
Discovering Frequent Topological Structures from Graph
Datasets

R. Jin C. Wang D. Polshakov S. Parthasarathy G. Agrawal
Department of Computer Science and Engineering

Ohio State University, Columbus OH 43210

{jinr,wachao,polshako,srini,agrawal}@cse.ohio-state.edu

ABSTRACT
The problem of finding frequent patterns from graph-based datasets
is an important one that finds applications in drug discovery, pro-
tein structure analysis, XML querying, and social network analysis
among others. In this paper we propose a framework to mine fre-
quent large-scale structures, formally defined as frequent topolog-
ical structures, from graph datasets. Key elements of our frame-
work include, fast algorithms for discovering frequent topological
patterns based on the well known notion of a topological minor, al-
gorithms for specifying and pushing constraints deep into the min-
ing process for discovering constrained topological patterns, and
mechanisms for specifying approximate matches when discovering
frequent topological patterns in noisy datasets. We demonstrate the
viability and scalability of the proposed algorithms on real and syn-
thetic datasets and also discuss the use of the framework to discover
meaningful topological structures from protein structure data.

Categorization and Subject Descriptions: H.2.8 [Database Ap-
plications]: Data Mining

General Terms: Algorithms

Keywords: Graph mining, topological minor, frequent graph pat-
tern

1. INTRODUCTION
Recently, there has been a lot of interest in mining frequent pat-

terns from structured or semi-structured datasets, and a majority
of research in this area has focused on developing efficient algo-
rithms for mining frequently occurring (connected) subgraphs [4,
6, 13, 8]. However, in many real world applications, such as bi-
ology, social networks, and telecommunication, large-scale struc-
tures, which provide high-level topological information of graphs,
can be very important to provide key insights into the underlying
datasets. For instance, the discovery of non-local or tertiary struc-
tural information is an important problem in protein structure anal-
ysis. Similarly, in the analysis of social or communication net-
works, the direct connection between a pair of nodes is often not
the focus, instead, the patterns where several nodes are connected
through a set of independent paths are of greater interest. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

such frequent large-scale structures can be very hard to discover
using current frequent subgraph mining approaches [4, 6, 13, 8].
This is not only because the subgraphs sharing these kind of struc-
tures can be infrequent (i.e. the traditional anti-monotone property
does not hold), but also because the individual subgraphs do not
adequately represent such structures.

The main contribution of this paper is a framework to mine fre-
quent large-scale structures from graphs. Our work is inspired by
a well-established mathematical concept, topological minor [1]. A
topological minor of a graph is an abstraction that focuses on its
structural information. Intuitively, such an abstraction is achieved
by replacing or contracting independent paths in a subgraph with
individual edges. We develop an efficient algorithm to enumerate
frequent topological structures from graph datasets.

An important notion in our framework is that of a relabeling
function. Since often real datasets can be best represented as la-
beled graphs when we replace independent paths in a subgraph
with edges, the information labels on such paths are lost. How-
ever, in many applications, summarized information about the con-
tracted paths can be useful to categorize these topological struc-
tures. Our framework supports this notion through user-defined re-
labeling functions to recover some degree of information loss from
the contracted paths. Such a function maps an entire labeled path to
a single edge label. In other words, an edge label carries the desired
information about its corresponding contracted path.

To the best of our knowledge, our work is the first to focus on
the problem of mining frequent (large-scale) topological structures.
Overall, our framework is also very flexible. It can be used for ap-
proximate pattern mining, where the support for a frequent pattern
does not depend on the exact matches, but instead relies on some
form of a fuzzy matching [2, 7, 10]. The topological structures to-
gether with relabeling functions provide a powerful mechanism to
express various forms of fuzzy matches.

2. TOPOLOGICAL STRUCTURES AND
RELABELING FUNCTIONS

We begin with some basic notations. The vertex set of a graph
G is referred to as V (G), and its edge set as E(G). A path P in a
graph G is a sequence of vertices v1, v2, · · · , vk , where vi ∈ V (G)
and {vi, vi+1} ∈ E(G). The vertices v1 and vk are linked by P

and are called its ends, and v2, v3, · · · , vk−1 are the inner vertices
of P . Also, we define the number of inner vertices in a path as its
length. In particular, a group of paths are independent if none of
the paths have an inner vertex on another path. Any of such paths
is called as an independent path. Note that the independent paths
are the key tools to study topological structures of a graph.

