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Abstract

Data cube construction is a commonly used operation in data warehouses. Because of the volume of
data that is stored and analyzed in a data warehouse and the amount of computation involved in data cube
construction, it is natural to consider parallel machines for this operation.

This paper addresses a number of algorithmic issues in parallel data cube construction. First, we present
an aggregation tree for sequential (and parallel) data cube construction, which has minimally bounded
memory requirements. An aggregation tree is parameterized by the ordering of dimensions. We present a
parallel algorithm based upon the aggregation tree. We analyze the interprocessor communication volume
and construct a closed form expression for it. We prove that the same ordering of the dimensions in the
aggregation tree minimizes both the computational and communication requirements. We also describe a
method for partitioning the initial array and prove that it minimizes the communication volume. Finally, in
the cases when memory may be a bottleneck, we describe how tiling can help scale sequential and parallel
data cube construction.

Experimental results from implementation of our algorithms on a cluster of workstations show the effec-
tiveness of our algorithms and validate our theoretical results.
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1 Introduction

Analysis on large datasets is increasingly guiding business decisions. Retail chains, insurance companies,
and telecommunication companies are some of the examples of organizations that have created very
large datasets for their decision support systems. A system storing and managing such datasets is
typically referred to as a data warehouse and the analysis performed is referred to as On Line Analytical
Processing (OLAP).

Computing multiple related group-bys and aggregates is one of the core operations in OLAP applica-
tions. Jim Gray has proposed the cube operator, which computes group-by aggregations over all possible
subsets of the specified dimensions [9]. When datasets are stored as (possibly sparse) arrays, data cube
construction involves computing aggregates for all values across all possible subsets of dimensions. If
the original (or initial) dataset is an n-dimensional array, the data cube includes C;;, m-dimensional

arrays, for 0 < m < n. Developing sequential algorithms for constructing data cubes is a well-studied



problem [16, 21, 19]. Data cube construction is a compute and data intensive problem. Therefore, it is
natural to use parallel computers for data cube construction. There is only a limited body of work on
parallel data cube construction [4, 7, 8].

This paper focuses on a number of algorithmic issues in parallel (and sequential) data cube con-
struction. To motivate the issues we address, we discuss the problem of data cube construction in more

details below.

1.1 Data Cube Construction
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A B C
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Figure 1: Lattice for data cube construction. Edges with arrows show the minimal spanning tree when
Al < B <[C|

Organizations often find it convenient to express facts as elements of a (possibly sparse) multidimen-
sional array. For example, a retail chain may store sales information using a three-dimensional dataset,
with item, branch, and time being the three dimensions. An element of the array depicts the quantity
of the particular item sold, at the particular branch, and during the particular time-period.

In data warehouses, typical queries can be viewed as group-by operations on a multidimensional
dataset. For example, a user may be interested in finding sales of a particular item at a particular
branch over a long duration of time, or all sales of all items at all branches for a given time-period.
The former involves performing an aggregation along the time dimension, whereas the latter involves
aggregations along the item and the branch dimensions.

To provide fast response to the users, a data warehouse computes aggregated values for all com-
bination of values. If the original dataset is n dimensional, this implies computing and storing "C,,

n

m-dimensional arrays, for 0 < m < n. 'm 1s the standard combinatorics function, which is defined
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For simplicity, assume that the original dataset is three-dimensional. Let the three dimensions be A,
B, and C. The sizes along these dimensions are |A|, |B|, |C|, respectively. Without loss of generality,
we assume that |A| < |B| < |C|. We denote the original array by ABC. Then, data cube construction
involves computing arrays AB, BC, AC, A, B, C, and a scalar value all. As an example, the array AB
has the size |A| x |B].

We now list the four major issues that arise in data cube construction, using the example above.

Cache and Memory Reuse: Consider the computation of AB, AC, and BC. These three arrays
need to be computed from the initial array ABC. When the array ABC is disk-resident, performance is
significantly improved if each portion of the array is read only once. After reading a portion or chunk
of the array, corresponding portions of AB, AC, and BC can be updated simultaneously. Even if the
array ABC is in main memory, better cache reuse is facilitated by updating portions of AB, AC, and
BC simultaneously. The same issue applies at later stages in data cube construction, e.g., in computing
A and B from AB.
Using minimal parents: In our example, the arrays AB, BC, and AC need to be computed from
ABC, by aggregating values along the dimensions C, A, and B, respectively. However, the array A can
be computed from either AB or AC, by aggregating along dimensions B or C. Because |B| < |C|, it
requires less computation to compute A from AB. Therefore, AB is refered to as the minimal parent of
A.

A lattice can be used to denote the options available for computing each array within the cube. This
lattice is shown in Figure 1. A data cube construction algorithm chooses a spanning tree of the lattice
shown in the figure. The overall computation involved in the construction of the cube is minimized if
each array is constructed from the minimal parent. Thus, the selection of a minimal spanning tree with
minimal parents for each node is one of the important considerations in the design of a sequential (or
parallel) data cube construction algorithm.

Memory Management: In data cube construction, not only the input datasets are large, but the
output produced can be large also. Consider the data cube construction using the minimal spanning
tree shown in Figure 1. Sufficient main memory may not be available to hold the arrays AB, AC, BC,
A, B, and C at all times. If a portion of the array AB is written to the disk, it may have to be read
again for computing A and B. However, if a portion of the array BC is written back, it may not have
to be read again.

Communication Volume: Consider the computation of AB, AC, and BC from ABC. Suppose we
assume that the dataset will be partitioning along a single dimension. Then, the communication volume
required when the dataset is partitioned along the dimensions A, B, or C is |B| x |C|, |4| x |C], and

|A| x |B|, respectively. If |A|] < |B| < |C|, then the minimal communication volume is achieved by



partitioning along the dimension C.
High communication volume can easily limit parallel performance. It is important to minimize com-
munication volume for the entire data cube construction process, possibly by considering partitioning

along multiple dimensions.

1.2 Summary of Contributions

The main contributions of this paper can be summarized as follows.

e We have developed a data-structure called aggregation tree, which ensures maximal cache and
memory reuse in data cube construction. Moreover, we show that the size of the intermediate
results that need to be held in main memory are bounded when a data cube is constructed by a

right to left, depth-first traversal of the aggregation tree.

e We present a parallel algorithm for data cube construction. We develop a closed form expression
for the communication volume required for parallel data cube construction using the aggregation

tree.

e The aggregation tree is parameterized by the ordering of dimensions. If the original array is n-
dimensional, there are n! instantiations of the aggregation tree. We show that the same ordering of
the dimensions ensures that each array is computed from its minimal parent, as well as minimizes

the communication volume.

e The communication volume is further dependent upon the partitioning of the original array be-
tween the processors. We have developed an algorithm for partitioning the array. We show that

our approach minimizes the interprocessor communication volume.

e We present a tiling based approach for further scaling sequential and parallel data cube con-
struction, in the cases when the available main memory is not sufficient for holding intermediate

results.

e We have implemented our parallel algorithm on a cluster of workstations. We present experimental
results that validate our theoretical results on partitioning. We show the our algorithm achieves
high parallel efficiency in most cases, with the only exception being sparse, high-dimensional

datasets with small dimension sizes.

