
Chapter 6: 
Enhancing Performance with Pipelining
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Overview of Pipelining

 Basic Philosophy
 Assembly Line Operations (factory)

 Goal
 Enhance Performance by increasing throughput

 Our Goal:
 Improve performance by increasing the instruction 

throughput per clock cycle
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Recall (for a single- cycle clock implementation):

Assume Critical Machine Operation Times: Memory Unit ~ 200 ps, ALU and adders ~ 200ps,

  Register file (read/write) ~ 100 ps. Estimate clock cycle for the machine

Single Clock cycle determined by longest instruction period = 800 ps

Single-Cycle Performance
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Pipelined Execution
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Single-cycle vs. pipelined execution
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Pipelining

 What makes it easy?
 all MIPS instructions are the same length (fetch)
 just a few instruction formats ( rs, rt fields are invariant)
 memory operands appear only in loads and stores

 What makes it hard?
 structural hazards:   suppose we had only one memory
 control hazards:  need to worry about branch instructions
 data hazards:  an instruction depends on a previous instruction

 We’ll talk about data hazard and forwarding, stalls and branch 
hazards

 We’ll talk about exception handling
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Pipelining

 Increases the number of simultaneous 
executing instruction

 Increases the rate at which instructions are 
executed

 Improves instruction throughput
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A Pipelined Datapath
Five-stage Pipeline

 Five-stage Pipeline
 Up to five instructions can be executed in a clock cycle

 Single-cycle datapath can be divided into five stages 
(refer to Fig 6.9):

1. IF: Instruction Fetch
2. ID: Instruction Decode and register file read
3. EX: Execution and Address Calculation
4. MEM: Data memory Access
5. WB: Write Back

How does information flow in typical auto assembly plant?
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 Information Flow:
 In general from Left to Right (1->2->3->4->5)
 The WB stage of step 5 writes data into register file 

of the ID stage in step 2
 5 -> 2

 The MEM stage of step 4 controls the multiplexor 
in the IF stage of step1
 4 -> 1

A Pipelined Datapath
Five-stage Pipeline

Refer to Figure 6.9 for schematic illustrations
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 Five stages are interconnected by 4 Pipeline 
Registers (latches)
 Registers must be wide enough store information

A Pipelined Datapath
Five-stage Pipeline

WB

          
MEMEX

 

 IDIF

IF/ID ID/EX EX/MEM MEM/WB
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 Example:
 lw $s1, 100 ($s0)
 lw $s2, 200 ($s0)
 lw $s3, 300 ($s0)

A Pipelined Datapath
Five-stage Pipeline

Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.
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 A Pipelined Datapath
Five-stage Pipeline

Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.

1. IF stage:  Fetches the first, second and third lw  instructions in cycles CC1, CC2 and CC3 resp.

2. ID stage: Reads the rs register ($s0) for the first, second and third instructions in cycles 
                           CC2, CC3 and CC4 respectively
4. EX stage:    Calculates the memory address for the first, second and third instructions during clock cycles
                           CC3, CC4, and CC5 respectively
6. MEM stage: Fetches memory words at addresses 100, 200, and 300 during clock cycles
                           CC4, CC5, and CC6, respectively
8. WB stage:   Copies the memory words into registers $s1, $s2, and $s3 during clock cycles
                           CC5, CC6, and CC7, respectively

Each instruction execution takes 5 clock cycles in the pipeline
The 3 lw instructions take 7 clock cycles to execute
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 A Pipelined Datapath
Five-stage Pipeline Registers

IF/ID Latch: Holds fetched instruction and incremented PC
    Allows the ID stage to decode instruction 1, while IF stage fetches instruction 2

ID/EX Latch:  Stores the sign-extended immediate value and values fetched from register rs and rt
    Allows EX stage to utilize stored values, while the ID stage decodes Inst. 2 and the IF stage fetches 

   register for instruction 3
EX/MEM Latch: Stores the branch target address, the ALU result, ALU output bit and value in the rt 

     register
         Allows MEM stage to use stored values, while EX and ID stage execute the following   
         instructions

MEM/WB Latch:      Stores ALU result and Data read from memory
             Allows WB stage to use stored data, while data memory fetches data for the following 
       Instruction

 
Time (in clock cycles) --------------

WBMEMEXIDIFlw $s3, 300 ($s0)

WBMEMEXIDIFlw $s2, 200 ($s0)

WBMEMEXIDIFlw $s1, 100 ($s0)

CC7CC6CC5CC4CC3CC2CC1

Inst.
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Pipelined Control

 What needs to be controlled in the auto assembly plant 
environment?

