
Chapter 6:
Enhancing Performance with Pipelining

Computer Architecture CS 35101-002 2

Overview of Pipelining

 Basic Philosophy
 Assembly Line Operations (factory)

 Goal
 Enhance Performance by increasing throughput

 Our Goal:
 Improve performance by increasing the instruction

throughput per clock cycle

Computer Architecture CS 35101-002 3

500 ps

700 ps

800 ps

600 ps

Period

0200100200Branch

200200100200Store word

100200200100200Load word

1000200100200R-type

Register
Write

Data
Memory

ALU
Operation

Register
Read

Instruction
Memory

Major Functional Units used by Instruction

Operation Times
Instruction
Class

Recall (for a single- cycle clock implementation):

Assume Critical Machine Operation Times: Memory Unit ~ 200 ps, ALU and adders ~ 200ps,

 Register file (read/write) ~ 100 ps. Estimate clock cycle for the machine

Single Clock cycle determined by longest instruction period = 800 ps

Single-Cycle Performance

Computer Architecture CS 35101-002 4

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

800 1600 2400
Time

lw $1, 100($0)

lw $2, 100($0)

lw $3, 100($0)

Prog. Exec.
 Order

Single Cycle Execution

Computer Architecture CS 35101-002 5

Pipelined Execution

RegData
Access

ALURegInstructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALUR
e
g

Instruct
ion
fetch

800 1600
Time

lw $1, 100($0)

lw $2, 100($0)

lw $3, 100($0)

Prog. Exec.
 Order

200

Computer Architecture CS 35101-002 6

Single-cycle vs. pipelined execution

RegData
Access

ALURegInstructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALUR
e
g

Instruct
ion
fetch

800 1600
Time

lw $1, 100($0)

lw $2, 100($0)

lw $3, 100($0)

Prog. Exec.
 Order

200

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

RegData
Access

ALURe
g

Instructi
on fetch

800 1600 2400
Time

lw $1, 100($0)

lw $2, 100($0)

lw $3, 100($0)

Prog. Exec.
 Order

Computer Architecture CS 35101-002 7

Pipelining

 What makes it easy?
 all MIPS instructions are the same length (fetch)
 just a few instruction formats ( rs, rt fields are invariant)
 memory operands appear only in loads and stores

 What makes it hard?
 structural hazards: suppose we had only one memory
 control hazards: need to worry about branch instructions
 data hazards: an instruction depends on a previous instruction

 We’ll talk about data hazard and forwarding, stalls and branch
hazards

 We’ll talk about exception handling

Computer Architecture CS 35101-002 8

Pipelining

 Increases the number of simultaneous
executing instruction

 Increases the rate at which instructions are
executed

 Improves instruction throughput

Computer Architecture CS 35101-002 9

A Pipelined Datapath
Five-stage Pipeline

 Five-stage Pipeline
 Up to five instructions can be executed in a clock cycle

 Single-cycle datapath can be divided into five stages
(refer to Fig 6.9):

1. IF: Instruction Fetch
2. ID: Instruction Decode and register file read
3. EX: Execution and Address Calculation
4. MEM: Data memory Access
5. WB: Write Back

How does information flow in typical auto assembly plant?

Computer Architecture CS 35101-002 10

 Information Flow:
 In general from Left to Right (1->2->3->4->5)
 The WB stage of step 5 writes data into register file

of the ID stage in step 2
 5 -> 2

 The MEM stage of step 4 controls the multiplexor
in the IF stage of step1
 4 -> 1

A Pipelined Datapath
Five-stage Pipeline

Refer to Figure 6.9 for schematic illustrations

Computer Architecture CS 35101-002 11

 Five stages are interconnected by 4 Pipeline
Registers (latches)
 Registers must be wide enough store information

A Pipelined Datapath
Five-stage Pipeline

WB

MEMEX

 IDIF

IF/ID ID/EX EX/MEM MEM/WB

Computer Architecture CS 35101-002 12

 Example:
 lw $s1, 100 ($s0)
 lw $s2, 200 ($s0)
 lw $s3, 300 ($s0)

A Pipelined Datapath
Five-stage Pipeline

Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 13

 A Pipelined Datapath
Five-stage Pipeline

Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.

