Generating Parameter Comments and Integrating with Method Summaries

Giriprasad Sridhara, Lori Pollock and K. Vijay-Shanker
Department of Computer and Information Sciences
University of Delaware
Newark, DE 19716 USA
{gsridhar, pollock, vijay}@cis.udel.edu

Abstract— An important part of the leading comments for
a method are the comments for the formal parameters of
the method. According to the Java documentation writing
guidelines, developers should write a summary of the method’s
actions followed by comments for each parameter. In this
paper, we describe a novel technique to automatically generate
descriptive comments for parameters of Java methods. Such
generated comments can help alleviate the lack of developer-
written parameter comments. In addition, they can help a
programmer in ensuring that a parameter comment is current
with the code. We present heuristics to generate comments that
provide a high-level overview of the role of a parameter in a
method. We ensure that sufficient context is provided such
that a developer can understand the role of the parameter
in achieving the computational intent of the method. In the
opinion of nine experienced developers, the automatically
generated parameter comments for methods are accurate and
provide a quick synopsis of the role of the parameter in
achieving the desired functionality of the method.

Keywords-documentation, software maintenance

I. INTRODUCTION

Often developers would like a high-level overview of the
computational intent of a particular method without having
to read the entire method body. For instance, in response to
a user query, a concern location tool [1] might return just
the signature of each relevant method. When the signature
does not provide enough details about a method to further
distinguish relevance to the maintenance task, a high-level
overview of the method’s functionality can be obtained from
the leading summary comments, either manually written by
the developer or automatically generated from the method
source [2].

For the method in Figure 1, the developer-written sum-
mary is “create and start meta server”. While this summary
furnishes a succinct abstraction of the method’s computa-
tional intent, it does not describe the role played by the
parameter args. Typically, developers document the role
of a parameter by comments (marking such comments in
Java by the @param tag). For Figure 1, the developer
wrote the parameter comment ‘ ‘@param args: the command
line”. Unfortunately, this comment does not state how the
parameter is used. Note that the parameter is used only in

This material is based upon work supported by the National Science
Foundation Grant No. CCF-0702401 and CCF-0915803.

Line 4. Even if a comment phrase is generated based on
this line, such as, “port is obtained using the given args”,
the comment still does not link the usage of the parameter
args to the abstraction of the method’s computational intent,
(captured by the developer’s comment “create and start meta
server”, extracted from Lines 14 and 19).

We believe that it would be more desirable for the
parameter comment to suggest how it is used in the context
of the computational intent of the method. In this example,
the linkage to the computational intent can be captured by
noting that port is used to create metaServer (Line 14).

1 public static void main(String[] args) {

2 int port = -1;

3 try {
port = Integer.parselnt(args([0]);

} catch (ArraylndexOutOfBoundsException e) {
printin("Usage: java MetaServer PORT_NUMBER");
System.exit(-1);

} catch (NumberFormatException e) {
printin("Usage: java MetaServer PORT_NUMBER");

10 System.exit(-1);

}

woNoOU ™

12 MetaServer metaServer = null;

13 try {

14 metaServer = new MetaServer(port);

15 } catch (IOException e) {

16 logger.warning("Could not create MetaServer!");
17 System.exit(-1);

18 }

19 metaServer.start();

20 }

Figure 1. Running example Java Method : We use lines 4 and 14 to
generate parameter comments and link to the method’s intent.

In this paper, we present what we believe is the first
known technique to automatically generate comments for
parameters of a method. For the parameter in Figure 1, our
system can automatically generate the comment:

@param args: create meta server using the port
obtained from the parameter

Our system is customizable and is also capable of pro-
ducing a more concise comment:

@param args: create meta server using the param
or a more detailed comment:

@param args: parse integer and get port using

the parameter. create meta server using the port

We believe that the automatically generated comments
provide a reasonably accurate high-level overview of the
role of the parameter args, linking it to the computational
intent of the method. Furthermore, a summary with added

information about the parameter role provides more insight
into the method’s functionality than the original developer’s
comment in this example.

For many formal parameters, there exist no developer-
written comments. For instance, in 18 open-source projects
including Azureus (Vuze) and JHotDraw, the percent of
methods that have one or more parameters but no @param
comments ranges from 31% to 97%. Cumulatively, across
all 18 projects, only 19% of the 99,316 formal parameters
have an @param comment. This suggests that a tool that
can automatically generate parameter comments based on
the current method code could significantly enhance the
documentation of such legacy systems while alleviating the
software maintainer from the tedious task. Beyond dealing
with a lack of parameter comments, the automatic param-
eter comment generator could help a developer in keeping
existing documentation current with the source code.

