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ABSTRACT
Decision tree construction is a well studied problem in data min-
ing. Recently, there has been much interest in mining streaming
data. Domingos and Hulten have presented a one-pass algorithm
for decision tree construction. Their work uses Hoeffding inequal-
ity to achieve a probabilistic bound on the accuracy of the tree con-
structed.

In this paper, we revisit this problem. We make the following two
contributions: 1) We present a numerical interval pruning (NIP) ap-
proach for efficiently processing numerical attributes. Our results
show an average of 39% reduction in execution times. 2) We ex-
ploit the properties of the gain function entropy (and gini) to reduce
the sample size required for obtaining a given bound on the accu-
racy. Our experimental results show a 37% reduction in the number
of data instances required.

Overall, the two new techniques introduced here significantly
improve the efficiency of decision tree construction on streaming
data.

1. INTRODUCTION
Decision tree construction is an important data mining problem.

Over the last decade, decision tree construction over disk-resident
datasets has received considerable attention [11, 13, 25, 27]. More
recently, the database community has focused on a new model of
data processing, in which data arrives in the form of continuous
streams [3, 4, 9, 12, 14, 16, 23, 30]. The key issue in mining on
streaming data is that only one pass is allowed over the entire data.
Moreover, there is a real-time constraint, i.e. the processing time
is limited by the rate of arrival of instances in the data stream, and
the memory available to store any summary information may be
bounded. For most data mining problems, a one pass algorithm
cannot be very accurate. The existing algorithms typically achieve
either a deterministic bound on the accuracy [17], or a probabilistic
bound [10]. Data mining algorithms developed for streaming data
also serve as a useful basis for creating approximate, but scalable,
implementations for very large and disk-resident datasets.

Domingos and Hulten have addressed the problem of decision
tree construction on streaming data [10, 21]. Their algorithm guar-
antees a probabilistic bound on the accuracy of the decision tree
that is constructed. In this paper, we revisit the problem of decision
tree construction on streaming data. We make the following two
contributions:

Efficient Processing of Numerical Attributes: One of the chal-
lenges in processing of numerical attributes is that the total number
of candidate split points is very large, which can cause high compu-
tational and memory overhead for determining the best split point.
The work presented by Domingos and Hulten is evaluated for cat-

egorical attributes only. We present a numerical interval pruning
(NIP) approach which significantly reduces the processing time for
numerical attributes, without any loss of accuracy. Our experimen-
tal results show an average of 39% reduction in execution times.

Using Smaller Samples Size for the Same Probabilistic Bound:
Domingos and Hulten use Hoeffding’s bound [19] to achieve a
probabilistic bound. Hoeffding’s result relates the sample size, the
desired level of accuracy, and the probability of meeting this level
of accuracy, and is applicable independent of the distribution of in-
put data. In this paper, we show how we can use the properties
of the gain function entropy (and gini) to reduce the sample size
required to obtain the same probabilistic bound. Again, this result
is independent of the distribution of input data. Our experimental
results show that the number of samples required is reduced by an
average of 37%.

Overall, these two contributions increase the efficiency of pro-
cessing streaming data, where a real-time constraint may exist on
the processing times, and only limited memory may be available.
Our work also has important implications for analysis of streaming
data beyond decision tree construction. We will be exploring these
further in our future work.

The rest of the paper is organized as follows. Section 2 gives
background information on the decision tree construction problem,
and reviews the gain function entropy. The problems and issues in
processing of streaming data are discussed in Section 3. Our new
technique for efficient handling of numerical attributes is presented
in Section 4. The new sampling method is described in Section 5.
We evaluate our techniques in Section 6. We compare our work
with related research efforts in Section 7 and conclude in Section 8.

2. DECISION TREE CONSTRUCTION
This section provides background information on the decision

tree construction problem.

2.1 Decision Tree Classifier
Assume there is a data set
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is the data associated
with the instance and

�
is the class label. Each �/. is called a field

or an attribute of the data instance.
�! &�(0)�1! � "2����� ! , is the

domain of data instances and
! . is the domain of the attribute �3. .

The domain of an attribute can either be a categorical set, such as�
465�78	�9�:<;-5=	�>/5?:@:@A6B��
, or a numerical set, such as C�D ����� D�EFE?G . $ is the

domain of class labels. In this paper, our discussion will assume
that there are only two distinct class labels, though our work can be
easily extended to the general case.

The classification problem is to find a computable function HJI�!LKMN$
, such that for any instance

�
extracted from the same distri-



bution as
�

, H�� ��� ���� will give an as accurate as possible prediction
of
��� �

. Decision tree classifiers are frequently used for achieving the
above functionality. A decision tree classifier is typically a binary
tree, where every non-leaf node

�
is associated with a predicate � .

A predicate partitions the set of data instances associated with node
based upon the value of a particular attribute � � . If � � belongs to a
categorical domain, � is a subset predicate, for example, � � � 46;-5
if � � � �
465�78	�9�:@;85F� . If � � belongs to a numerical domain, � is a
range predicate, for example, � � �
4?;-5

if � ����� E . Here,
� E is

called the cutting or the split point.
Building a decision tree classifier generally includes two stages,

a growing stage and a pruning stage. The tree growing stage in-
volves recursively partitioning the dataset, till the records associ-
ated with a leaf node either all have the same class label, or their
cardinality is below a threshold. In partitioning any node, a number
of different candidate splitting conditions are evaluated. The best
splitting condition is typically chosen to maximize a gain function,
which are based upon impurity measurements such as gini or en-
tropy. The pruning stage eliminates some nodes to reduce the tree
size. This paper will focus only on the tree growing stage.