� � �
����� ���	�
� ��
 ���������������������������! "�$#%��&'�)(�

Figure 1: Topological Minor

2.1 Topological Minors and Topological
Structures

Informally, a topological minor of a graph is obtained by con-
tracting the independent paths of one of its subgraphs into edges.
For example, in Figure 1, X is a topological minor of Y since X

can be obtained by contracting the independent paths of G, which
is a subgraph of Y . Clearly, contracting independent paths helps
simplify a (sub)graph without compromising its topological infor-
mation [1].

The formal definition of the topological minor of a graph is as
follows. A subdivision operation of a graph X , is to replace the
edges of X with independent paths. A subdivision graph of X is
a graph obtained by performing a subdivision-operation of X . For
example, in Figure 1, the graph G is a subdivision graph of X .
Note that the subdivision operation is basically an “inverse” of the
path contraction operation. Further, the topological space of X ,
T (X), is the collection of all its subdivisions graphs. If X has a
subdivision graph G (G ∈ T (X)) and G is a subgraph of another
graph Y , then X is a topological minor of Y . The vertices of X

which corresponds to the original vertices of Y are called branch
vertices.

Topological structures of a graph are derived from topological
minors. Given two parameters, l and h, 0 ≤ l ≤ h, an (l, h)-
subdivision of a graph X , involves replacing all edges of X with
independent paths whose lengths are between l and h. An (l, h)
subdivision graph of X is a graph obtained by performing an (l, h)-
subdivision operation of X . For example, in Figure 1, G is a
(0, 3)-subdivision graph of X . Similarly, we can define the (l, h)-
topological space of X , Tl,h(X), to be the collection of all its
(l, h)-subdivisions graphs. If X has an (l, h)-subdivision graph G

(G ∈ Tl,h(X)) and G is a subgraph of another graph Y , then X is
a (l, h)-topological minor, or a topological structure of Y . There-
fore, in Figure 1, X is a (0, 3)-topological minor of Y . Note that
the purpose of introducing the definition of topological structures
of a graph is to control the compression ratio between a graph and
its subdivision graph.

2.2 Labeled Graphs
Thus far, our discussion has focused on unlabeled graphs. One

is often more interested in labeled graphs. We begin with the in-
formal discussion of the topological structures on a labeled graph.
Intuitively, the way to simplify a labeled graph is to remove all the
inner vertices and edges of its independent labeled paths, and then
connect their remaining labeled ends with an unlabeled edge. In
Subsection 2.3, we will describe how to use relabeling functions
to add labels to these contracted edges. Clearly, the main differ-
ence between the topological structures on labeled graphs and on
unlabeled graphs is that the vertex labels for the ends of contracted
paths are still preserved.

* +*
+

* ,
- *.

* +.
+

/ ,
- ,

/
* +
. *

.

-
,

*
/

,
/

* +

,-

021 043 045
- -

076

8

9:

;
<

=
>

?@
8

?@
>
: 9

;
< =

8BA
8C8

8
?
@
> :

9
;

<
=
8BA8C8

8 ?

@>

Figure 2: Running Example

Here, we will mainly focus on the vertex labeled graphs, where
each vertex has a label. Note that our results and methods can be
easily extended to (edge) labeled graphs. Given two parameters,
l and h, the main difference between an (l, h)-topological minor
on labeled graph and unlabeled graph is the subdivision operation.
An (l, h)-subdivision operation of a vertex labeled graph X , in-
volves replacing all edges of X with independent paths satisfying
the following conditions: 1) the path lengths are between l and h, 2)
the vertices (and edges) in the paths are labeled, and 3) the ends of
these paths share the same vertex label as the corresponding ends of
their original edges. The other concepts, i.e., the (l, h)-subdivision
graph, the (l, h)-topological space, and (l, h)-topological minors,
are the same as in unlabeled graphs.