The rest of the paper is organized as follows. We briefly summarize the existing efforts in this area
in Section 2. Our aggregation tree is introduced in Section 3. The same section also establishes the key
properties of this data-structure. A parallel data cube construction algorithm that uses the aggregation

tree is described in Section 4. We also analyze the communication volume in this section. Selecting
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the ordering of the dimensions and partitioning between the processors are addressed in Section 5. In
Section 6, we describe the use of tiling to scale data cube construction when memory requirements
exceed available memory. Experimental results for evaluating our algorithms are presented in Section 7.

We conclude in Section 8.

2 Related Work

Since Jim Gray [9] proposed the data cube operator, techniques for data cube construction have been
extensively studied for both relational databases [16, 15] and multi-dimensional datasets [21, 19]. Our
work belongs to the latter group. Zhao et. al [21] use MMST (Minimum Memory Spanning Tree) with
optimal dimension order to reduce memory requirements in sequential data cube construction. However,
their method requires frequent write operation to the disks. In comparison, our approach involves the
use of aggregation tree to bound the total memory requirements, without requiring frequent writing
to the disks. In addition, we have focused on parallelization, including ordering of dimensions and
partitioning to minimize communication volume. Tam [19] uses MNST (Minimum Number Spanning
Tree) to reduce computing cost, with ideas some-what similar to our prefix tree. However, this method
also requires frequent writing back to disks. Neither Zhao’s nor Tam’s approaches have been parallelized,
and we believe that they will be difficult to parallelize because of the need for frequent writing to the
disks.

Goil et. al [7, 8] developed a framework Parsimony, which included support for data storage and
data partitioning of multi-dimensional arrays, as well as algorithms for aggregations on dense and
sparse chunks, as required for computing datacube and related operations in parallel. They did not
suggest a particular algorithm for parallel data cube construction, instead, developed basic functionality
required for implementation of any algorithm. In comparison, our work includes new data structures and
algorithms, which have associated concrete results on minimizing memory requirements, communication
volume, and partitioning.

Recently, Dehne et. al [4] have studied the problem of parallelizing data cube. They focus on a
shared-disk model where all processors access data from a common set of disks. Because there is no
need to partition the data-set, they can partition the tree. In comparison, our work focuses on the
shared-nothing model, which we believe is also more commonly used in practice. Their effort does not
consider the memory requirements issue either.

There have also been extensive research on partial materialization of a data cube [14, 13, 11]. Al-
though our current research has concentrated on complete data cube construction, we believe that the
techniques we will present here could form the basis for work on partial data cube construction. In the

future, we will like to apply our results on bounded memory requirements and communication volume



to partial materialization.

Similarly, many recent efforts have focused on making cube construction process more efficient,
either by creating a compressed structure in main memory, computing a compressed cube, or both. An
excellent summarization of this work is available from Feng et al. [5]. Some of the prominent efforts
are as follows. The Bottom-Up Computation (BUC) approach especially exploits the sparsity of the
data [1]. Han et al. have designed a data structure called the H-Tree, in which the input dataset is
compressed by prefix sharing [10]. Sismanis et al. use CUBEtree to compress the full cube in memory by
utilizing prefix sharing and suffix coalescing [17]. The Range CUBE approach exploits data correlation
to reduce both the computation time and the output I/O time [5]. Our parallelization work currently
only considers the base algorithms for data cube construction, where neither the input or output is
compressed.

Many aspects of parallel data warehouses have been researched. Garcia-Molina et al. [6] and Datta
et al. [3] initially made the case for supporting data warehouses on parallel environments. Stohr et
al. considered the problem of data allocation in relational data warehouses which are based on star
schema and reside on shared disk parallel systems [18]. In comparison, our focus is on multi-dimensional

datasets, and shared nothing systems.

3 Spanning Trees for Cube Construction

This section introduces a data-structure that we refer to as the aggregation tree. An aggregation tree is
parameterized with the ordering of the dimensions. For every unique ordering between the dimensions,
the corresponding aggregation tree represents a spanning tree of the data cube lattice we had described
earlier. Aggregation tree has the property that it bounds the total memory requirements for the data
cube construction process.

To introduce the aggregation tree, we initially review prefix tree, which is a well-known data-
structure [2].

Consider a set X = {1,2,...,n}. Let p(X) be the power set of X.
Definition 1 L(n) is a power set lattice (V, E) such that:

e The set of nodes V is identical to the power set p(X).

o The set of edges E denote the immediate superset relationship between elements of the power set,

i.e, if r € p(X) and s € p(X), r = s U {i}, and i ¢ s, then (r,s) € E.

A prefix tree P(n) is a spanning tree of the power set lattice L(n). It is defined as follows:

Definition 2 Given a set X = {1,2,...,n}, a prefiz tree P(n) is defined as follows:
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Figure 2: Power Set Lattice (a), Prefix Tree (b), and Aggregation Tree (c) for n = 3

(a) ¢ is the root of the tree.
(b) The set of nodes of the tree is identical to the power set p(X).

(c) A node {z1,z2,...,Tym}, wherem < m,andl <z1 <z9<...< Ty <n, hasn — z,, children.
These children, ordered from left to the right are, {x1, %2, ..., tmU{xm+1}, ..., {z1, T2, ..., T }U

{n}.

Given a prefix tree P(n), the corresponding aggregation tree A(n) is constructed by complementing
every node in P(n) with respect to the set X. Formally,
Definition 3 Given a set X = {1,2,...,n} and the prefix tree P(n) as defined earlier, an aggregation
tree A(n) is defined as follows:

(a) If v is a node in P(n), then there is a node r' in A(n), such that ' = X — r.

(b) If a node v has a child s in P(n), then the node v’ in A(n) has a child s'.

Figure 2 shows the power set lattice, prefix tree and the aggregation tree for n = 3.

Since an aggregation tree is a spanning tree of the data cube lattice, it can be used for data cube
construction. We next present an algorithm that uses the aggregation tree and has minimally bounded
memory requirements.

Figure 3 shows this sequential algorithm. Suppose we are computing data cube over n dimensions
which are denoted by Di,Ds,...,D,. The data cube construction algorithm starts by invoking the
function FEwvaluate for the root of the aggregation tree.

When the function Ewvaluate is invoked for a node [, all children of [ in the aggregation tree are
evaluated. This ensures maximal cache and memory reuse, since no portion of the input dataset or an

intermediate result needs to be processed more than once. After computing all children of a node, the



Construct-Cube(D1,Da, ..., Dy)

Evaluate({D1, Ds,...,Dy})

}

Evaluate(l)
{
Compute all children of [
For-each children r from right to left
If r has no children
Write-back to the disk
Else Evaluate(r)
Write-back ! to the disk

}

Figure 3: Sequential Data Cube Construction Using the Aggregation Tree

algorithm progresses in a depth-first fashion, starting with the right-most child. An array is written
back to the disk only if it is not going to be used for computing another result. Thus, the only disk
traffic in this algorithm is the reading of the original input array, and writing each output (or computed)
array once. Moreover, each array is written once in its entirety. Therefore, frequent accesses to the
disks are not required.