1. IF stage: Fetches the first, second and third lw instructions in cycles CC1, CC2 and CC3 resp.

2. ID stage: Reads the rs register ($s0) for the first, second and third instructions in cycles
 CC2, CC3 and CC4 respectively
4. EX stage: Calculates the memory address for the first, second and third instructions during clock cycles
 CC3, CC4, and CC5 respectively
6. MEM stage: Fetches memory words at addresses 100, 200, and 300 during clock cycles
 CC4, CC5, and CC6, respectively
8. WB stage: Copies the memory words into registers $s1, $s2, and $s3 during clock cycles
 CC5, CC6, and CC7, respectively

Each instruction execution takes 5 clock cycles in the pipeline
The 3 lw instructions take 7 clock cycles to execute

Computer Architecture CS 35101-002 14

 A Pipelined Datapath
Five-stage Pipeline Registers

IF/ID Latch: Holds fetched instruction and incremented PC
 Allows the ID stage to decode instruction 1, while IF stage fetches instruction 2

ID/EX Latch: Stores the sign-extended immediate value and values fetched from register rs and rt
 Allows EX stage to utilize stored values, while the ID stage decodes Inst. 2 and the IF stage fetches

 register for instruction 3
EX/MEM Latch: Stores the branch target address, the ALU result, ALU output bit and value in the rt

 register
 Allows MEM stage to use stored values, while EX and ID stage execute the following
 instructions

MEM/WB Latch: Stores ALU result and Data read from memory
 Allows WB stage to use stored data, while data memory fetches data for the following
 Instruction

Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 15

Pipelined Control

 What needs to be controlled in the auto assembly plant
environment?

 Use a Distributed control Strategy:
 Instruction Fetch and PC Increment (control signal always asserted)

 Instruction Decode / Register Fetch
 Execution Stage:

 Set RegDst, ALUOp, and ALUSrc (Refer to Fig. 6.23 and 6.24)

 Memory Stage:
 Set MemRead and MemWrite to control data memory (Fig. 6.24)

 Write Back
 MemtoReg controls the multiplexor and RegWrite stores the multiplexor output

in the register file

 Pass control signals along just like data (Refer to Fig 6.26)

Computer Architecture CS 35101-002 16

Announcement

 Your bonus questions will be due on Friday
(Dec. 16th) afternoon (5:00pm).

 Homework 5 will be due this Friday (Dec. 9th)
afternoon (5:00pm). You can expect the
homework solutions by next Monday night.

 Extra class: Dec 8th/Thursday from 5:15pm at
room 108!

 Final: Dec. 14th/Wednesday at 5:45pm at
room 115!

Computer Architecture CS 35101-002 17

Review (1)

 Instruction execution can be broken down into five
stages
 Instruction fetch (IF)
 Instruction decode and register fetch (ID)
 Execute (EX)
 Memory access (MEM)
 Write back (WB)

 Every instruction goes through all five stages
 Results are only written to the register file in WB

Computer Architecture CS 35101-002 18

Five-Stage Pipeline

Instruction

memory

Address

4

32

0

Add Add

result

Shift

left 2

Instruction

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1
Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign

extend

Write

register

Write

data

Read

dataAddress

Data

memory

1

ALU

result

M

u

x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Computer Architecture CS 35101-002 19

Hardware Usage

IM Reg DM RegALU

IM Reg DM RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Time (in clock cycles)

lw $2, 200($0)

lw $3, 300($0)