Assume we have a collection of graphs, denoted as D. Given
two parameters l and h, and a graph G, the number of graphs in D

which have G as a (l, h)-topological minor (also topological struc-
ture) is referred to as the support of G.

DEFINITION 1. Given a collection of graphs, two parameters l

and h, and a threshold θ, a (l, h)-topological minor whose support
is greater than or equal to θ is called

For example, in Figure 2, for l = 1 and h = 2, the support of the
graph Ga is 3 in the dataset composing of G1, G2, G3, however,
for l = 0 and h = 1, the support of the graph Ga is only 1.

2.3 Relabeling Functions
Consider a path p = (v0, v1, · · · , vk). Normally, when it is con-

tracted in a topological structure, the only information left is its
ends, v0 and vk , with their vertex labels. Relabeling functions can
preserve important additional information from these contracted
paths, in the form of labels for the corresponding edges in the topo-
logical structure.

Formally, a relabeling function f : P → L can be defined as
a map from the set of all possible paths P to the new edge-label
set for the topological structure L. A common type of relabeling
functions is derived from the length of each independent path. For
example, we can use the length of a contracted path to label its cor-
responding edge. Formally, for a given path p = (v0, v1, · · · , vk),
f(p) = k − 1. Note that in this way, the edges in the topological
structures become labeled.

Because of the space limitation, we will omit further discussion
of relabeling function, including its implementation and its applica-
tion for approximate pattern mining. We refer the interested readers
to our technical report [5] for details.

3. ALGORITHM FOR MINING
TOPOLOGICAL STRUCTURES

Frequent topological structure mining is a generalization of fre-
quent graph mining. Specifically, frequent sub-graphs for a vertex-
labeled graph dataset can be mined as a special case of frequent
topological structures: the (0, 0)-topological minors. It should also
be noted that frequent topological structures are also graphs. There-
fore, mining frequent topological structures shares some similari-
ties with mining frequent graphs.

However, mining frequent topological structures is also quite dif-
ferent from graph mining. Given two parameters l and h, the sup-
port of a topological structure G depends on the definition of (l, h)-
topological minor. Specifically, if G is a (l, h)-topological minor
of a graph Di in the graph dataset, we need to know if there is a
subgraph H of Di and H is a (l, h)-subdivision graph of G. This
potentially involves not only the subgraph isomorphism testing, but
also the (l, h)-subdivision operation. In particular, counting support
of topological structures is one of key issues in efficiently mining
frequent topological structures, which we document here.

3.1 Counting Support for Topological
Structures

To tackle this problem, we use an incremental approach. Con-
sider a topological structure G′ that can be extended from another
topological structure G by adding a new edge e, denoted as G′ =
G ∪ {e}. To test if G′ is a topological structure of a graph H , our
approach utilizes the information derived from G. In particular,
such reuse is based on a uniform representation for a topological
structure G and its corresponding subgraph in H . In the following,
we first establish such representation, and then discuss the details
of how we count the support of a topological structure.
Decomposition-based Representation: Given l and h, let G be
an (l, h)-topological minor of H . This implies that there exists a
subgraph Y of H , where Y is a (l, h)-subdivision graph of G by
a subdivision operation. To facilitate our discussion, we denote
the subgraph Y together with an (l, h)-subdivision operation as an
occurrence of G. Here, Y is isomorphic to the graph obtained by
performing the subdivision operation on G. In the following, we
consider how we can express the occurrences of G explicitly.

We first decompose G as a collection of edges, i.e., G = {e1} ∪
{e2} · · · ∪ {ek}. Based on the definition of the subdivision oper-
ation, each edge ei corresponds to an independent path in Y , de-
noted as ~ei. Therefore, we can also decompose Y as a collection
of independent paths, i.e., {~e1} ∪ {~e2} · · · ∪ { ~ek}. We denote this
decomposition as ~Y . Clearly, the above decomposition of Y can
be used to represent an occurrence of G in H . For example, in Fig-
ure 3(a), we have {(2, 1, 8), (8, 7, 6)} of G1 to be an occurrence of
the topological structure, G′ = {(A, B), (B, C)}.