There are two commonly used metrics to evaluate a decision
tree classifier, inaccuracy and tree size. Inaccuracy is defined as4 �
	�4?A?9 �*H�� � ���� ��� � � , where

�
is a random instance from the

underlying distribution. Tree size is defined as the total number of
nodes in the tree, and measures the conciseness of the classifier.

2.2 Entropy Function
An impurity function gives a measurement of the impurity in the

dataset. Originally proposed in the information theory literature,
entropy has become one of the most popular impurity functions.
Suppose, we are looking at a training dataset

�
. Let � � and � � be

the proportion of instances with class labels D and 
 , respectively.
Clearly, � ��� � � � D .

Entropy function is defined as���-�
4?A � > � � � ��� � � "������ � � � � � "������ � �
��� � � "������ � � � �
D � � � � "������ �
D � � � �

Now, suppose we split the node using a split predicate
�

and cre-
ate two subsets

���
and

�� 
, which are the left and right subsets,

respectively. Let � � denote the fraction of the data instances in
�

that are associated with
���

. Then, the gain associated with split-
ting using the predicate

�
is defined as

!�" � ! � � � 	��  �
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4?A � > � � � � �$�%� � "&���-�
4?A � > � � � �$� � �%�  "&���-�
4?A � > � �  �$�$�
Further, let � �'� be the proportion of instances with the class label
D within

���
, and let � �' be the proportion of instances with the

class label D within
�  

. Because
��� � 46A � > � � � is a constant, we

can treat ! " as a function of three variables, � � , � �'� , and � �' .
! " � ! �%� � 	 � �'� 	 � �' � �(���-�
4?A � > � � �� � � " � � � �'� "������ � �'� � �
D � � �'� � "������ �
D � � �'� �$�� �
D � � � � " � � � �' "������ � �' )� �
D � � �' � "������ �
D � � �' �$�

For a given attribute � � , let ! � � � � denote the best gain possible
using this attribute for splitting the node. If we have * attributes,
we are interested in determining + , such that

! � � � �-, .-/10.1243 �$5 6 6 6 5 ,87:9 3 � 7 ! � �3.1�
If more than one attribute satisfies this condition, a pre-defined rule
(such as randomization) can be used to select one of these.

2.3 Evaluating Split Conditions
Selecting the attribute and the split condition that maximizes in-

formation gain is the key step in decision tree construction. The
scalable decision tree construction algorithms proposed in the lit-
erature [11, 13, 25, 27] take a number of approaches towards per-
forming this step efficiently.

The major issues that need to be addressed are, what information
is required for evaluating different candidate split conditions, and
how can this information be stored and processed efficiently. In the
initial work on decision tree construction for disk-resident datasets,
the training dataset is separated into attribute lists [25, 27]. For a
particular attribute, the attribute list maintains the record-identifier
and the value of that attribute for the training record. Moreover, for
efficiently choosing the best split point for a numerical attribute,
the attribute lists for such attributes is kept sorted.

A significantly different approach is taken as part of the Rain-
Forest approach by Gehrke et al. [13]. Here, a new data structure
called an AVC (Attribute-Value, Classlabel) group is used. An AVC
group for a decision tree node comprises AVC sets for all attributes.
For a given attribute and a node being processed, the AVC set sim-
ply records the count of occurrence of each class label for each
distinct value the attribute can take. Thus, it is essentially a class
histogram. The size of the AVC set for a given node and attribute is
proportional to the product of the number of distinct values of the
attribute and the number of distinct class labels.

3. STREAMING DATA PROBLEM
In this section, we focus on the problem of decision tree con-

struction on streaming data. We give a template of the algorithm,
which will be used as the basis for our presentation in the next three
sections. Moreover, we describe how sampling is used to achieve a
probabilistic bound on the quality of the tree that is constructed.

3.1 Algorithm Template

StreamTree ; Stream <>=
global ?&@BACA�@BD:DCEGFIHKJLAMJNAPOQF'RSOUT
local VSD:W1AYXZD:W1A1T
local ?&J\[^]_AIEGTOa`bVdcPe�efTZRSOg`bVdcPe�e&Th W1Wi;_@BD:DjEGFkRlOP=$T
while not ;mACno[4EqpN;kOK= and empty ;_RSOK=r=EI`s<St u\ACEG;v=GTXZD:W1AK`xwy] h�zCzM{}| p^;m@:D:DjEGF'Er=$T

if X~D:W1AU�lRlOh W1Wi;mX~D:W1A\t zCh no[N]�A\F'Er=GT
if XZD:W1A1t zCh E {}zj| p z E}DG[ wMDCXZW { E { DjX@BAMndDC��A1;mX~D:W1A\FkRlOP=$T
if XZD:W1A1t ACXZDCJNu\� zCh n�[^]�A z ;v=J z A z [^] { E | J^XZw$E { DCX�E}Dfu\AMELE}�^AY�$A z E z [^] { EGT;_XZD:W1A � FkX~D:W1A � =I`xXZD:W1A\t w$@BA h E}A1;q=GT@BAMndDC��A1;mX~D:W1A\FkRlOP=$Th W1W4;r;_XZD:W1A � FrXZD:W1A � =$FjOK=GT
while ACX~DjJ^u\� ndAMndDC@:pN;_RSO�FCOK=u\ACEG;_XZDjW\A1F:OP=$Th W1W4;_XZDjW\A1FGRSOK=GT

Figure 1: StreamTree Algorithm

We first list the issues in analyzing streaming data. The total size
of the data is typically much larger than the available memory. It
is not possible to store and re-read all data from memory. Thus,



a single pass algorithm is required, which also needs to meet the
real-time constraint, i.e. the computing time for each item should
be less than the interval between arrival times for two consecutive
items.