Program

execution

order

(in instructions)

lw $1, 100($0) IM Reg DM RegALU

Computer Architecture CS 35101-002 20

Pipelined Datapath

Instruction

memory

Address

4

32

0

Add Add

result

Shift

left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0

Address

Write

data

M

u

x

1
Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign

extend

Write

register

Write

data

Read

data

Data

memory

1

ALU

result

M

u

x

ALU
Zero

ID/EX

Computer Architecture CS 35101-002 21

Datapath and Control Signals

PC

Instruction

memory

Address

In
st

ru
ct

io
n

Instruction

[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15– 0]

0

0
Registers

Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1
Write

data

Read

data M

u

x

1

ALU

control

RegWrite

MemRead

Instruction

[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data

memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU

result

ALU

Zero

Add

0

1

M

u

x

0

1

M

u

x

Computer Architecture CS 35101-002 22

Control Signal Propagation

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Computer Architecture CS 35101-002 23

Data Hazard and Forwarding

Consider the following sequence of Instructions:
 sub $2,$1,$3 # writes a new value into $2
 and $12,$2,$5 # uses new value in $2
 or $13,$6,$2 # uses new value in $2
 add $14,$2,$2 # uses new value in $2

 sw $15,100($2) # uses new value in $2

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $13,$6,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 24

 When does $2 receive the new value computed by the sub instruction?
 When the WB stage writes $2 during CC5.
 When does the and instruction read $2?
 When the ID stage fetches $2 during CC3.
 The and instruction will actually read the incorrect old value stored in $2 instead of

the new value computed by the sub instruction.
 The or instruction will also read the incorrect old value in $2.

Data Hazard and Forwarding

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $13,$6,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 25

 The add instruction reads register $2 during CC5 - does it read the old
value or the new value? It depends on the design of the register file.

 We assume the new value is written into $2 by the WB stage before
the ID stage reads $2 so the add instruction reads the correct value.

 The sw instruction will also read the correct new value in $2 during

CC6.

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Data Hazard and Forwarding

Computer Architecture CS 35101-002 26

 In this example, the and and or instructions have encountered data

hazards
 They read a register (or two) too early, i.e., before previous instructions

have loaded the register(s) with the correct value(s).

Data Hazard and Forwarding

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 27

 Solution #1:
 insert two nop instructions between the sub and and instruction:

Data Hazard and Forwarding

WB

CC11

MEM

WB

CC10

EXIDIFsw $15,100($2)

MEMEXIDIFadd $14,$2,$2

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFnop

WBMEMEXIDIFnop

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Inserting the nop instructions delays the and and or instructions two clock cycles
Eliminates the data hazard for the and and or instructions.
Performance cost of two extra clock cycles.

Computer Architecture CS 35101-002 28

Data Hazards and Forwarding
Forwarding
 The sub instruction result is stored in the EX/MEM pipeline register at the end of

CC3
 The add instruction could read the $2 value from the EX/MEM pipeline register and

use it during CC4
 The or instruction could read the $2 value from the MEM/WB pipeline register and

use it during CC5

 WBMEM EXIDIFsw $15,100($2)

 WBMEM EXID IFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFor $13,$6,$2

WBMEM EXIDIFadd $12,$2,$5

 WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Use Temporary Results. Don’t’ wait for results to be written

Computer Architecture CS 35101-002 29

Data Hazards and Forwarding
Can’t always Forward

Consider the following sequence of Instructions:
 lw $2, 20($1) # load a new value into $2
 and $4,$2,$5 # uses new value in $2
 or $8,$2, $6 # uses new value in $2
 add $9,$4,$2 # uses new value in $2
 slt $1, $6,$7

 WBMEM EXIDIFslt $1, $6,$7

 WBMEM EXID IFadd $9,$4,$2

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFor $8,$2, $6

WBMEM EXIDIFadd $4,$2,$5

 WBMEMEXIDIFlw $2, 20($1)

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 30

WBMEMEXIDIFslt $1, $6,$7

 WBMEM EXIDIFadd $9,$4,$2

 WBMEM EXID IFor $8,$2, $6

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFadd $4,$2,$5

WBMEM EXIDIFnop

 WBMEMEXIDIFlw $2, 20($1)

CC7CC6CC5CC4CC3CC2CC1

Inst.