The depth-first traversal, starting from the right-most child in the aggregation tree, creates a bound
on the total memory requirements for storing the intermediate results. Consider data cube construction
starting from a three dimensional array ABC, where the sizes of the three dimensions are |A|, |B|, and
|C|, respectively. After the three children of the root of the aggregation tree are computed, the memory
requirements for holding them in main memory are M = |A| x |B| + |A4| x |C| + |B| x |C|. The
design of the aggregation tree and our algorithm ensure that the total memory requirements for holding
output arrays during the entire data cube construction process are bounded by M. The reason is as
follows. Suppose the ordering between the three dimensions is C, B, A. After the first step, BC can be
written back. Then, the node AC is used for computing the array C. Since |C| < |B| x |C|, the memory
requirements do not increase above the factor M. After computing C, both AC and C can be written
back. Then, A and B are computing from AB. Since |[A] < |A| x |C| and |B| < |B| x |C], the total
memory requirements again do not increase beyond M.

This result generalizes to an arbitrary number of dimensions, as we prove below.

Theorem 1 Consider an original n dimensional array D1, Da, ..., D, where the size of the dimension
D; is |D;|. The total memory requirement for holding the results in data cube construction using the

algorithm in Figure 8 are bounded by
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Figure 4: A Snapshot of the Prefix Tree

Proof:Let A(n) be the aggregation tree used for data cube construction. Let P(n) be the corre-
sponding prefix tree. A snapshot of the aggregation tree comprises nodes that have been computed
and have not yet been written to the disks. In other words, it includes all arrays that need to be held
in main memory. Let A’(n) be the snapshot of the aggregation tree any given time and let P'(n) be the
corresponding snapshot of the prefix tree.

A snapshot of the prefix tree is shown in Figure 4. All possible snapshots during data cube con-
struction are either captured by this figure, for a choice of y1,¥2,...,Ym, where 1 < m < n and
1<y1 <yo<...<Ym-1 <Ym =n, or are a subset of a snapshot captured by this figure.

Consider a node {y1,y2,...,¥:,¥i + k} in the prefix tree. Then the corresponding node in the
aggregation tree is
{z1,29,... ,xn,(H_l)}, where z; # y1,v2,...,%;, ¥ + k. The memory requirement for this node in the

aggregation tree is
n

II D

J=LI#Y1,Y2;--¥iYitk

The total memory requirements for holding the results, (i.e. not including the initial n-dimensional

array) for any snapshot captured in Figure 4 will be

Y1 n Y2 n n n
SOII i)y + > II D)+ o+ >« II 1D;1)
1=% j=1,j#i 1=y1 j=1,j7#0,57#Y1 1=Ym—1 J=1,j#%,j7AY1,Y2,--Ym—1



The above quantity is less than or equal to

n n
SCTIT 1Dsl1)
i=i j=1,j7

The above bound is an important property of the aggregation tree. It further turns out that no other
spanning tree results in lower memory requirements, as long as the algorithm does maximal cache and
memory reuse, and does not write-back portions of the resulting arrays to the disks.

Theorem 2 The memory requirements for holding the results during data cube construction using any

spanning tree and algorithm are at least

n

SO Il

i=1  j=1,j#i
provided that the algorithm does mazimal cache and memory reuse and does not write-back portions of
the computed arrays to the disks.
Proof:To ensure maximal cache and memory reuse, the algorithm must compute all first level nodes
in the data cube lattice from the root node simultaneously. The root node in the data cube lattice,
{1,2,...,n} has n children, which can be denoted by ci,co,...,c,, where, ¢; = {j|lj =1,2,...,n,5 #

i}. The memory requirements for holding the n corresponding arrays are

n

SOOI sl

i=1  j=1,j#i

In practice, data cube construction algorithms cannot always hold all elements of computed arrays

in the main memory at any given time. For example, the factor

n n

M= (1T Ipl)

i=1  j=1,j#i
can exceed the available main memory. In prior work on data cube construction, two approaches have
been proposed for such cases. In the first approach, an element of an array is written back to the disks
as soon as the element’s final value has been computed and is not required for further computations [21].
The second approach is based upon tiling [20]. Consider m arrays that are computed from the same
parent. These m arrays are divided into tiles, such that each tile fits in the main memory. Tiles are
allocated and computed one at a time.

An obvious question is, “what is the significance of aggregation tree when the factor M exceeds the
available main memory?”. By having a bound on the total memory requirements, the aggregation
tree minimizes the number of tiles that are required, therefore, minimizing the total I/O traffic. More
detailed examination of tiling with aggregation tree is discussed in Section 6.

Because of aggregation tree’s minimally bounded memory requirements while ensuring maximal cache
and memory reuse, it appears to be promising for parallel data cube construction also. We examine the

use of aggregation tree for parallel data cube construction in the next section.
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4 Parallel Data Cube Construction Using the Aggregation Tree

Construct_Cube(D1, Ds, ..., D)

Evaluate({D1, D>, ...,Dy,}) on each processor

}

Evaluate(l)
{
Locally aggregate all children of [
Forall children r from right to left
Let ’I“’ = X-r = {Di17---)Dim}
If the processor is the lead processor along D;1,. .., Dim
Communicate with other processors to finalize portion of r
If r has no children
Write-back the portion to the disk
Else Evaluate(r)
Write-back I to the disk

}

Figure 5: Parallel Data Cube Construction Using the Aggregation Tree

In this section, we present a parallel algorithm for data cube construction using the aggregation tree.
We then develop a closed form expression for the communication volume involved. We also show that
the memory requirements for parallel cube construction are also bounded with the use of aggregation
tree.

Consider again a n-dimensional initial array from which the data cube will be constructed. Suppose
we will be using a distributed memory parallel machine with 2P processors. Through-out this paper, we
will assume that the number of processors used is a power of 2. This assumption corresponds well to
the parallel processing configurations used in practice and has been widely used in parallel algorithms
and partitioning literature.

We partition the dimension D; along 2% processors, such that 3" ; k; = p. Each processor is given
a unique label {I1,ls,...,l,} such that 0 < I; < 2% — 1. Since 37 ; k; = p, it is easy to verify that

there are 2P unique labels. A processor with the label [; is given the lfh

portion along the dimension D;.
A processor with the label I; = 0 is considered one of the lead processors along the dimension D;.
There are 2P/2% lead processors along the dimension D;. The significance of a lead processor is as
follows. If we aggregate along a dimension, then the results are stored in the lead processors along that
dimension.
Parallel algorithm for data cube construction using the aggregation tree is presented in Figure 5.
We explain this algorithm with the help of an example. Consider data cube construction with n = 3

and p = 3. Let ky = ko = k3 = 1, i.e., each of the three dimensions is partitioned along 2 processors.

Figure 6 illustrates such partitioning of a three dimensional array. Initially, all 8 processors process the
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Figure 6: Partitioning of a Three Dimensional Array

portions of D1 DsD3 they own to compute partial results for each of D1 D5, D1 D3, and D2Ds.