A key property that is required for analysis of streaming data is
that the data instances arriving follow an underlying distribution.
It implies that if we collect a specific interval of streaming data,
we can view them as a random sample taken from the underlying
distribution. It may be possible for a decision tree construction
algorithm to adjust the tree to changes in the distribution of data
instances in the stream [21], but we do not consider this possibility
here.

Figure 1 presents a high-level algorithm for decision tree con-
struction on streaming data. This algorithm forms the basis for our
presentation in the rest of the paper. The algorithm is based upon
two queues, � and ��� . ��� stands for active queue and denotes
the set of decision tree nodes that we are currently working on ex-
panding. � is the set of decision tree nodes that have not yet been
split, but are not currently being processed. This distinction is made
because actively processing each node requires additional memory.
For example, we may need to store the counts associated with each
distinct value of each attribute. Therefore, the set AQ is constructed
from the set � by including as many nodes as possible, till suffi-
cient memory is available. The algorithm is initiated by putting the
root of the decision tree in the set � .

The input to the algorithm is a stream of data instances, denoted
by � . We successively obtain a data instance

�
from this stream.

We determine the current decision tree node (denoted by
� A?735

) that
this data instance belongs to. If

� A6735
belongs to the set ��� , then

the data instance is added to the set of samples available to process
node. We then check if

� A6735
satisfies the stop condition (which

can only be applied statistically). If so,
� A?735

is removed from ��� .
Otherwise, we check if we now have sufficient information to split� A?735

. If so, the node is split, removed from ��� , and its two child
nodes are added to the set � . The algorithm terminates when both� and ��� are empty.

The algorithm, as presented here, is only different from the work
by Domingos and Hulten [10] in not assuming that all nodes at one
level of the tree can be processed simultaneously. The memory re-
quirements for processing a set of nodes is one of the issues we are
optimizing in our work. If the memory requirements for processing
a given node in the tree are reduced, more nodes can be fit into the
set ��� , and therefore, it is more likely that a given data instance
can be used towards partitioning a node.

Besides the memory requirements, this algorithm also exposes a
number of other issues in decision tree construction on streaming
data. As we can see, one crucial problem here is to decide when
we have sufficient samples available to make the splitting decision.
Another question is, what information needs to be stored from the
sample collected in order to make the splitting conditions. Simply
storing all samples is one, but not the only possibility. Computa-
tionally, yet another issue is how we efficiently examine all possible
splitting conditions associated with a node. Particularly, the num-
ber of distinct values associated with a numerical attribute can be
very large, and can make it computationally demanding to choose
the best split point.

3.2 Using Sampling
Here, we review the problem of selecting splitting predicate based

upon a sample. Our discussion assumes the use of entropy as the
gain function, though the approach can be applied to other func-
tions such as gini.

Let � be a sample taken from the dataset
�

. We focus on the gain

!�" associated with a potential split point
�

for a numerical attribute� � . If � � and � � are the fractions of data instances with class labels
1 and 2, respectively, � � and � � are the estimates computed using
the sample. Similarly, we have the definitions for � � 	 � �'� , � �' , ! " ,
and

� �-� 46A � > � � � .
We have,

! " � ! � � � 	 � �'� 	 � �' � � ��� � 46A � > � � �
� � � �
D � � �'� ����� � �'� � �
D � � �'� � ����� �
D � � �'� �$�
� �
D � � � � � � �' ����� � �' � �
D � � �' � ����� �
D � � �' �$�

The value of ! " serves as the estimate of of ! " . Note that we do
not need to compute

���-�
4?A � > � � � , since we are only interested in
the relative values of the gain values associated with different split
points.

Now, we consider the procedure to find the best split point using
the above estimate of gains. Let ! � � � � be the estimate of the best
gain that we could get from the attribute � � . Assuming there are *
attributes, we will use the attribute � � , such that

! � � � � � .-/10.1243 �$5 6 6 6 5 , 7:9 3 � 7 ! � � . �P,��
where � is a small positive number. The above condition (called the
statistical test) is used to infer that � � is likely to satisfy the original
test for choosing the best attribute, which is

! � � � ��, .-/\0.B2^3 �$5 6 6 6 5 , 7j9 3 � 7 ! � � . �
To describe our confidence of above statistical inference, a param-
eter � is used. � is the probability that the original test holds if the
statistical test holds, and should be as close to 1 as possible. � can
be viewed as a function of � and sample size 	 �
	 , i.e.� � H���� 	 	 �
	 �
Domingos and Hulten use the Hoeffding bound [19] to construct
this function. The specific formula they use is

�
� ��� � � ��� �
D��^�
D � � �$�

 " 	 �
	

where � is the spread of the gain function. In this context, where
there are two classes and entropy is used as the impurity function,� � 
 . In Section 5, we will describe an alternative approach,
which reduces the required sample size.