The decomposition can be further represented in a very concise
format. Consider G ∪ {e} which is also a (l, h)-topological minor
of H . Let SG,H = { ~Y1, ~Y2, · · · , ~Ym} be all the occurrences of G

in H . We have the following lemma.

LEMMA 1. The occurrences of G ∪ {e} can be represented as
~Y ′

1 ∪ {~e}, · · · , ~Y ′
n ∪ {~e}, Y ′

i is called the parent occurrence of
~Y ′

i ∪ {~e}.

Given a topological structure G′, we can decompose it as G ∪
{e}, where G is called a parent of G′. For example, in Figure 3(b),
we have G′ = G ∪ {(B, C)}, where G = {(A, B)}. Lemma 1
suggests that occurrences of G′ can be partially represented by the
occurrences of its parent. Naturally, for each topological structure,
we can build an occurrence list to concisely record all of its occur-

Figure 3: Decomposition and Occurrence Lists

rences in the graph dataset by using the occurrence list of its parent.
Note that a topological structure can have many parents. However,
we only need one of its parents to build its occurrence list. The
question of which one of these parents is chosen will be addressed
in Subsection 3.2).

The concise representation of each occurrence in the occurrence
list for a topological structure G ∪ {e} is as follows. Each oc-
currence has a unique ID in the occurrence list, and the detailed
information is a triple, (α, β, δ). Here, α is the index of the graph
in the dataset D where this occurrence appears, β is the occurrence
ID of this occurrence’s parent, and δ is an independent path, ~e,
corresponding to the edge e. For instance, Figure 3(c), illustrates
a portion of the occurrence lists for three (1, 2)-topological struc-
tures, G, G′, and G′′.
Building the Occurrence Lists: Clearly, the support of a topolog-
ical structure can be easily derived from its occurrence list. There-
fore, the problem of efficiently counting the support of a potential
frequent topological structure boils down to building its occurrence
list efficiently. However, the naive solution can be very costly. For
example, suppose we already have the occurrence list for G and try
to build the occurrence lists for G ∪ {e} and G ∪ {e′}, where e

and e′ are adjacent to the same vertex v in G. The naive method
will build the occurrence lists for them independently. Specifically,
for each of them, we need to go through all the occurrences of G

to find out all the independent paths corresponding to edge e or e′

(path contraction). This, however, involves a lot of repetitive work,
since each time we have to find all the independent paths start-
ing from the branch vertex corresponding to v in each occurrence.
Note that similar problems also need to be addressed in frequent
subgraph mining algorithms [8].

In order to build the occurrence lists efficiently for the topologi-
cal structures, we want to minimize the number of times the finding
independent paths (discussed later) operation needs to be invoked.

We also build occurrence lists in parallel when we invoke such an
operation. To formally discuss our approach, we first introduce
some notation.

Let us consider generating new frequent topological structures
by extending an existing frequent topological structure G with a
new edge. We classify these new edges in two categories: inner
edges or outer edges. An inner edge connects two dis-adjacent
vertices in the graph G, and an outer edge adds a new vertex into
V (G), and connects an existing vertex in V (G) with this new ver-
tex. For a topological structure G, we denote [G]inner to be the
set of all inner edges of G, and [G]outer to be the set of all outer
edges of G. We use [G]io to represent the union of [G]inner and
[G]outer . The significance of these two sets [G]outer and [G]inner

is that they record all the potential extensions of G. Finally, for an
extended graph G ∪ {e} from G, we denote its occurrence list as
e.occurrencelist or (G ∪ {e}).occurrencelist.