 Use a Distributed control Strategy:
 Instruction Fetch and PC Increment (control signal always asserted)

 Instruction Decode / Register Fetch  
 Execution Stage:

 Set RegDst, ALUOp, and ALUSrc ( Refer to Fig. 6.23 and 6.24)

 Memory Stage:
 Set MemRead and MemWrite to control data memory (Fig. 6.24)

 Write Back
 MemtoReg controls the multiplexor and RegWrite stores the multiplexor output 

in the register file

 Pass control signals along just like data (Refer to Fig 6.26)
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Announcement

 Your bonus questions will be due on Friday 
(Dec. 16th) afternoon (5:00pm). 

 Homework 5 will be due this Friday (Dec. 9th) 
afternoon (5:00pm). You can expect the 
homework solutions by next Monday night. 

 Extra class: Dec 8th/Thursday from 5:15pm at 
room 108! 

 Final: Dec. 14th/Wednesday at 5:45pm at 
room 115! 
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Review (1) 

 Instruction execution can be broken down into five 
stages
 Instruction fetch (IF)
 Instruction decode and register fetch (ID)
 Execute (EX)
 Memory access (MEM)
 Write back (WB)

 Every instruction goes through all five stages
 Results are only written to the register file in WB
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Five-Stage Pipeline
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Hardware Usage

IM Reg DM RegALU

IM Reg DM RegALU

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7
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lw $2, 200($0)
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(in instructions)

lw $1, 100($0) IM Reg DM RegALU
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Pipelined Datapath
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Datapath and Control Signals
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Control Signal Propagation
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Data Hazard and Forwarding

Consider the following sequence of Instructions: 
 sub $2,$1,$3  # writes a new value into $2
  and $12,$2,$5 # uses new value in $2
  or $13,$6,$2 # uses new value in $2
  add $14,$2,$2 # uses new value in $2

  sw $15,100($2) # uses new value in $2 

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $13,$6,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.
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 When does $2 receive the new value computed by the sub instruction?
  When the WB stage writes $2 during CC5. 
 When does the and instruction read $2?
 When the ID stage fetches $2 during CC3.
 The and instruction will actually read the incorrect old value stored in $2 instead of 

the new value computed by the sub instruction.
 The or instruction will also read the incorrect old value in $2.

Data Hazard and Forwarding

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $13,$6,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.
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 The add instruction reads register $2 during CC5 - does it read the old 
value or the new value? It depends on the design of the register file. 

 We assume the new value is written into $2 by the WB stage before 
the ID stage reads $2 so the add instruction reads the correct value. 

 The sw instruction will also read the correct new value in $2 during 

CC6. 

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Data Hazard and Forwarding
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 In this example, the and and or instructions have encountered data 

hazards
 They read a register (or two) too early, i.e., before previous instructions 

have loaded the register(s) with the correct value(s). 

Data Hazard and Forwarding

WBMEMEXIDIFsw $15,100($2)

WBMEMEXIDIFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.
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 Solution #1:
 insert two nop instructions between the sub and and instruction:

Data Hazard and Forwarding

WB

CC11

MEM

WB

CC10

EXIDIFsw $15,100($2)

MEMEXIDIFadd $14,$2,$2

WBMEMEXIDIFor $13,$6,$2

WBMEMEXIDIFand $12,$2,$5

CC9CC8

Time (in clock cycles) --------------

WBMEMEXIDIFnop

WBMEMEXIDIFnop

WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Inserting the nop instructions delays the and and or instructions two clock cycles
Eliminates the data hazard for the and and or instructions.
Performance cost of two extra clock cycles. 
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Data Hazards and Forwarding
Forwarding
 The sub instruction result is stored in the EX/MEM pipeline register at the end of 

CC3
 The add instruction could read the $2 value from the EX/MEM pipeline register and 

use it during CC4
 The or instruction could read the $2 value from the MEM/WB pipeline register and 

use it during CC5

    WBMEM    EXIDIFsw $15,100($2)

    WBMEM    EXID  IFadd $14,$2,$2

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFor $13,$6,$2

WBMEM  EXIDIFadd $12,$2,$5

   WBMEMEXIDIFsub $2,$1,$3

CC7CC6CC5CC4CC3CC2CC1

Inst.