Next, consider a processor with the label {0,ls,l3}. This processor communicates with the corre-
sponding processor {1, /s, 3} to compute the final values for the 4%,1 portion of the array Do D3. Similarly,
a processor with the label {l1,0,l3} communicates with the corresponding processor {l1,1,l3} to get the
final value for the 4%,; portion of the array D;Ds.

Consider the computation of Dy from D1Dj3. Only 4 of the 8 processors, i.e., the ones with a label
{l1,0,l3}, perform this computation. These 4 processors process the portion of D;D3 they own to
compute partial result for D;. Then, 2 of the processors with the label {l1,0,0} communicate with the
corresponding processor {l1,0,1} to each compute the final values for the half portion of the array D;.
Computation of Dy and D3 from D D3 proceeds in a similar fashion. Figure 7 shows the aggregations
and communication steps involved in the algorithm.

Note that our algorithm sequentializes portions of the computation. However, while computing a
data cube when the number of dimensions is not very large, the dominant part of the computation is
at the first level. For example, when n is 4, the sizes of all dimensions are identical, and the original
array is dense, 98% of the computation is at the first level. The computation at the first level is fully
parallelized by our algorithm.

An important questions is, “what metric(s) we use to evaluate the parallel algorithm?”. The dominant

computation is at the first level, and it is fully parallelized by the algorithm. Our earlier experimental
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work [20] has shown that communication volume is a critical factor in the performance of parallel data
cube construction on distributed memory parallel machines. Therefore, we focus on communication
volume as a major metric in analyzing the performance of a parallel data cube construction algorithm.
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Figure 7: Aggregation and Communication Steps in Parallel Data Cube Construction (Dotted Arrows
Denote Interprocessor Communication)

Lemma 1 Consider a node r = {y1,vy2,...,Yx} and its child s = {y1,vy2,...,Yg, m} in the prefic
tree, where 1 < y1 < y2 < ... < yp < m < n. Then, the communication volume in computing the

corresponding node s' in the aggregation tree from the node ' is given by

n

km
( II [ Di]) x (2" —1)
Z:].,Z#yl 3Y2,5-- Yk T
Proof:The total size of the array at the node s’ is the product of the sizes along each of its dimensions,

. . . n
Wthh 18 glven by Hi:l)i¢y15y2a'"7yka

Let there be a total of N processors participating in the computation of the node s’. Among these,
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N/2%m will be the lead processors that will communicate with other processors. Each lead processor

will compute a fraction 21ch of the array s’. The volume of data that each lead node will receive from

other nodes will be
n k

(I IphxZx @)

izlai;éyl Y253 Yks M

Since there are N/2F= lead nodes receiving the data, the total volume of communication will be

n

( 11 [Dif) x (2" —1)

izl’i#yl 3Y2500 Yk T

Theorem 3 The total communication volume for data cube construction is given by

Lo« & 220« (e + )
i=1 i=1 | Di j=1 |Dj

Proof:Consider the level [ in the aggregation tree. There are "Cj nodes at this level. We denote the
total communication volume for computing these "C; nodes by Comm(l). Using the previous lemma,

we have
n

Comm@) = ¥ (I D) x@w -1

1<y1<ye <.y 1=1,i£Y1,92,---Y
This can also be written as

Comm(l) = [[1Di| x (3 1 « (2% — 1))
=1

1<y1<y2 <.y |Dy1| X |Dy2| X ... X |Dyz|

The total communication volume for the entire data cube construction process is
n
Z Comm(l)
=1

Using the expression for Comm(l) and with some mathematical manipulation, we get the above
result.

We next focus on memory requirements for parallel data cube construction using the aggregation tree.
In parallel computation on a distributed memory machine, memory is required for local computations,
as well as for temporarily storing the data received from other processors.

In parallel data cube construction, the memory requirements for storing the locally aggregated values
depends only upon the spanning tree used and the sizes of the dimensions. The memory requirements
for storing the data received from other processors depends upon the implementation. In an extreme
case, a processor can receive a single element from one other processor, add it to the corresponding
local element, and then use the same one element buffer for receiving another element, possibly from

a different processor. Obviously, such an implementation will be very inefficient because of the high
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overhead due to the communication and synchronization latencies. However, there is a tradeoff between
communication frequency and memory requirements, which is hard to analyze theoretically.

So, to simplify our theoretical analysis, we focus on memory requirements for local aggregations only.
We first show that such memory requirements are minimally bounded with the use of aggregation tree.
Theorem 4 Consider an original n dimensional array D1, Ds, ..., D, where the size of the dimension
D; is |D;| and is partitioned among 2Fi processors. When data cube construction is done using 2P
processors, where p = >, k;, the memory requirements on any processor for holding the results in

data cube construction using the algorithm in Figure 5 are bounded by

2p = |Dz|

Proof:The proof is quite similar to the proof of Theorem 1. The details are presented in a related
technical report [12].
Theorem 5 The memory requirements on any processor for holding the results during parallel data
cube construction using any spanning tree and algorithm are at least

i1 |Dil ( - 2_’“)
2p = | D;|

provided that the algorithm does mazimal cache and memory reuse and does not write-back portions of
the computed arrays to the disks.

Proof:Again, the proof is similar to the proof of Theorem 2 and the details are presented in a

technical report [12].

5 Optimality Properties and Partitioning

As we had stated earlier, an aggregation tree is parameterized with the ordering of dimensions. In
computing data cube starting from an n dimensional array, n! instantiations of the aggregation tree are
possible.

In this section, we prove an important result, which is that the same ordering of dimensions minimizes
both the communication volume and the computation cost. The latter also means that all nodes in the
data cube lattice are computed from minimal parents.

Theorem 6 Among all instantiations of the aggregation tree, minimal communication volume is achieved
by the instantiation where |D1| > |Da| > ... > |Dy].

Proof:The communication volume required for data cube construction can also be stated as

n ci y i—1 L
o x (3 1 * QL0+ )
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Consider an ordering of the dimensions D1, Ds, ..., Dy, where p < g and |D,| < |Dy|. Let C1 be the
communication cost associated with this ordering of the dimensions. Consider another ordering of the
dimensions,

Dy,Ds,...,Dp_1,Dq,Dpt1,...,Dg_1,Dp,...,Dy,. Let C2 be the cost associated with this ordering.

We will show that C'1 — C2 > 0. We ignore the constant term ¢y in our arguments. So, we have
n i—1 1
= 1+ =7)
2 g 10+ g
and
i—1 i—1 1 -
C2= 1+ —)) + (1 + ) +
Z|D| (0 + ) Z§1|D| (L0 + ) + 1y 1} o
N S S (T o+ o 1
L 1+ —)x(1+ + 1+ =) x 1+ —)
|Dp| j=1,j#p |D]| |Dq‘ *p-f-l | j=1,j#p |D]| |Dq‘
With some mathematical manipulation, it can be shown that
1 1
Cl - C2=dx(—=— — /=)
|Dp| Dyl

where d is a positive constant. Since |D,| < |Dg|, we have C1 — C2 > 0. This shows that ordering
the dimensions in descending order of the sizes minimizes the communication volume.
Theorem 7 Using aggregation tree ensures that all arrays are computed from their minimal parents iff
|D1| > |Da| > ... > |Dy.