 Load Word can cause a hazard
 Instruction reads a register following a load instruction that writes

to the same register

 Need a hazard detection unit to “stall” the load instruction

Data Hazards and Stalls
Hardware solution

Computer Architecture CS 35101-002 31

 Data Hazards and Stalls
Load Delay

 Load Delay
 load word is immediately followed by Arithmetic

Instruction (e.g., add, subtract) that uses loaded
operand

 load word is immediately followed by instruction
using the loaded operand to compute memory
address

Compiler re-arranges code to eliminate a many load delays as possible

Computer Architecture CS 35101-002 32

 Software Approach
 Compiler inserts a nop instruction after the load

 Hardware
 Pipeline control creates a stall

Data Hazards and Stalls
Load Delay Solution

How does hardware detect load delay?

Computer Architecture CS 35101-002 33

 Load Delay Detection

 The MemRead control signal in ID/EX register is set to 1

AND
 RegisterRT index in the ID/EX register == RegisterRS index

AND/OR
 RegisterRT index in the ID/EX register == RegisterRt index in the IF/ID

register

 To stall an instruction (in a pipeline stage)
 Inhibit clock pulse to pipeline register before stage

 The register keeps old instruction instead of next
 Instruction in front of pipeline must also be stalled
 Instructions in rear of pipeline continue to flow to create a gap (bubble)

Data Hazards and Stalls
Hardware Load Delay Solution

Computer Architecture CS 35101-002 34

Data Hazards and Stalls
Installing stall

sub

addsubCC7

(gap)addsubCC6

lw(gap)addsubCC5

lw(gap)addsubCC4

lwadd-stallsub –stallCC3

lwaddCC2

LwCC1

WBMEMEXIDIFClock Cycle

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFsub $3,$0, $

WBMEM EXIDIFadd $2,$1,$1

 WBMEMEXIDIFlw $1, 0($4)

CC7CC6CC5CC4CC3CC2CC1

Inst.

Computer Architecture CS 35101-002 35

 When we decide to branch, other instructions are in the pipeline!
 Consider:
beq $s1, $s3, Load

and S12, $2, $5

or $13, $6, $2

add $14, $2, $2

….

Load lw $4, 50($7)

If $1 != $3  Machine executes fall-thru

If $1 == $3  Machine sends control to the branch target address

 (the lw instruction)

Branch Hazards

Suppose branch is taken ($1 == $3)

Computer Architecture CS 35101-002 36

Branch Hazards
Example: Branch taken

 WBMEM EXIDIFlw

 WBMEM EXID IFadd

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFor

WBMEM EXIDIFand

 WBMEMEXIDIFbeq

CC7CC6CC5CC4CC3CC2CC1

Inst.

beq $s1, $s3, Load
and S12, $2, $5
or $13, $6, $2
add $14, $2, $2
Load: lw $4, 50(7)

CC3: EX Stage $s1 ? $s3
CC4: MEM Stage sets PC to branch Target address
…..
CC5: IF Stage fetches the lw instruction

Pipeline incorrectly executes leading instructions before executing branch
Branch Hazard

Computer Architecture CS 35101-002 37

 Assume Branch will not be Taken
 Allow the fall-thru instructions to execute sequentially
 Flush the instructions if MEM stage discovers that branch should be taken (change

instruction to a nop in a pipeline)

 Reducing Delay of Branches
 Add hardware to ID stage to test branch condition and compute target address
 Penalty is only one cycle instead of three cycles