Based upon the probabilistic bound on the splitting condition for
each node, Domingos and Hulten derive the following result on
the quality of the resulting decision tree. This result is based on
the measurement of intensional disagreement. The intensional dis-
agreement � � between two decision trees

��� �
and

��� �
is the

probability that the path of an example through
��� �

will differ
from its path through

��� �
.

THEOREM 1. If � ��� is the tree produced by the algorithm
for streaming data with desired accuracy level � ,

�����
is the tree

produced by batch processing an infinite training sequence, and� is the leaf probability, i.e., the probability that a given example
reaches a leaf node at any given level of the decision tree, then

� C � � ��� ��� 	���� � G � �
D � � � �y�
where

� C � � ��� � � 	������ � G is the expected value of � � ��� � � 	 ����� �
taken over an infinite training sequence.



4. A NEW ALGORITHM FOR HANDLING
NUMERICAL ATTRIBUTES

In this section, we present our numerical interval pruning ap-
proach for making decision tree construction on streaming data
more memory and computation efficient.

4.1 Problems and Our Approach
One of the key problems in decision tree construction on stream-

ing data is that the memory and computational cost of storing and
processing the information required to obtain the best split gain
can be very high. For categorical attributes, the number of distinct
values is typically small, and therefore, the class histogram does
not require much memory. Similarly, searching for the best split
predicate is not expensive if number of candidate split conditions is
relatively small.

However, for numerical attributes with a large number of distinct
values, both memory and computational costs can be very high.
Many of the existing approaches for scalable, but multi-pass, de-
cision tree construction require a preprocessing phase in which at-
tribute lists for numerical attributes are sorted [25, 27]. Preprocess-
ing of data, in comparison, is not an option with streaming datasets,
and sorting during execution can be very expensive. Domingos and
Hulten have described and evaluated their one-pass algorithm fo-
cusing only on categorical attributes [10]. It is claimed that numer-
ical attributes can be processed by allowing predicates of the form
“ � � � � � . ”, for each distinct value � � . . This implies a very high
memory and computational overhead for determining the best split
point for a numerical attribute.

We have developed a Numerical Interval Pruning (NIP) approach
for addressing these problems. The basis of our approach is to
partition the range of a numerical attribute into intervals, and then
use statistical tests to prune these intervals. At any given time, an
interval is either pruned or intact. An interval is pruned if it does
not appear likely to include the split point. An intact interval is an
interval that has not been pruned. In our current work, we have
used equal-width intervals, i.e. the range of a numerical attribute is
divided into intervals of equal width.

In Section 2.3, we had discussed how we can either store sam-
ples, or create class histograms to have sufficient information to
determine the best split condition. In the numerical interval prun-
ing approach, we instead maintain the following sets for each node
that is being processed.

Small Class Histograms: This is primarily comprised of class his-
tograms for all categorical attributes. The number of distinct ele-
ments for a categorical attribute is not very large, and therefore, the
size of the class histogram for each attribute is quite small. In ad-
dition, we also add the class histogram for numerical attributes for
which the number of distinct values is below a threshold.

Concise Class Histograms: The range of numerical attributes which
have a large number of distinct elements in the dataset is divided
into intervals. For each interval of a numerical attribute, the con-
cise class histogram records the number of occurrences of instances
with each class label whose value of the numerical attribute is within
that interval.

Detailed Information: The detailed information for an interval can
be in one of the two formats, depending upon what is efficient. The
first format is class histogram for the samples which are within the
interval. When the number of samples is large and the number of
distinct values of a numerical attribute is relatively small, this for-
mat is more efficient. The second format is to simply maintain the
set of samples with each class label. It is not necessary to pro-

cess the detailed information in the pruned interval to get best split
point.

The advantage of this approach is that we do not need to process
detailed information associated with a pruned interval. This results
in a significant reduction in the execution time, but no loss of ac-
curacy. Further, as we will argue towards the end of this section,
we may not even store the detailed information associated with a
pruned interval. This further reduces the memory requirements,
but can result in a small loss of accuracy.

NIP-Classifier ; Node � , Stream <>=
while not zMh E {qzj| p z E}DG[ wyDjXZW { E { DjX ; �g=�

* Get Some Samples from Stream < * �� h n�[^]�A�� ` ;_< t u�AMEG;q=r=GTc�[NW h E}A � n h ]�] �K] h�zjz�� {}z EG;	� =GTc�[NW h E}A �KDCXZw {}z A �K] h�zCz�� {}z EG;	� =GTc�[NW h E}A 
>AME h\{ ]_ACW �BX | DC@:n h E { DjXI;��Y=$T�
* Find the best gain * �
u�
~` Find Best Gain(ClassHist) T�u�` c X��K@:J^X { XLu4;mu 
 F Concise ClassHist =$T�

* Split * �
if
� E h E {qz E { w h ]_]�p �8A z E � h1{ X ; �ui=� [^] { E VlD:W1A1; �a=$T�G@:A h�� T�
* Pruning * �

�K@:J^X { XLu^; �uiF Concise ClassHist =GT

Figure 2: NIP Algorithm for Numerical Attributes Handling

The main challenge in the algorithm is to effectively but correctly
prune the intervals. Over-pruning is a situation occurring when an
interval does not appear likely to include the split point after we
have analyzed a small sample, but could include the split point after
more information is made available. Under-pruning means that an
interval does not appear likely to include the split point but has
not yet been pruned. We refer to over-pruning and under-pruning
together as false pruning.