Proof:Consider a node in the prefix lattice defined in Section 3. Let this node be {y1,y2,---,¥k},
where 1 <y <yo < ... <y < n.

This node has k parents in the prefix lattice, which are denoted by p(j), 7 =1,...,k, where

p() = {wili=1,..., k1 # j}

The computation cost in using the parent p(j) is
T2, D)
Hf:l,i#j |Dyz|

This expression is minimized if |Dy,| has the smallest value among |Dy,|,i = 1,...,k. In using
prefix/aggregation tree, we always use p(k) for evaluating this node. If |Dy| > |D2| > ... > |Dy|, then
| Dy, | has the smallest value among |Dy,|,i =1,...,k.

We prove the only if part using contradiction. Suppose we have a dimension ordering D1, Do, ..., Dy,
where p < ¢ and |Dp| < |Dgy|. Consider the node {D1,Ds,...,D,} in the prefix lattice. Using pre-
fix/aggregation tree, this node will computed from {D1, Ds,...,D4—1}. However, since |D,| < |Dyl,

{D1,Dy,...,Dp_1,Dp41,...,Dq} will be a lower cost parent.
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The next issue we focus on it partitioning of the original dataset between the processors. The
expression for communication volume we derived in the previous section is dependent on the partitioning
of the original array between the processors, i.e., the values of k;, ¢ = 1,...,n. Given 2P processors
and an original array with n dimensions, there are a total of "™PC,, distinct ways of partitioning the
array between processors. In general, it is not feasible to evaluate the communication costs associated
with each of these partitions. We have developed an O(p) time algorithm for choosing the values of
ki,i=1,...,n, >, ki = p, to minimize the total communication volume. Later, we will present a
detailed proof that our algorithm does minimize the total communication volume.

Recall that the expression for communication volume we derived is

(100 (3 25t < 0o +
| Dil) — x IO+ 7=79))
2 o WU D
This can be restated as
n i—1 n i—1 1
(1L 1DiD) (1 1+ 7))
1 Z|D| Lo+ ) =X oy < L0+
Our goal is to choose the values of k; for a set of given values of |D;|,i = 1,...,n. Therefore, we
state the communication volume as
n
Co X (Z 21% X Xz) — do
=1
where,
1 - 1

X; = @X (jl;[l(l + W))

and the values of ¢y and dy do not impact the choices of k;.
The algorithm is presented in Figure 8. Initially, k;, for all values of ¢, are initialized to 0. In each
iteration of the algorithm, we find the X; with the minimal value, increment the corresponding k; by 1,

and replace X; with 2 x Xj.

Partition(n, p, X1, X2, ..., Xz)
{
Initialize k’l = k’z =... = k’n =0
While (p > 0) {
Let X; = min(X1,X2,...,Xn)

ki = ki +1
Xi=2XX7;
p=p—1

}
}

Figure 8: Partitioning Different Dimensions to Minimize Communication Volume
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Theorem 8 Partitioning done using the algorithm in Figure 8 minimizes the interprocessor communi-

cation volume.

The proof of this theorem is presented in an associated technical report [12].

6 Tiling-Based Approach for Scaling Data Cube Construction

The sequential and parallel algorithm we have presented so far assume that sufficient memory is available
to store all arrays at the first level in memory. In general, this assumption may not hold true. In this

section, we present sequential and parallel algorithms that use tiling to scale data cube construction.

6.1 Sequential Tiling-Based Algorithm

Let the initial multidimensional array from which a data cube is constructed be denoted by D1 Dy ... D,,.
We tile this array, dividing each dimension D; into t; tiles, creating a total of [[}' ; ¢; tiles. Suppose we
are computing a partial or complete data cube using a given aggregation tree. Consider any node N of
the tree Dy, ... D, __,, wherel < z; <nand m < n. Let the parent of this node in the tree be
Dy ... Dy, where

{z},...2},} ={y} U {z1,...,2m_1}

Thus, the node N is computed from its parent by aggregating along the dimension y.

The array Dy, ...D,,, _, computed at the node N comprises t;, X ...%;,_, tiles. For scaling the
computations of views, we can separately read and write these portions from and to disks. A particular
tile of this array is denoted by a tuple < py,,...psz,, , >, where 1 < p,, < tg,.

Dividing each array into tiles adds a new complexity to the process of computing these arrays. A
given tile < pg,,...,ps,,_, > of the node N is computed using ¢, different tiles of its parent. This is
because the dimension y, which is aggregated along to compute N from its parent, is divided into ,
tiles. Since the different tiles comprising the parent array of N can be allocated in the memory only
one at a time, a tile of the node N may have to be computed in ¢, phases. In each of these phases, one
tile of the parent of N is processed and the corresponding elements in N are updated.

Note that a node can have multiple children in the tree. To ensure high memory and cache reuse,
when a tile of an array is brought into memory, we update the corresponding tiles of all children of that
node. Since these children are computed by aggregating along different dimensions, it is not possible
to read all tiles that are used to compute one tile of a child node consecutively. As a result, a tile of a
node being computed may have to be written and reread from the disks as it is computed from multiple
tiles of its parent node.

To facilitate correct computations using tiling, we associate a table with each node of the tree. For

the node N described above, this table is an array with m — 1 dimensions,
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N.Table[l...tg,1.. . tgy,...,1.. .tz ,|. An element Table(< pz,,...,Pz,, , >) has a value between
0 and t, and denotes the status of the tile < pg,,...,pg,,_, >. A value of 0 means that this tile is
currently uninitialized. A value 7, 0 < ¢ < t, means that the elements of this tile have been updated
using ¢ tiles of the parent node. If the value is ¢,, then the elements in this tile have received their
final values. In this case, we say that the tile is expandable, because it can now be used for starting the

computation of its children nodes.

Construct_Views(D1 D ... Dy)
{
Foreach tile T of this node
Expand_tile(D; ... Dy, T)

}

Expand_tile(Node N, Tile T')

Foreach child C of N in the tree {
T' = Maptile(N,T,C)
C.Table(T")++
If C.Table(T') ==
Allocate and initialize the tile 7’
Else
Read the tile T from disk if required
}

Foreach chunk of the tile T' {
Read the chunk
Foreach child C of N
Perform aggregation operations on the tile Maptile(N, T, C)

Foreach child C of N {
T' = Maptile(N,T,C)
If (C.Table(T') == Reduc_tiles(C))
Expand_tile(C, T")
Else
Write-back the tile T” to disk if required
}

If N is not root
Write-back T to disk

}
Figure 9: A Tiling-Based Algorithm for Constructing Data Cube

The tiling-based algorithm is presented in Figure 9. We assume that the original array is indexed
in such a way that each tile can be retrieved easily. In the algorithm, Maptile(N, T, C) is the tile of C
which can be updated using the tile T' of N, where NV is a given node, T is a tile of this node and C' is
a child of this node. Reduc_tiles(N) is the number of tiles of the parent of N along the dimension that
is aggregated to compute N, where N is a non-root node.