Use Temporary Results. Don’t’ wait for results to be written
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Data Hazards and Forwarding
Can’t always Forward

Consider the following sequence of Instructions: 
 lw  $2, 20($1)  # load a new value into $2
 and $4,$2,$5 # uses new value in $2
  or $8,$2, $6 # uses new value in $2
  add $9,$4,$2 # uses new value in $2
  slt $1, $6,$7  

    WBMEM    EXIDIFslt $1, $6,$7

    WBMEM    EXID  IFadd $9,$4,$2

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFor $8,$2, $6

WBMEM  EXIDIFadd $4,$2,$5 

   WBMEMEXIDIFlw  $2, 20($1)

CC7CC6CC5CC4CC3CC2CC1

Inst.
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WBMEMEXIDIFslt $1, $6,$7

    WBMEM    EXIDIFadd $9,$4,$2

    WBMEM    EXID  IFor $8,$2, $6

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFadd $4,$2,$5 

WBMEM  EXIDIFnop 

   WBMEMEXIDIFlw  $2, 20($1)

CC7CC6CC5CC4CC3CC2CC1

Inst.

 Load Word can cause a hazard
 Instruction reads a register following a load instruction that writes 

to the same register

 Need a hazard detection unit to “stall” the load instruction

Data Hazards and Stalls
Hardware solution
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 Data Hazards and Stalls
Load Delay

 Load Delay
 load word is immediately followed by Arithmetic 

Instruction (e.g., add, subtract) that uses loaded 
operand

 load word is immediately followed by instruction 
using the loaded operand to compute memory 
address

Compiler re-arranges code to eliminate a many load delays as possible
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 Software Approach
 Compiler inserts a nop instruction after the load

 Hardware
 Pipeline control creates a stall

Data Hazards and Stalls
Load Delay Solution

How does hardware detect load delay?
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 Load Delay Detection

 The MemRead control signal in ID/EX register is set to 1

AND
 RegisterRT index in the ID/EX register == RegisterRS index

AND/OR
 RegisterRT index in the ID/EX register == RegisterRt index in the IF/ID 

register

 To stall an instruction (in a pipeline stage)
 Inhibit clock pulse to pipeline register before stage

 The register keeps old instruction instead of next
 Instruction in front of pipeline must also be stalled
 Instructions in rear of pipeline continue to flow to create a gap (bubble)

Data Hazards and Stalls
Hardware Load Delay Solution
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Data Hazards and Stalls
Installing stall

sub

addsubCC7

(gap)addsubCC6

lw(gap)addsubCC5

lw(gap)addsubCC4

lwadd-stallsub –stallCC3

lwaddCC2

LwCC1

WBMEMEXIDIFClock Cycle

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFsub $3,$0, $

WBMEM  EXIDIFadd $2,$1,$1 

   WBMEMEXIDIFlw  $1, 0($4)

CC7CC6CC5CC4CC3CC2CC1

Inst.
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 When we decide to branch, other instructions are in the pipeline!
 Consider:
beq $s1, $s3, Load

and S12, $2, $5

or $13, $6, $2

add $14, $2, $2

….

Load lw $4, 50($7)

If $1 != $3  Machine executes fall-thru

If $1 == $3  Machine sends control to the branch target address

 (the lw instruction)

Branch Hazards 

Suppose branch is taken  ($1 == $3)
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Branch Hazards
Example: Branch taken 

    WBMEM    EXIDIFlw

    WBMEM    EXID  IFadd

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFor 

WBMEM  EXIDIFand 

   WBMEMEXIDIFbeq

CC7CC6CC5CC4CC3CC2CC1

Inst.

beq $s1, $s3, Load
and S12, $2, $5
or $13, $6, $2
add $14, $2, $2
Load: lw $4, 50(7)

CC3:  EX Stage $s1 ? $s3
CC4:  MEM Stage sets PC to branch Target address
…..
CC5:  IF Stage fetches the lw instruction