The basic idea of our approach is as follows. For each topolog-
ical structure G, we will maintain the occurrence list for each ex-
tended graph G∪{e} where e ∈ [G]io. We will show an optimiza-
tion in next subsection to reduce the number of recorded occurrence
lists. Here, we consider how we can build these lists for G ∪ {e}.
If e is an inner edge, we can have [G ∪ {e}]io ⊆ [G]io. There-
fore, we need to simply copy the occurrence lists for the edges in
[G]io. Note that this is not a real copy since not all occurrences for
G ∪ {e′}, e′ 6= e, e′ ∈ [G]io can be extended to G ∪ {e} ∪ {e′}.
Essentially, this copy is a Join operation, which will be discussed
later. Further, if e is an outer edge, the new vertex generated by
e will be likely to bring some new outer edges. Also, the exist-
ing outer edges of G may become inner edges for G ∪ {e}. In
this case, we will not only need to copy these occurrence lists from
G, but also need to build the occurrence lists for all the new outer
edges adjacent to the new vertex.
Finding Independent Paths: The sketch of the algorithm for find-
ing all independent paths (IndependentPath subroutine) for an oc-
currence ~Y starting from a branch vertex s is as follows. Let G be
the graph where this occurrence ~Y appears. We perform a depth-
first search (DFS) to enumerate these paths. There are two impor-
tant issues we need to deal with. The first involves maintaining the
independent property, and the second involves bounding the length
of each path, specifically, the number of inner vertices, between l

and h. To deal with the first issue, we color the vertices in the oc-
currence of G. Then, as we traverse the graph G starting from the
branch vertex s, we keep coloring the visited vertices. If we meet
any colored vertex, we need to trace back since the path has become
not independent. When we found an independent path (the number
of inner vertices) bounded by l and h, we will record this path.
Note that the tracing back operation is associated with un-coloring
the visited vertex.
Key Operations: In the following, we formally introduce the two
key operations mentioned earlier, which are the Join operation and
the ExtendOuterEdges operation. The two operations are sketched
in Figure 4. Assume G is generated by adding an outer edge e on its
parent. The procedure ExtendOuterEdges will scan the entire list
of occurrences of G (the first foreach loop in ExtendOuterEdges).
For each occurrence, let p.to be its branch vertex corresponding to
the newly added vertex for G. This procedure will find all the inde-
pendent paths beginning from this branch vertex (the second fore-
ach loop in ExtendOuterEdges). Specifically, such functionality is
achieved by the subroutine IndependentPath just introduced. Each
independent path generated above corresponds to a new outer edge
for the topological structure G, and the occurrence lists for these
new outer edges are built by adding these independent paths (im-
plemented by insertOccurrence). Finally, ExtendOuterEdges will

return all the new edges which are frequent with respect to the given
support level.

The new topological structure, G ∪ {e}, will inherit more in-
formation from its parent G through the procedure Join. The Join
operation will filter the occurrence lists for each edge in [G]io to
generate all the inner edges. It will also filter all the outer edges
adjacent with the vertices in V (G) for G ∪ {e} (implemented by
the nested foreach loops in Join). The essential part of the Join
operation is to test if, after extending the new edge e, the paths in
the occurrences are still independent. This is done by the routine
(Independent invoked from Join). For brevity, the details of its im-
plementation are omitted.

ExtendOuterEdges(Graph T)
{∗ T is a Topological Structure ∗}
E ← ∅;
foreach (occ ∈ T.occurrencelist)

G← Graph(D, occ.tid);
foreach (path p ∈ IndependentPath(G, occ, occ.δ.to))

e← Edge(p.from, p.to);
if (e /∈ E)

E ← E ∪ {e};
InsertOccurrence(e,G, p);

foreach (e ∈ E)
if (not Frequent(T ∪ {e}))

E ← E − e;
returnE;

Join(EdgeSet E1, Edge e2)
E ← ∅;
foreach (e1 ∈ E1)

e.occurrencelist← ∅;
foreach ((l1 , l2) : l1 ∈ e1.occurrencelist and

l2 ∈ e2.occurrencelist and
l1.parentID == l2.parentID)

if (Independent(l1.path, l2.path))
InsertOccurrence(e, l1.path);

if (Frequent(e))
E ← E ∪ {e};

returnE;