 Dynamic Branch Prediction
 Add branch-target-buffer (BTB) to hardware

 Records target address of every taken branch + address of branch instr.
 the PC equals an address in BTB entry  The IF stage sets PC to branch target

address in BTB for the following cycle
 Instructions from BTB flow thru’ pipeline immediately; and flushed if branch is not

taken
 Fall-thru’ Instructions, follow the pipeline, and are flushed if branch is taken

Branch Hazards
Solution

Computer Architecture CS 35101-002 38

 Exception
 Any unexpected change in program control flow

 Interrupt: Exception caused by an external event (I/O
device)

 Used to detect overflow

Exceptions

Examples of events that trigger exception

ExceptionHardware Malfunctions

ExceptionUsing an undefined
Instruction

ExceptionArithmetic Overflow

ExceptionInvoke OS from User program

InterruptI/O Device Request

ScenarioEvent Type

Computer Architecture CS 35101-002 39

How Exceptions are Handled
MIPS

 Triggers:
 Using undefined Instructions
 Arithmetic Overflow

 Actions
 Processor saves address of offending instruction in EPC
 Processor transfers control to OS
 OS Performs appropriate action depending on event

 Predefine action in response to overflow or
 Stops execution of program and report error

 OS either terminates program or returns control to Processor
 Processor uses EPC to restart program execution (fetch the next

Instruction)

Computer Architecture CS 35101-002 40

 Consider an Arithmetic Overflow:
 add $1, $2, $1

Exceptions in a Pipelined Computer

Memory read completion (WB)

Reg [IR[15:11]] <= ALUOutMemory access or R-type completion (MEM)

ALUOut <= A op BExecution, address computation, branch/jump completion
(EX)

A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]

ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Instruction decode/register fetch (ID)

IR <= Memory[PC]

 PC <= PC + 4

Instruction fetch (IF)

Action for R-type InstructionsPipeline Stages

Overflow detected in the EX Stage

Computer Architecture CS 35101-002 41

Exceptions in a Pipelined Computer

WBMEMEXIDIFslt $1, $6,$7

 WBMEM EXIDIFadd $9,$4,$2

 WBMEM EXID IFor $8,$2, $6

CC9CC8

Time (in clock cycles) --------------

 WBMEMEX IDIFadd $4,$1,$5

WBMEM EXIDIFsub $3, $2, $1

 WBMEMEXIDIFadd $1, $2, $1

CC7CC6CC5CC4CC3CC2CC1

Inst.

CC3: EX/MEM Pipeline Register is contaminated
CC4: Trailing instruction (sub $3, $2, $1) references corrupt data in EX stage
CC4: Trailing instruction (add $4, $1, $5) references corrupt data in ID stage

Computer Architecture CS 35101-002 42

 Processor transfers control to exception
routine

 Flush Instruction in ID stage (Control: ID.Flush
Or’ed “HDU Stall Signal”)

 Flush Instruction in EX stage (Control:
EX.Flush)

 Flush instruction in IF Stage (nop)
 Save offending address (+ 4 bytes) in EPC

Exceptions in a Pipelined Computer
Actions

Computer Architecture CS 35101-002 43

 Increase depth of pipeline to overlap more
instructions (Instruction Level Parallelism)
 Move from 5-stage to an n-stage (n>5)
 Increases throughput per clock cycle

 Launch more than one instruction (IF) per clock
cycle (multiple issue)
 Replicate internal components in datapath (hardware cost)

 Loop Unrolling
 Better scheduling of sequential and iterative access to an

array
 Make several copies of the loop body and re-schedule in a

single step (copies must be independent)

Advanced Pipelining
Extracting More Performance

Computer Architecture CS 35101-002 44

 Dynamic Multiple-Issue Processor (Superscalar)
 Compiled instructions are scheduled in order
 Processor determines dynamically whether zero,

one or more instructions can be executed in a
given clock cycle (dependency)

 All modern processors are superscalar and issue
multiple instructions usually with some limitations
(e.g., “n”-stage pipeline with “m” instruction issue)

Advanced Pipelining
Extracting More Performance