The pseudo-code for our Numerical Interval Pruning (NIP) algo-
rithm is presented in Figure 2. Here, after collecting some samples,
we use small class histograms, concise class histograms, and the
detailed information from intact intervals and get an estimate of
the best (highest) gain. This is denoted as ! 
 . Then, by using ! 
 ,
we unprune intervals that look promising to contain the best gain,
based upon the current sample set. The best gain �! can come from! 
 or a newly unpruned intervals. Then, by performing a statisti-
cal test, we check if we can now split this node. If not, we need
to collect more samples. Before that, however, we check if some
additional intervals can be pruned.

The rest of this section presents more technical details, the cor-
rectness, and the computational and memory cost optimizations.

4.2 Technical Details
In this subsection, we discuss the details of how pruning and

testing for false pruning are performed.
For our discussion here, we initially assume that we have pro-

cessed the entire dataset, and are trying to prune the space of po-
tential split points from the range of a numerical attribute. Assume
that ! is the best (highest) gain possible from any splitting condi-
tion associated with a node of the decision tree. Suppose C � � 	 � �	� � �
is the +�� � interval on the numerical attribute

!
. Let the class distri-



bution of the interval + be�� � � ���
�� 	 �
�� 	������ � " � �

where �
. � 	 D ��� � �

is the number of training records with the
class label

�
that fall into the interval + , and

�
is the total number of

class labels in the training data.
We want to determine if any point within this interval can provide

a higher gain than ! . For this, we need to determine the highest
possible value of gain from any point within this interval. For the
boundary point � � , we define the cumulative distribution function������ � � �

���� 	�������	G� " ��� �
where,

�
	� � �
� 9 ��
.
� � �

	. 	 D ��� � �

Here,
� 	� �

is the number of training records with the class label
�

such that their value of the numerical attribute under consideration
is less than � � . Similarly, for the boundary point � �	� � , we have�� � ����� � � �

�� � � �
�� 	�������	G� " � � � �

" � �
Now, consider any point

>
between � � and � �	� � . Let the cumu-

lative distribution function be���� � � �
�� 	�������	y� " � �

Clearly, the following property holds.
� �F	 D ��� �%�6	&� � �8� ���l� � � ����� ��� �

If we do not have any further information about the class distri-
bution of the training records in the interval, all points

>
satisfying

the above constraint need to be considered in determining the high-
est gain possible from within the interval C � � 	 � �	� � � . Formally, we
define the set

	
of possible internal points as all values within the

interval C � � 	 � �	� � � that satisfy the constraint � .
The number of points in the set

	
can be very large, making it

computationally demanding to determine the highest possible gain
from within the interval. However, we are helped by a well-known
mathematical result. To state this result, we define a set � , com-
prising of corner points within the interval. Formally,� � ��� 	 � � C � � 	 � �	� � G�� ��! "� � � + � H~+ 5�� � ��� �

� �F	 D �����%�6	 � � .  � � . � � ��# � � .  � � . � ����� � �
It is easy to see that the set � has 
 " points. Now, the follow-

ing result allows us to compute the highest possible gain from the
interval very efficiently.

LEMMA 1. Let H be a concave gain function. Let
	

be the set
of possible internal points of interval + , and � be the set of corner
points. Then

.-/10$ 2&% �*H�� �� $ �$� � .-/10 2&' �*H�� ��� �$�

The above lemma is derived from a general mathematical theo-
rem (see Magasarian [24]) and was also previously used by Gehrke
et al. in the BOAT approach [11]. Note that the gain functions
entropy and gini are concave functions.

By recording the frequency of intervals, computing gains at the
interval boundaries, and applying this lemma, we can compute the
upper bound

; �
of the gain possible from the interval. If we already

know the best gain ! , we can compare
; �

and ! . The interval can

contain the split point only if
; � , ! , and can be pruned if this is

not the case.
As described above, this method is useful only if we have already

scanned the entire dataset, know the value of the best gain ! as well
as the gains at the interval boundaries. However, we perform this
pruning after the sampling step, i.e., by examining only a fraction
of the training records. As we had described earlier in this section,
we use a sample and compute small and concise class histograms.
Thus, for numerical attributes with a large number of distinct val-
ues, we are processing the class frequencies for only the intervals,
and only using the sample. As defined above, ! is the best gain pos-
sible using the entire dataset and all possible split conditions. Now,
let �! be the best gain computed using the current sample set. Fur-
ther, let !�( be the best gain noted after using small class histograms,
concise class histograms and the detailed information from the in-
tact intervals. This is the value first computed by our algorithm.

We have,
! 
 � �!

This follows simply from the fact that ! 
 is computed from among
a subset of the split points that �! would be computed from.

Using the values of gain at interval boundaries, and using the
Lemma 1, we can estimate the upper bound on the gain possible
from a split point within a given interval + . We denote this value as
�; � , and is an estimate (using the sample) of the value

; �
that could

be computed using the entire dataset.
We focus on the function� � ! �+; �

If we have computed ! and
; �

using the entire dataset, we can prune
an interval + if � � E . However, using sampling, we can only
have estimate of this function. Suppose, we consider

�� � �! � �; �
Based upon our discussion in Section 3.2, if �� , � , then with
probability � , we have � � E , where, � , � , and the sample size
are related through a function. Thus, pruning using the condition�� � � gives us a probabilistic bound on the accuracy of pruning,
i.e., we could still prune incorrectly, but the probability is low and
bounded.