Figure 4: Support Counting Procedures for Mining Topological
Structures

3.2 Vertical Mining Approach
Our approach mines frequent topological structures in two phases.

In the first phase, we mine all the frequent topological structures
which are trees, and are referred to as frequent tree-topological
structures. In the second phase, for each tree-topological structure
T , we mine frequent graph-topological structures which have T as
their spanning tree. The tree-topological structures are graphs with-
out cycles, and the graph-topological structures are graphs with at
least one cycle. Note, this two-phased procedure has been proposed
and used for efficiently mining frequent subgraphs [13, 3]. Our
algorithm is sketched in Figure 5. The mining procedure VTreeTS
corresponds to the first phase, and the mining procedure VGraphTS
corresponds to the second phase. To generate frequent tree-topological
structures, for each tree T , we use the mechanisms introduced in
GASTON [8] to determine which edges in [T]outer are valid ex-
tensions. The valid extensions can also help to enumerate all fre-
quent tree-topological structures without replication. Specifically,
the procedure ValidExtension (invoked by VTreeTS in the foreach

loop) provides the above mechanism. The frequent graph-topological
structures are enumerated by adding a subset of inner edges in
[T]inner to each frequent tree-topological structure T . In our algo-
rithm, the procedure CanonicalExtension (invoked by VGraphTS
in the foreach loop) applies hashing and graph isomorphism test to
avoid duplicating graph-topological structures.

TSMiner(Dataset D, Support θ, Bound l, h)
{∗ Find Frequent Single− Edge Topological Structures∗}
E ← FrequentEdgeTS(D,θ, l, h);
foreach (e ∈ E)

V TreeTS(e);

VTreeTS(Tree T)
{∗ New Outer Edges of T∗}
E ← ExtendOuterEdges(T);
[T]outer ←[T]outer ∪ E;
{∗Tree Topological Structure Growing∗}
foreach (e : e ∈[T]outer and

V alidExtension(T ∪ {e}))
Te ← T ∪ {e};
[Te]io ← Join([T]io, e);
V TreeTS(Te);

{∗Enumerating Graph Topological Structures ∗}
V GraphTS(T);

VGraphTS(Graph G)
foreach (e : e ∈[G]inner and

CanonicalExtension(G ∪ {e})
Ge ← G ∪ {e};
[Ge]inner ← Join([G]inner , e);
V GraphTS(Ge);

Figure 5: Algorithm Framework for Mining Topological Struc-
tures

4. CASE STUDY: MEMBRANE PROTEIN
STRUCTURE ANALYSIS

Discovery of lipids binding sites has been long known as a very
challenging, but important, task for the biologists [9]. In this study,
we use our new tool to search potential protein-lipid binding sites
in an important class of proteins - membrane proteins, which are
believed to account for approximately 20-30% of all protein se-
quences.

The dataset we use is derived from the protein data bank (PDB).
We use a set of six membrane proteins known to bind with car-
diolipins (CL): 1KB1, 1KQF, 1M3X, 1OKC, 1V54, and 1OGV.
Amino acids as nodes in the graph (20 labels) and edges between
nodes are drawn if two amino acids are within 3.5 Å . There are
known to be 20 naturally occurring amino acids and these serve as
node labels. In order to find the structural motifs that can serve as
binding site for a CL head group, we used only the relevant parts of
proteins that are known to be local to CL molecule. Such a struc-
ture typically contains around ∼ 30 − 35 amino acids (number of
nodes per graph). Note that several membrane proteins we use con-
tain more than one CL molecule. Therefore, the total number of CL
binding regions that we used to find protein-lipid binding sites is 10
(number of graphs).

Table 1 summarizes the results on mining this dataset using our
tool. Note that TSMiner at l = 0 and h = 0 is simply a connected
subgraph mining tool (same results as with Gaston). For this pa-
rameter setting, one can only find patterns till the support level is

