows. First, the results of these mining operators satisfy the
down-closure property. Further, since our cache is the union of all
mining results, it also satisfies the down-closure property. Therefore,
all complex patterns can actually be organized in a prefix-tree data
structure. This prefix tree can be either stored in the main memory
or in the secondary memory. The basic operations on the cache can
also be easily implemented.