The function Fxpand_tile takes a tile and a node of the tree, and computes or updates the appropriate
portions of the descendants of the tree. Given a node N and a tile T', we find the tiles of the children of
N that can be updated using the function Maptile(N,T,C). We then use the Table data structure to
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determine the status of the tiles of children. If they have not yet been initialized, we allocate space and
initialize them. If they have been updated previously, they may have to be read from the disks. Once
a chunk corresponding to a parent node is brought into memory and cache, all children are updated
together.

We next check if the corresponding tile of a child node has been completely updated (i.e. if
(C.Table(T") == Reduc_tiles(C))). If so, we expand its children before writing it back to the disks.

Thus, our algorithm ensures that once a tile is in memory, we update all its children simultaneously,
and further expand upon the children if possible. In the process, however, a tile of child node may have
to be written back and read multiple times. We prefer to ensure high memory and disk reuse of the
parent tiles to some possible extent for two important reasons. First, the sizes of arrays decrease as we
go down the tree, so it is preferable to write back and read lower level nodes in the tree. Second, if
the original array is partitioned along only a few dimensions, Reduc_tiles will have the value of one for
many nodes in the tree. In this case, the node being computed will not need to be written back and

read multiple times.

6.2 Using Tiling in Parallel Data Cube Construction

While applying our tiling-based algorithm to parallel construction of data cubes, we should note that we
have two kinds of partitions of a node in the aggregation tree. The first is due to the data distribution
among multiple processors. Since each processor has a portion of the original array, interprocessor
communication is needed to get final values of this node. The second is due to tiling. The portion on
each processor is divided into several tiles and the final values can not be obtained until all tiles of the

node are aggregated.

D1D2D3D4

—/ \N

D1D2D3 D1D2D4 D1D3D4 D2D3D4

AR

D1D2 D1D3 D2D3 D1D4 D2D4 D3D4
D1 D2 D3 D4

/

All

Figure 10: Aggregation Tree for Four-dimensional Data Cube Construction
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The existence of these two different kinds of partitions adds complexity in deciding whether or not
a node is ready for computing its children. For example, consider constructing a data cube from an
original four-dimensional array D1 D2 D3D,4 on 8 processors. The aggregation tree is shown in Figure 10.
Using the terminology used in the previous section, we do a three-dimensional partition for the original
array, which means dimensions Do, D3, D4 are partitioned along two processors. Then on each processor,
we divide the 8% portion of the array on this processor into 4 tiles by tiling along dimensions D3 and D,
in half respectively. According to the tiling-based algorithm we introduced above, after computing each
tile of the node D1 D3Dy, the tile becomes expandable since D1 D3D, is obtained by aggregating along
dimension Dy and D- is not tiled. But it is not the case since Dy is partitioned along two processors
and we have to do the interprocessor communication to get the final values of D D3D, before we can
compute its child. Therefore, we can not apply the tiling-based algorithm directly to parallel data cube
construction on multiple processors.

A solution to this problem is to apply tiling-based algorithm only to the children of the root node
in the aggregation tree. For the computation of other nodes, we follow a similar process as we had
presented in the previous section. Considering that the dominant part of computation is at the first
level for multidimensional data cube construction, we believe that tiling all nodes at the first level can
reduce memory requirements. For simplicity, we use Level One Parallel Algorithm for the computation
of lower levels nodes in the aggregation tree. The complete algorithm is shown in Figure 11. In this
algorithm, C.T" stands for a tile of values of child C. Other notations have the same meaning as in
Figures 9 and 5.

Compared with the sequential tiling-based algorithm in Figure 9, we apply the sequential tiling-
based algorithm only to the children of the root node. In addition, we do not expand the node
even when C.Table(T') == Reduc_tiles(C). (Actually, we do not check whether C.Table(T') ==
Reduc_tiles(C) at all.) We write back every 7! = Maptile(D1Ds...D,,T,C) to the disk and after
all tiles are processed, each child has t;s4; /%, tiles of values, where y is the dimension along which the
child is computed by aggregating its parent, ¢, is the number of tiles of dimension y and #;44; is the
total number of tiles of the original array.

As we have mentioned earlier, we can not get the final values of children of the root node until we
do interprocessor communication. Therefore, we follow a similar procedure as in Level One Parallel
Algorithm to finalize each tile of values of the children. The difference is that we first do the required
interprocessor communication to get the final values of the child, and then we aggregate its children.
Note that we do not use optimized Level One Parallel Algorithm since memory requirement is our key
consideration here.

We use the same example we mentioned at the beginning of this section to describe how this algorithm
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Construct_-Cube(D1Ds . .. Dy,)

Foreach tile T of the root node D1 D> ... D, on each processor{
Foreach child C of D1D; ... D, in the tree {
T' = Maptile(D1D>...D,,T,C)
C.Table(T")++
If C.Table(T') ==
Allocate and initialize the tile T’
Else
Read the tile T’ from disk if required
}

Foreach chunk of the tile T {
Read the chunk
Foreach child C of D1 D> ...D,
Perform aggregation operations on the tile Maptile(D1D> ...D,,T,C)
}

Write-back the tile Maptile(D1D; ... Dy, T, C) to disk if required
}
Foreach child C of D1D> ... D, from right to left
Foreach tile T' of C {
Read C.T' from disk if required
Evaluate(C.T") on each processor

}
}

Evaluate(C)
{
Let C’ = X-C ={Di1,...,D¢m}
If the processor is the lead processor along D1, ..., Dip
Communicate with other processors to finalize portion of C if required
If C has no children
Write-back the portion to disk if required
Else
Locally aggregate all children of C
Foreach child r from right to left
Evaluate(r)
Write-back C to disk if required

}

Figure 11: A Tiling-Based Algorithm for Parallel Data Cube Construction

half respectively.

works for parallel data cube construction. We consider three-dimensional partition of the original array,
which means dimensions Dy, D3, D4 are partitioned along two processors. Then on each processor, we

divide the 8—},; portion of array on this processor into 4 tiles by tiling along dimensions D3 and Dy in

After processing all 4 tiles of D1 Do D3 Dy, each child of Dy Dy D3 Dy has tiles of values stored on each
processor. For instance, Do D3D, and D1D3D, each has 4 tiles of values, D1D>D, and D1DsD3 each
has 2 tiles of values. We then consider each tile of Dy D3Dy4. Since Dy D3 Dy is computed by aggregating
along dimension D; which is not partitioned, we do not need to do interprocessor communication and

each processor already has a tile of final values of Do D3Dy4. Dy D3Dy also has no child, therefore, it is

done and can be written back to the disks.
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We now consider the first of the 4 tiles of D1 D3Dy. Since Dy is partitioned in half, interprocessor
communication is needed to get the final values of the tile of Dy D3D4. The communication process
is the same as in the parallel algorithm we presented originally. After final values are obtained on
lead processors, we compute D3Dy from final values of this tile of Dy D3Dy4. Since there is no need to
communicate for D3D4 and D3D,4 has no child, we are done with the first tile of Dy D3D4. For the
other three tiles of Dy D3D,, we follow the same procedure as above.