Further, since we do not even have the value of �! , we use ! 
 .
Since ! 
 � �! , we have

� ! 
 � �;-� � � � �*) � �! � �;-� � � �
Thus, after the first step, we perform statistical test using the con-
dition ! 
 � �; � � � for all of the pruned intervals + . We call
an interval over-pruned if it is pruned using the statistical estimates
described above from a small sample, but after the more data in-
stances are available, it turns out not to be the case. Note that to be
able to unprune intervals, we must not discard the detailed infor-
mation associated with an interval that may be marked as pruned.
Thus, the algorithm presented so far only reduces the computa-
tional costs, but not the memory costs.

Next, we briefly discuss how we test for under-pruning. The
algorithm simply computes �; � for intact intervals to see if the fol-
lowing condition holds:

� �! � �;-� � � �
If it is true, it means that this interval is not likely to have the best
split point and can be pruned.

By combining ! 
 with the detailed information from the over-
pruned intervals, we get a new best gain �! . We know that this is the
best gain possible from looking at the current sample size. This is



because if the pruned intervals could not achieve the gain ! 
 � � ,
they cannot achieve the gain �! � � either.

Suppose, we decide to partition a node using a sample � and the
current best gain �! . This gain is identical to the best gain that an
algorithm not performing any pruning would achieve by using the
same sample set, as we formulate through the following theorem.

THEOREM 2. The best gain �! computed using our numerical
interval pruning approach is the same as the one computed by an
algorithm that uses full class histograms, provided the two algo-
rithms use the same sample set.

Proof:This follows from our discussion above. �
Thus, the numerical interval pruning approach we have presented

does not limit accuracy in any way, as compared to any other algo-
rithm that uses samples.

4.3 Computational and Memory Costs and Op-
timization

Initially, let us focus on the computational costs associated with
the algorithm here. As a new data instance is received we check if
it is associated with a node that is being processed. If so, a number
of update operations are performed. The processing time, however,
is a constant. The dominant computational part is when we want
to determine the best split condition. Unlike in a batch algorithm,
this step may have to repeated several times, till we have a suffi-
cient statistical confidence to perform the split. This step requires
processing the small and concise histograms, and the detailed in-
formation associated with intact intervals. Our experiments have
determined that the main cost is associated with the processing of
detailed information. Thus, pruning of intervals is crucial for re-
ducing this cost.

In the algorithm presented here, unpruning intervals is a require-
ment for provably achieving the same accuracy as in an algorithm
that does not do any pruning. Therefore, we need to maintain and
continue to update the detailed information associated with pruned
intervals. However, the probability of over-pruning can be shown
to be very small. Therefore, we can modify our original algorithm
to not store the detailed information associated with pruned inter-
vals. This optimization has two benefits. First, the memory require-
ments are reduced significantly. Second, we can further save on the
computational costs by not having to update detailed information
associated with a pruned interval.

5. A NEW SAMPLING APPROACH
This section introduces a new approach for choosing the sam-

ple size. As compared to the Hoeffding inequality [19] based ap-
proach used by Domingos and Hulten [10], our method allows the
same probabilistic accuracy bound to be achieved using signifi-
cantly smaller sample sizes.

5.1 Exploiting Gain Functions
As we have mentioned previously, the one-pass decision tree

construction algorithm by Domingos and Hulten uses Hoeffding
inequality to relate the bound on the accuracy � , the probability � ,
and the sample size 	 � 	 . Hoeffding bound based result is indepen-
dent of the distribution of the data instances in the dataset. Here,
we derive another approach, which is still independent of the dis-
tribution of the data instances, but uses properties of gain functions
like entropy and gini.

We use the following theorem, also known as the multivariant
delta result [5]. Here, the symbol

� � ��� denotes the expected value
of a variable � ,

$�A�� � � 	�> � denotes the covariance of the two vari-
ables � and

>
, and

� �0E 	�� � � is the normal distribution with the

mean 0 and the variance (or the square of the standard deviation)� �
.

THEOREM 3. (Multivariate Delta Method) Let
! ��	�������	�!��

be
a random sample. Let

! � �L! �*� 	�������	�! $ � . Further, let
� � ! � . � �� � and

$�A�� � ! � . 	�! . 	 � �	� � . . Let
! �

be the mean of
! � � 	
! �<� 	�������	�! �
�

and let
�� � � � � 	�������	 � $ � . For a given function ! with continuous

first partial derivatives, we have

! � ! ��	�������	 ! $ � � ! � �� � M � �0E 	��
� � � �

where,

� � � � � � � . � ! � �� �� � �
�
� ! � �� �� � .

Proof:See the reference [5], for example. �
Below, we show the application of the above result on the gain

function entropy. This could similarly be applied on the gain func-
tion gini, but we do not present the details here.

In applying the above result on the entropy function, we consider
the following. The function ! is a function of three measurements,� � , � �'� , and � �' . The three values or measurements are indepen-
dent of each other, i.e. the covariance

$�A�� � � 	
> � is 0 if � ��N>
.