Parameters No. of Large Topological Structures
Support l h Path Tree Graph

6 0 4 11 (|V | = 3) 0 1 (|E| = 3, |V | = 3)
5 0 3 1 (|V | = 5) 4 (|V | = 4) 4 (|V | = 3, |E| = 3)
5 1 2 17 (|V | = 3) 0 1 (|V | = 3, |E| = 3)
4 0 0 0 (|V | > 2) 0 0
4 0 1 11(|V | ≥ 4) 5 (|V | ≥ 4) 2 (|V | = 4, |E| = 4)
4 1 2 27(|V | ≥ 4) 2 (|V | ≥ 4) 1 (|V | = 4, |E| = 4)
4 0 2 24(|V | ≥ 5) 10 (|V | ≥ 5) 10 (|V | ≥ 4, |E| ≥ 4)
3 0 0 1 (|V | = 6) 1 (|V | = 6) 0
3 0 1 20 (|V | ≥ 8) 34 (|V | = 9) 19 (|V | ≥ 9, |E| ≥ 9)
3 1 2 12 (|V | = 7) 19 (|V | = 8) 20 (|V | ≥ 7, |E| ≥ 7)

Table 1: Number of Large Patterns Discovered by TSMiner

Figure 6: Frequent Topological Structures Discovered by
TSMiner

3, and the largest one found contains at most 6 vertexes. However,
upon varying the value of the parameters, we find large triangles
with support 5 and 6, along with large rectangles, and topological
structures containing 5 or more vertexes. At support 3, with re-
laxed l and h, we found a number of large topological structures,
containing more than 9 vertexes, and 9 edges. Figure 6 shows two
such large topological structures discovered by our toolkit. Also,
such large patterns cannot be found by MotifMiner [10, 11]. The
topological structures consist largely of polar (N, T, S), charged (K)
and aromatic (W) residues which is in agreement with recent ad-
vances in the understanding of such proteins within the biophysics
community[9]. The structure we find is larger than any known mo-
tifs for CL binding sites in such proteins and also seems to par-
tially span the membrane bridging components of the protein which
seems quite novel according to domain experts.

5. EXPERIMENTAL RESULTS
In this section, we will study the performance of our new algo-

rithm, TSMiner, focusing on the following two issues: the scala-
bility of the algorithm, how the parameters, l, h, and the support
level θ, affect the performance. A more complete experimental
evaluation is documented in our technical report [5]. We have
implemented TSMiner in C++. The evaluation studies were con-
ducted on a 2.66 GHz Pentium 4 machine with 1GB main memory,
running Linux Mandrake 10.1.
Datasets: Our experiments used both synthetic and real datasets,
containing vertex labeled graphs, i.e., the edge labels were not con-
sidered. The synthetic datasets were generated from the graph gen-
erator provided by Kuramochi and Karypis at the University of
Minnesota. In our experiments, we fixed the average number of
edges, T = 20, the total number of potentially frequent subgraphs,
L = 200, the average number of edges in each potentially frequent
subgraph, I = 5, and we vary V , the total of vertex labels, to be
between 5 and 20. The real dataset was originally used for the Pre-

 0

 100

 200

 300

 400

 500

510152025

R
u
n
n
in

g
 T

im
e
(s

e
c
)

Support Threshold(%)

(l,h)=(1,1)
(l,h)=(1,2)
(l,h)=(1,3)
(l,h)=(1,4)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25

R
u
n
n
in

g
 T

im
e
(s

e
c
)

Dataset Size(Kb)

(l,h)=(0,0)
(l,h)=(0,1)
(l,h)=(0,2)
(l,h)=(0,3)

(a) (b)

Figure 7: (a)Varying Support (D10kV20) (b) Varying Dataset
Size (D*kV20, Sup=20%)

 0

 20

 40

 60

 80

 100

 120

(1,5)(1,4)(1,3)(1,2)(1,1)

N
o
.
o
f
P

a
tt
e
rn

s

(l,h)

sup=20%
sup=30%
sup=40%
sup=50%

0

50

100

150

200

250

300

350

(1,1) (1,2) (1,3) (1,4) (1,5)

R
u
n
n
in

g
 T

im
e
(s

e
c
)

(l,h)

sup=20%
sup=30%
sup=40%
sup=50%

(a) (b)