The computation of each tile of Dy DyDy and D1 D5 D3 can be proceeded in a similar fashion, except
that we must pay attention to the fact that some offsprings of D1 DyDys and DDy D3, such as Dy Dy,
D1 D3, D1 Dy and D1, also need interprocessor communication to get final values.

Note that the number of tiles of each child below the first level in the aggregation tree is decided by
the number of tiles of its parent. For example, since D1 D3D, has 4 tiles of values, D3 D, also has 4 tiles
of values. In contrast, each offspring of D1 D9 Dy and D1 D3 D3 has only 2 tiles. The number of tiles of

children at the first level is determined by tota1/ty, as we have stated earlier.

7 Experimental Results

This section reports on a series of experiments we conducted to evaluate our techniques and algorithms.
We had the following three goals in designing our experiments. First, we wanted to see the speedups
from our algorithms, across datasets with varying sizes and varying number of dimensions. Second,
we wanted to see if the versions with partitioning that minimizes communication volume does achieve
better performance than versions with other partitioning choices. Finally, we wanted to see how tiling
impacts sequential and parallel scalability.

In constructing data cubes, the initial multi-dimensional array can be stored in a dense format or
a sparse format [21]. A dense format is typically used when 40% of array elements have a non-zero
value. In this format, storage is used for all elements of the array, even if their value is zero. In a
sparse format, only non-zero values are stored. However, additional space is required for determining
the position of each non-zero element. We use chunk-offset compression, used in other data cube
construction efforts [21]. Along with each non-zero element, its offset within the chunk is also stored.
After aggregation, all resulting arrays are always stored in the dense format. This is because the
probability of having zero-valued elements is much smaller after aggregating along a dimension.

Through-out this paper, our results have been presented assuming that the initial array from which
the data cube is constructed is dense. If the initial array is sparse, the memory requirements for storing
the results and the communication volume do not change. Therefore, our results on bounded memory
requirements and communication volume remain the same even when the initial array is sparse. The only

difference comes in the computation cost for computing the first-level results (i.e. the n —1 dimensional
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arrays). However, since the first-level nodes only have a single parent, our result on dimensional ordering
for minimal parents is still applicable.

Since sparse formats are frequently used in data warehouses, most of our experiments have been
conducted using arrays stored in a sparse format. A sparse array is characterized by sparsity, which is
the fraction of elements that have a non-zero value. Note that an array with a numerically lower sparsity
value is more sparse than the one with a numerically higher sparsity value. We have experimented with

different levels of sparsity in this paper.

7.1 Parallel Scalability and Impact of Partitioning

We initially present and analyze results from a set of relatively small datasets. Later, we present results

from larger and higher-dimensional datasets.

7.1.1 Results from Smaller Datasets

These experiments have been performed on a cluster with 16 Sun Microsystem Ultra Enterprise 450’s,
with 260MHz Ultra-II processors. Each node has 1 GB of main memory. Each of the node have a 4 GB
system disk and a 18 GB data disk. The nodes are connected by a Myrinet switch with model number
M2M-OCT-SWS8.
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Figure 12: Results on 64* datasets, 8 proces- Figure 13: Results on 128* datasets, 8 proces-
S0rs S0rs

The first set of experimental results are obtained from 64 x 64 x 64 x 64 datasets. We experimented
with three different levels of sparsity, 256%, 10%, and 5%. The results on 8 processors are presented
in Figure 12. A four-dimensional dataset can be partitioned in three ways on 8 processors (i.e. when
p = 3). These three options are, k1 = 0,ky = ks = kg = 1, ky = ke = 0,ks = 1,ky = 2, and
ki1 = ko = k3 = 0,ky = 3. We refer to these three options are three dimensional, two dimensional,
and one dimensional partitions, respectively. The sequential execution times were 22.5, 12.4, and 8.6

seconds, with sparsity levels of 25%, 10%, and 5%, respectively.
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Our results from Section 5 suggest that when |D;| = |Dy| = |Ds| = |D4|, partitioning more dimen-

sions reduces the communication volume. Our results from Figure 12 validate this. Three dimensional
partition outperforms both two dimensional and one-dimensional partitions at all three sparsity levels.
The version with two dimensional partition is slower by 7%, 12%, and 19%, when the sparsity level is
25%, 10% and 5%, respectively. The version with one dimensional partition is slower by 31%, 43%, and
53% over the three cases.

It should be noted that as the arrays become more sparse, the absolute speedups decrease, but the
relative difference between the communication optimal version and the other versions increases. The
reason is as follows. For a given problem size, a sparse array involves less computation at the first level
of the tree. Because the aggregated (and partially aggregated) arrays are stored in the dense format, the
communication volume remains unchanged. Therefore, the more sparse the initial array is, the higher
is the ratio between communication and computation.

The speedups of the three-dimensional version were 5.34, 4.22, and 3.39, with the sparsity levels of
25%, 10%, and 5%, respectively. We believe that these are good speedups considering the small problem
size and high ratio of communication to computation.

As we had stated earlier, our parallel algorithm sequentializes a part of the computation after the
first level of the aggregation tree. With different choices for partitioning, the amount of computation
of performed on different nodes is, therefore, different. So, this could be another factor behind the
observed difference in execution times. However, the dominant part of the computation in data cube
construction is at the first level and is not affected by the partitioning choice made. Furthermore, this
component is parallelized on all nodes, and does not have any overheads besides the communication
costs. Therefore, we can conclude that: 1) the communication costs are the only significant factor why

the speedups are not linear, and 2) the difference in performance seen as a result of the partitioning
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choice made is almost all because of the difference in communication volume.

Next, we consider 128 x 128 x 128 x 128 arrays with sparsity levels of 25%, 10%, and 5%. Figure 13
shows experimental results on 8 processors. Again, the problem can be partitioned in three ways and
we have implemented all three. The sequential execution times are 321, 154, and 97 seconds, for 25%,
10%, and 5% cases, respectively.

The experimental results again validate our theoretical result that three dimensional partition is
better than two dimensional or one dimensional. The version with two dimensional partition is slower by
8%, 15% and 16% with sparsity levels of 25%, 10%, and 5%. The version with one dimensional partition
is slower by 30%, 42%, and 51% over the three cases. The speedups of the three dimensional version
are 6.39, 5.31, and 4.52, with sparsity levels of 25%, 10%, and 5%, respectively. The speedups reported
here are higher because of the larger dataset size, which results in relatively lower communication to
computation ratio.

Finally, we have also executed the same dataset on 16 processors. A four-dimensional dataset can
be partitioned in five ways on 16 processors (i.e. when p = 4). These five options are, k1 = ko = k3 =
ky =1,k =0,ky = ks = 1,ky =2, k) =ky =0,ks =kyg =2, k1 = ky =0,k =1,k4 =3, and
ki =ky=ks =0,k4 = 4.

The first, second, and the fifth option represent unique choices for four dimensional, three dimen-
sional, and one dimensional partition. There are two different choices for two dimensional partition.
Results from these five partitions, and for sparsity levels of 25%, 10%, and 5%, are shown in Figure 14.