LEMMA 2. Let
�

be the sample size of � ,
�

be the normal
distribution. Then, for the entropy function ! , we have

! � � ! � � � 	 � �'� 	 � �' � M � � ! � ��� 	��
�� � � �

where,

� �� � �
� !
� � � �

�
�G� � �
D � � � �

� �
� !
� � �'� �

�
�G� �'� �
D � � �'� � � �

� !
� � �' �

�
�$� �' �
D � � �' �

Proof:The proof follows from the application of the multivari-
ate delta result (presented above), and the observation that the first
derivatives for entropy are continuous functions (details are omitted
here). �

Next, we focus on the following problem. Assume there is a
point

>
belonging to the attribute

! . 	 + �� �
. We need to determine

if ! � � ! � or ! � � ! � , using just the sample � . Because
>

also
satisfies the Lemma 2, and � and

>
are independent, we have

! � M � � ! �/	��
�� � � �

Therefore,

! � � ! � M � � ! � � ! � 	 � �
�� �
� �� � � � �

This leads to the following lemma.

LEMMA 3. Let � � ��� � � � � �� ��� ��� �
where

� �
is the �
D � � � th percentile of the standard normal distri-

bution. If ! � � ! � ,�� � , then with probability � , we have ! � , ! � .
If ! � � ! � � � � � , then with probability � , we have ! � , ! � .

Proof:The above lemma follows from the application of well known
results on simultaneous statistical inference [20]. �

We call the above test the Normal test.



5.2 Sample Size Problem
Once a desired level of accuracy � is chosen, the key issue with

the performance of a one-pass algorithm is the sample size selec-
tion problem, i.e. how large a sample is needed to find the best split
point with the probability � . Specifically, we are interested in the
sample size that could separate ! ��� and ! � � , where ��� and ��� are
the points that maximize the gain of split function for the top two
attributes

! � and
! � .

Let ! ���l� ! � � � � . Thus, by normal distribution, the required
sample size is

� � � � �� � � �� ��� ��� �
The required sample size from Hoeffding bound is

� � � � � � � �
D �N�
D � � �$�

 � �

Comparing the above two equations, we have the following re-
sult.

THEOREM 4. The sample size required using the normal test
will always be less or equal to the sample size required for the
Hoeffding test, i.e.,

� � � � �
Proof:This follows from comparing the two equations above. �

6. EXPERIMENTAL RESULTS
In this section, we report on a series of experiments designed

to evaluate the efficacy and performance of our new techniques.
Particularly, we are interested in evaluating 1) the advantages of
using Numerical Interval Pruning (NIP), and 2) the advantages of
using normal distribution of the estimate of entropy function, as
compared to Hoeffding’s bound.

The datasets we used for our experiments were generated using a
tool described by Agrawal et al. [1]. There were two reasons for us-
ing these datasets. First, these datasets have been widely used for
evaluating a number of existing efforts on scalable decision con-
struction [13, 11, 25, 27]. Second, the only real datasets that we are
aware of are quite small in size, and therefore, were not suitable
for our experiments. The datasets we generated had 10 million
training records, each with 6 numerical attributes and 3 categorical
attributes. We used the functions 1, 6, and 7 for our experiments.
For each of these functions, we generated separate datasets with
0%, 2%, 4%, 6%, 8%, and 10% noise.

In growing the decision tree, our implementation did not expand
a node any further if one of the following conditions were true:
95% or greater fraction of the training records had the same class
label, the depth of the node was 12, or less than 1% of all training
records were associated with the node. For each node, we start
evaluation for finding split condition after at least 10,000 records
associated with the node had been read. Further, we reevaluated
each node every time after another 5,000 records had been read.
The range of each numerical attribute was divided into 500 equal
sized intervals. The value of � used in our experiments was D �
D�E 9�� . All our experiments were conducted on a 700 MHz Intel
Pentium III machine, with 1 GB of SDRAM and a 18 GB disk with
15000 rpm Ultra 160 SCSI drive.

The results from experiments designed to evaluate the NIP ap-
proach and the benefits of using normal distribution of the estimate
of entropy function are reported together. We created 4 different
versions, all based upon the basic StreamTree algorithm presented
in Figure 1. Sample-H is the version that uses Hoeffding bound,

and stores samples to evaluate candidate split conditions.
ClassHist-H uses Hoeffding bound and creates full class his-
tograms. NIP-H and NIP-N use numerical interval pruning, with
Hoeffding bound and the normal distribution of entropy function,
respectively. The version of NIP that we implemented and eval-
uated creates intervals after 10,000 samples have been read for
a node, performs interval pruning, and then deletes the samples.
Thus, unpruning is not an option here, and therefore, the accuracy
can be lower than an approach that uses full class histograms. Our
implementation used a memory bound of 60 MB for all four ver-
sions. Consistent with what was reported for the implementation
of Domingos and Hulten, we performed attribute pruning, i.e., did
not further consider an attribute that appeared to show poor gains
after some samples were analyzed.

Figure 3 shows the average number of nodes in the decision tree
generated using functions 1, 6, and 7, and using noise levels of
0%, 2%, 4%, 6%, 8%, and 10%, respectively. This number does
not change in any significant way over the four different versions
we experimented with. As expected, the size of the decision tree
increases with the level of noise in data.

One interesting question is, what inaccuracy may be introduced
by our version of NIP-H, since it does not have the option of un-
pruning. Figure 4 shows the increase in inaccuracy for NIP-H,
as compared to the average of inaccuracy from Sample-H and
ClassHist-H. As can be seen from the figure, there is no sig-
nificant chance in inaccuracy. Note that whenever a different set
of data instances are used to split a node, the computed inaccuracy
value can be different. Similarly, Figure 5 shows the increase in
inaccuracy for NIP-N, as compared to the average of inaccuracy
from Sample-H and ClassHist-H. Again, there is no signifi-
cant change, and the average value of the difference is very close to
zero.