Figure 8: Chemical340 (a)No. of Patterns(Varying Support)
(b)Running Time(Varying Support)

dictive Toxicology Evaluation Challenge [12]. It contains a total
of 340 chemical compounds. For each compound, the atoms corre-
spond to the vertices of the graph, and the bonds between the atoms
are mapped to the edges of the graph. For simplicity, we refer this
dataset as Chemical340.
Scalability: For the scalability study, we rely on the synthetic
datasets. In Figure 7(a), we vary the support threshold from high to
low, and run our algorithm on datasets containing 10, 000 graphs.
As we would expect, as the support level reduces, the running time
increases. Also, we can observe that as h increases (l kept the
same), the running time increases. This is also expected as the
number of (potential) frequent topological patterns increases as we
relax the condition on the length of the independent paths. From
Figures 7(b), we see that TSMiner scales reasonably well (close to
linear) as we increase the size of the dataset. Note that the TSMiner
with parameters l = 0, h = 0 is essentially a frequent connected
subgraph mining tool for vertex labeled graphs. For such cases,
we did a comparison with the state-of-art subgraph mining tool
gSpan [13]. Our results show that our implementation is slower
by a factor of 1.6. We believe this is a reasonable result, given that
we offer additional functionality and do not specifically optimize
for subgraph mining.
Impact of Varying l and h: In this study, we are interested in the
number of patterns being generated by our new algorithm and its
running time respect to the parameters l and h. Figure 8 (a) and (b)
show the total number of patterns being discovered and the running
time of TSMiner at different support levels, as we increase h and
keep l to be 1 on the real dataset Chemical340.

6. CONCLUSIONS
In this paper, we have presented a novel framework for mining

topological patterns in graph datasets. Based on the well known no-
tion of a topological minor, we have designed efficient algorithms
for mining such patterns. Additionally, our framework supports
the notion of a user-defined relabeling function, which can be used
to specify constraints and fuzzy matching criteria [5]. We have
demonstrated the effectiveness and scalability of the proposed al-
gorithms on real and synthetic datasets. We have also reported on a
case study where the framework has been used to identify topolog-
ical structures from membrane protein structure data.

7. ACKNOWLEDGMENTS
This work is funded in part by NSF grants CCF-0234273, CCF-

0130437, CNS-0203846, CAREER IIS-0347662, and DOE grant
DE-FG02-04ER25611. We thank Martin Caffrey for pointing us to
the problem domain for the case study.

8. REFERENCES
[1] Reinhard Diestel. Graph Theory. Springer-Verlag, 2000.
[2] H. Hofer, C. Borgelt, and M. R. Berthold. Large scale mining

of molecular fragments with wildcards. In Advances in
Intelligent Data Analysis V, pages 380–389, 2003.

[3] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin:
mining maximal frequent subgraphs from graph databases.
In KDD, pages 581–586, 2004.

[4] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda.
Complete mining of frequent patterns from graphs: Mining
graph data. Mach. Learn., 50(3):321–354, 2003.

[5] Ruoming Jin, Chao Wang, Dimitrii Polshakov, Srinivasan
Parthasarathy, and Gagan Agrawal. Discovering frequent
topological structures from graph datasets. Technical report,
CSE, Ohio State University.

[6] Michihiro Kuramochi and George Karypis. Frequent
subgraph discovery. In ICDM, pages 313–320, 2001.

[7] Thorsen Meinl, Christian Borgelt, Michael R. Berthold, and
Michael Philippsen. Mining fragments with fuzzy chains in
molecular databases. In Second International Workshop on
Mining Graphs, Trees and Sequences (MGTS2004), 2004.

[8] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent
structure mining can make a difference. In KDD, pages
647–652, 2004.

[9] H Palsdottir and C Hunte. Lipids in membrane protein
structures. BBA, 1666:2–18, 2004.

[10] S. Parthasarathy and M. Coatney. Efficient discovery of
common substructures in macromolecules. ICDM, pages
362–369, 2002.

[11] D. Polshakov, K. Marsolo, and S. Parthasarathy. Mining
3d-motifs using phisical-chemical constraints: application to
cardiolipin binding sites. In ISMB, 2005.

[12] A. Srinivasan, R.D. King, S.H. Muggleton, and
M. Sternberg. The predictive toxicology evaluation
challenge. In IJCAI, pages 1–6, 1997.

[13] Xifeng Yan and Jiawei Han. gspan: Graph-based
substructure pattern mining. In ICDM, page 721, 2002.