The relative performance of the five versions is as predicted by the theoretical analysis we have done.
The version with four dimensional partition always gives the best performance, followed by the version
with three dimensional partition, the two dimensional version with k1 = ko = 0, k3 = k4 = 2, the other
two dimensional version, and the finally the one dimensional version. In fact, with sparsity level of 5%,
there is more than 4 times performance difference between the best and the worst version.

The speedups of the best version are 12.79, 10.0, and 7.95, with sparsity levels of 25%, 10%, and 5%,
respectively.

Finally, in Figure 15, we show scalability of our algorithm on 1, 2, 4, 8, and 16 processors. We have
considered two different partitioning schemes for the 25% sparsity dataset, and one partitioning scheme

for the 10% sparsity dataset. The results are consistent with those from other experiments.

7.1.2 Results from Larger and Higher-Dimensional Datasets

We also conducted a series of experiments on larger and higher-dimensional datasets. These experiments
were performed on a cluster of 700 MHz Pentium machines. The nodes in the cluster were connected

through Myrinet LANai 9.0. The memory on each node is 1GB.

26



OThree dimensional

W Two dimensional
M One dimensional

dense

25 10 5
Sparsity level (percent)

OThree dimensional

@ Two dimensional
B One dimensional

Tun

Sparsity level (percent)

dense

Figure 16: Results on 16% datasets, 8 proces-

SOrs
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Figure 16 shows the results from 16% datasets. We report performance from sparse datasets with

sparsity levels of 25%, 10%, and 5%, as well as the dense dataset. We compare three, two, and one

dimensional partitioning schemes. The performance trends are similar to what we reported earlier.

Three dimensional partitioning schemes, which have the lowest communication volume as per our the-

oretical results, give the best speedups. One 8 nodes, the speedup on the dense dataset with the three

dimensional partitioning scheme is 7.77. The speedups are relatively modest on sparse datasets. The

highest speedups on 8 nodes are 4.32, 3.45, 3.04, respectively, with 25%, 10%, and 5% sparsity levels.

Smaller size of dimensions, higher number of dimensions, and higher sparsity levels all result in a higher

communication to computation ratio and a higher fraction of sequentialized code.

Figure 17 shows the results from 8% datasets. The trends are again similar, though a higher number

of dimensions and smaller dimension size results in lower speedups.
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Figure 18: Results on 32% datasets, 8 proces-

SOors

Figure 19: Results on 256* datasets, 8 proces-
sors

The results from 325 datasets are reported in Figure 18. The dense dataset with these dimensions has

a size of 4 GB, and could not be executed on our environment. Therefore, we only report results from

three sparse datasets. As compared to the results on the 16° dataset described earlier, the speedups of



sparse datasets are clearly better. This is because of a lower communication to computation ratio. The
relative performance of the versions with different partitioning methods is still the same.

Finally, the results from 256* datasets are presented in Figure 19. Because of a small number of
dimensions and large size of each dimension, the speedups with even the 5% sparse dataset are quite

high.

7.2 Impact of Tiling
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Figure 20: Scaling Sequential Data Cube Con- Figure 21: Scaling Parallel Data Cube Con-
struction with Tiling (8 dimensional datasets) struction with Tiling (9 dimensional datasets

on 8 nodes)

We conducted several experiments to see the benefits from tiling. We present results showing how
tiling helps scale data cube construction in both sequential and parallel environments.

Our experiments for sequential execution were conducted on a machine with 1 GB memory. We
used 4 8-dimensional datasets, which were dense arrays with sizes 8% x 163, 8* x 16, 83 x 16°, 82 x 165,
respectively. As each element requires 4 bytes, the sizes of these datasets are .5, 1, 2, and 4 GB,
respectively. Without the use of tiling, the total memory required for the first level of the tree is 416
MB, 768 MB, 1.4 GB, and 2.5 GB, respectively.

The execution time with 1, 2, 4, and 8 tiles for these 4 datasets are presented in Figure 20. For the
.5 GB and 1 GB datasets, sufficient memory was available to execute the algorithm without tiling (or
using a single tile). The execution time for these datasets remains approximately the same with the use
of 1, 2, 4, or 8 tiles. As all data can fit in main memory, the read and write operations for tiles only
involve accessing main memory buffers, and therefore, use of large number of tiles does not result in a
slow down.

A more interesting trend is noted with the 2 GB dataset. The use of 2 or 4 tiles results in lower
execution time than the use of 1 or 8 tiles. With only 1 tile, memory thrashing causes the overhead. With

the use of 8 tiles, the high tiling overhead causes the slow down. As the total memory requirements are
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large, read and write operations for tiles now require disk accesses. Therefore, the use of larger number
of tiles is not desirable.

With the 4 GB dataset, the code cannot even be executed with the use of a single tile. The lowest
execution time is seen with the use of 4 tiles. Memory thrashing and tiling overheads are the reasons for
slow down with 2 and 8 tiles, respectively. Note, however, because the execution times are dominated
by computation, the relative differences are never very large.

We repeated a similar experiment for parallel data cube construction, using a 8 node cluster. We
used four 9-dimensional datasets whose size were 4 GB, 8 GB, 16 GB, and 32 GB, respectively. After
data partitioning, the size of the array portion on each node was .5 GB, 1 GB, 2 GB, and 4 GB,
respectively, similar to the previous experiment. The results are presented in Figure 21 and are similar
to the previous set of results. Note that there is some increase in per node memory requirements,
because memory is needed for communication buffers. Therefore, with the largest dataset, a minimum
of 4 tiles are required to complete execution.

Another observation from Figures 20 and 21 is as follows. As we experiment with larger input
datasets, the execution time remains proportional to the amount of computation on each node. Thus,

the use of tiling and parallelism helps scale data cube construction.

8 Conclusions

In this paper, we have addressed a number of algorithmic and theoretic results for sequential and parallel
data cube construction.

For sequential data cube construction, we have developed a data-structure called aggregation tree.
If the data cube is constructed using a right-to-left depth-first traversal of the tree, the total memory
requirements are minimally bounded. As compared to the existing work in this area, our approach
achieves a memory bound without requiring frequent writing back to the disks. This, we believe, makes
our approach more practical and also suitable for parallelization.

We have presented a number of results for parallel data cube construction. First, we have presented
an aggregation tree based algorithm for parallel data cube construction. Again, we have shown that
memory requirements are minimally bounded. We have also developed a closed form expression for total
communication volume in data cube construction. We have shown that the same ordering of dimensions
minimizes both the communication volume as well as computation. Finally, we have presented an
algorithm with O(p) time complexity for optimally partitioning the input array on 2 processors, with the
goal of minimizing the communication requirements. There is very limited prior work on parallel cube
construction on a shared-nothing architectures, and this earlier work did not establish any theoretical

bounds.
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We have obtained experimental results from an implementation of our parallel algorithm on a cluster
of workstations. These results establish that 1) our parallel algorithm is practical and achieves good
parallel efficiency in most cases, with the exception being sparse, high-dimensional datasets with small
dimension sizes, and 2) the partitioning choice that minimizes communication volume does result in

significantly better performance than other partitioning choices.
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