Figures 6, 7, and 8 show the execution times for decision tree
construction with the four versions and different levels of noise, for
functions 1, 6, and 7, respectively. Through-out, we will focus on
comparing the performance of NIP-N and NIP-H with the better
one between Sample-H and ClassHist-H, which we denote
by existing.

Initially, we focus on functions 6 and 7. For function 6, the exe-
cution times of NIP-H are between 40% and 70% of the execution
time of existing. Moreover, NIP-N further reduces the exe-
cution time by between 7% and 80%. For function 7, the execu-
tion times with NIP-H are between 35% and 75% of existing.
NIP-N further reduces the execution times by between 3% and
65%. Results are relatively mixed from using the function 1. Our
best version NIP-N is significantly better in 3 of the 6 cases, but
quite comparable (i.e. either marginally better or worse) in other
3 cases. This is because with this function, the decision to choose
the best split condition can usually be made by examining only a
small number of samples. Therefore, the use of numerical interval
pruning does not give better results in many cases.

We next compare these four version using two metrics we con-
sider important. These metrics are, total instances read (TIR), and
instances actively processed (IAP). TIR is the number of samples
or data instances that are read before the decision tree converges.
When a sample is read, it cannot always be used as part of the al-
gorithm. This is because it may be assigned to a node that does
not need to be expanded any further, or is not being processed cur-
rently because of memory considerations. Therefore, we measure
IAP as the number of data instances that were used for evaluating
candidate split conditions. Figures 9, 10, and 11 show TIR for the
four versions and for functions 1, 6, and 7, respectively. The use
of class histograms results in high memory requirements, which
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Figure 5: Inaccuracy with Normal
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Figure 8: Running Time: F7

results in very high values of TIR. In all cases, the values of TIR
for Sample-H and NIP-H are almost identical. This shows the
main performance advantage of the NIP approach comes because
of the reduction in computational costs, and not because of mem-
ory. Moreover, the reduction in execution time with the use of NIP
approach shown earlier is actually a reduction in processing time
per data instance, which is an important issue in processing of data
streams. Comparison between NIP-H and NIP-N versions shows
the benefits of exploiting the normal distribution of the estimated
entropy function. The reduction in TIR is between 8% and 40%
for function 1, between 18% and 60% for function 6, and between
16% and 55% for function 7. Figures 12, 13, and 14 show the
values of IAP for functions 1, 6, and 7, respectively. The three
versions, Sample-H, ClassHist-H, and NIP-H have almost
identical values of IAP. This is because they are using the same sta-
tistical test to make decisions. The reduction in IAP for the NIP-N
version is quite similar to the reduction seen in the values of TIR
for this version.

7. RELATED WORK
Mining and managing streaming data has received significant at-

tention in recent years. Our work directly builds on top of Domin-
gos and Hulten’s work on decision tree construction on streaming
data [10]. Srikant and Agrawal [28] and Toivonen [29] have fo-
cused on the use of sampling for mining frequent itemsets. More
recently, Yang et al. have used sampling to reduce the number
scans of the dataset [31]. Sampling based approaches have also
been studied for efficiently constructing histograms [16, 8] and for
estimating the number of distinct values of an attribute [18].

Before the current focus on streaming data, sampling has been
applied for decision tree construction on large datasets. Carlett [6]
used sequential samples called peeholes to split nodes. Musick et
al. [26] empirically observed that the attribute gain distribution was
close to normal distribution and used the digamma function to ap-
proximate it. Gratch’s sequential ID3 [15] uses Multiple compar-
ison Sequential Probability Ratio Test (McSPRT) for attribute se-
lection. Gratch is also the first one to use delta method to describe
the distribution of attribute gain. Our method is different in that
we apply the normal distribution to compare the gain difference
between two attributes. More recently, Chauchat and Rakotoma-
lala [7] proposed using a statistical significance test to find the best
split.

Our work is also related to the existing work on scalable deci-
sion tree construction, particularly, BOAT [11] and CLOUDS [2].
BOAT uses bootstrapping to construct an approximate tree on a
fixed sized sample and then scans the entire dataset to build an ex-
act decision tree. Some of our ideas on interval pruning are derived
from this approach. CLOUDS [2] also partitions the range of a nu-
merical attribute into intervals. However, it requires two passes on
the entire data to partition nodes at one level of the tree, and fur-
ther, does not guarantee the same best gain. In our recent work,
we have applied interval pruning similar to the NIP approach pre-
sented in this paper for making a multi-pass parallel decision tree
construction algorithm more communication efficient [22].

8. CONCLUSIONS AND FUTURE WORK
This paper has focused on a critical issue arising in decision tree

construction on streaming data, i.e., the space and time efficiency.
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Figure 11: TIR: F7
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Figure 14: IAP: F7

This includes processing time per data instance, memory require-
ments (or the number of data instances required), and the total time
required for constructing the decision tree. We have developed and
evaluated two techniques, numerical interval pruning and exploit-
ing the normal distribution property of the estimated value of the
gain function.

In the future, we will like to expand our work in many directions.
First, we want to consider other ways of creating intervals, besides
the equal-width intervals we are currently using. Second, we want
to extend our work to drifting data streams [21]. Another area will
be to apply the ideas behind our normal test to other mining prob-
lems, such as k-means and EM clustering.
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