Pipeline incorrectly executes leading instructions before executing branch
Branch Hazard
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 Assume Branch will not be Taken
 Allow the fall-thru instructions to execute sequentially
 Flush the instructions if MEM stage discovers that branch should be taken (change 

instruction to a nop in a pipeline)

 Reducing Delay of Branches
 Add hardware to ID stage to test branch condition and compute target address
 Penalty is only one cycle instead of three cycles

 Dynamic Branch Prediction
 Add branch-target-buffer (BTB) to hardware

 Records target address of every taken branch + address of branch instr.
 the PC equals an address in BTB entry  The IF stage sets PC to branch target 

address in BTB for the following cycle 
 Instructions from BTB flow thru’ pipeline immediately; and flushed if branch is not 

taken
 Fall-thru’ Instructions, follow the pipeline, and are flushed if branch is taken

Branch Hazards
Solution 
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 Exception
 Any unexpected change in program control flow 

 Interrupt: Exception caused by an external event (I/O 
device) 

 Used to detect overflow

Exceptions

Examples of events that trigger exception

ExceptionHardware Malfunctions

ExceptionUsing an undefined 
Instruction

ExceptionArithmetic Overflow

ExceptionInvoke OS from User program

InterruptI/O Device Request

ScenarioEvent Type
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How Exceptions are Handled
MIPS

 Triggers:
 Using undefined Instructions
 Arithmetic Overflow

 Actions
 Processor saves address of offending instruction in EPC
 Processor transfers control to OS
 OS Performs appropriate action depending on event

 Predefine action in response to overflow or
 Stops execution of program and report error

 OS either terminates program or returns control to Processor
 Processor uses EPC to restart program execution (fetch the next 

Instruction)
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 Consider an Arithmetic Overflow:
 add $1, $2, $1 

Exceptions in a Pipelined Computer

Memory read completion (WB)

Reg [IR[15:11]] <= ALUOutMemory access or R-type completion (MEM)

ALUOut <= A op BExecution, address computation, branch/jump completion 
(EX)

A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]

ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Instruction decode/register fetch (ID)

IR <= Memory[PC]

     PC <= PC + 4  

Instruction fetch (IF)

Action for R-type InstructionsPipeline Stages

Overflow detected in the EX Stage
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Exceptions in a Pipelined Computer

WBMEMEXIDIFslt $1, $6,$7

    WBMEM    EXIDIFadd $9,$4,$2

    WBMEM    EXID  IFor $8,$2, $6

CC9CC8

Time (in clock cycles) --------------

    WBMEMEX  IDIFadd $4,$1,$5 

WBMEM  EXIDIFsub $3, $2, $1 

   WBMEMEXIDIFadd $1, $2, $1

CC7CC6CC5CC4CC3CC2CC1

Inst.

CC3: EX/MEM Pipeline Register is contaminated
CC4: Trailing instruction (sub $3, $2, $1) references corrupt data in EX stage
CC4: Trailing instruction (add $4, $1, $5) references corrupt data in ID stage
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 Processor transfers control to exception 
routine

 Flush Instruction in ID stage (Control: ID.Flush 
Or’ed “HDU Stall Signal”)

 Flush Instruction in EX stage (Control: 
EX.Flush)

 Flush instruction in IF Stage (nop)
 Save offending address (+ 4 bytes) in EPC

Exceptions in a Pipelined Computer
Actions
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 Increase depth of pipeline to overlap more 
instructions (Instruction Level Parallelism)
 Move from 5-stage to an n-stage (n>5)
 Increases throughput per clock cycle

 Launch more than one instruction (IF) per clock 
cycle (multiple issue)
 Replicate internal components in datapath (hardware cost)

 Loop Unrolling
 Better scheduling of sequential and iterative access to an 

array
 Make several copies of the loop body and re-schedule in a 

single step (copies must be independent)

Advanced Pipelining
Extracting More Performance
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 Dynamic Multiple-Issue Processor (Superscalar)
 Compiled instructions are scheduled in order
 Processor determines dynamically whether zero, 

one or more instructions can be executed in a 
given clock cycle (dependency)

 All modern processors are superscalar and issue 
multiple instructions usually with some limitations 
(e.g., “n”-stage pipeline with “m” instruction issue)

Advanced Pipelining
Extracting More Performance