Our algorithm takes a Java method as input and analyzes
the usage of each formal parameter to synthesize their main
role in the method’s functionality and their relevance to
the method’s intent. The output can be tailored to generate
individual @param comments and/or augmented method
summaries with varying levels of detail involving the pa-
rameter usage within the context of the summary. The next
section describes the unique challenges addressed, focusing
on the significant challenges new to this problem, beyond
previous work on summary comment generation [2]. We
leverage both programming language syntax and semantic
information as well as linguistic clues embedded in the
developers’ naming of entities. To synthesize succinct natu-
ral language descriptions to express the parameter role, we
utilize advanced text generation techniques. Our automatic
system involves analysis of source code only, requiring no
execution information, and thus can be applied to incor-
rect, incomplete, and unexecutable legacy systems. Since
the analysis is local to a method, this capability can be
integrated easily into an IDE to provide current descriptions
of parameters as a software developer completes editing a
given method.

This paper presents the following main contributions
beyond the state of the art:

o Heuristics to automatically identify the main role of

a formal parameter within a method, and to connect
the formal parameter with the method’s computational
intent such that a reader can gain a high-level perspec-
tive of a method’s functionality and the purpose of the

parameter in fulfilling that functionality.
« Heuristics to automatically generate succinct, accurate

phrases for a formal parameter. The generated com-
ments can be in the form of stand-alone parameter com-

ments or can be integrated with the method summary.
« An evaluation by experienced developers of the accu-

racy, utility and necessity of the generated parameter
comments and augmented method summaries.

In the opinion of nine experienced developers, the gen-
erated parameter comments and augmented summaries for
methods are accurate and are useful in providing a quick
overview of the role played by the parameter in achieving
the desired functionality of the method.

II. CHALLENGES

Overall, documentation needs to be accurate with respect
to the source code, and contain information that is useful
for the intended purpose of the particular documentation.
Users also prefer documentation that is complete and at an
appropriate level of detail [3]. For parameter comments, our
goal was to generate comments that provide an accurate and
useful synopsis of the main role of the parameter within the
method. We also had the goal of ensuring that the generated
parameter comments were connected to the computational
intent of the method.

Given a method M and a representation of its computa-
tional intent, these goals pose two major challenges:

o Determining the main role of each parameter in the
overall method’s intent and which statements imple-
ment that role

o Identifying the linking context between a parameter
used in its main role and the method’s intent

Identifying Parameter Role and Corresponding Uses.
A method typically uses each parameter in more than
one statement. However, the @param comments written by
developers do not necessarily describe every statement in
which a parameter is used, but rather emphasize the usage
within one or more statement(s) that represent the important
role of the parameter. Thus, when a formal parameter is
used in more than one statement, an important challenge is
to automatically determine which among these statements
represent the primary usage of the parameter.

On the surface, this challenge appears similar to selecting
the key lines of code to be included in an automatically
generated method summary comment from among all the
method statements [2]. However, in summary generation,
the selection is guided by patterns of characteristics such
as location within the method body, data and control de-
pendences, relation to other statements in the summary and
role in programming, with the goal of finding characteristics
similar to beacons [4] for summary comments. In contrast, to
identify the major role of a given parameter, the challenge
is to estimate the “closeness” of each of the uses of the
parameter with the computational intent of the method, and
then use the closeness as an indicator of how important the
particular usage is to the parameter’s major purpose. The
open questions are: (1) How do we measure “closeness” of
a parameter use to the computational intent of a method?
(2) In order to measure closeness, how do we represent a
method’s computational intent? (3) How do we use closeness
to identify the main role of a parameter in the method?

Identifying Linking Context to Computational Intent.
According to the Java documentation writing guidelines for
a method [5], developers should write a summary of the
method’s computational intent followed by comments for
each parameter, followed by comments about the return
values, exception handling and so on. Thus, in a good
system, a parameter’s comments are always associated with
a summary. Therefore, an important challenge is not only
producing parameter comments but ensuring that they are
placed in context of the method’s summary. We call the
variables and statements that link a particular parameter’s
usage in its main role to the method summary the linking
context for that parameter. Sometimes, the linking context
is already identified as part of the statement containing
the parameter’s main role, while other times it involves
additional statements within the method.

Thus, determining the linking context presents several
challenges: (1) Which code artifacts, including individual
variables and statements, provide the linking context for a
particular parameter? (2) How do we automatically identify
these linking artifacts? (3) How can we generate natural
language phrases that link a parameter comment with a
method summary using the linkage context information?
(4) How do we ensure that the overall generated leading
comment is not too verbose? The text generation, challenge
(3), can leverage our previous work on automatic summary
generation [2], with minor modifications; however, the re-
maining challenges are significantly different from automatic
summary generation.

III. FOUNDATIONS

Our automatic parameter comment generator uses both
structural and linguistic information extracted from a given
method’s signature and body. This information is obtained
by leveraging existing techniques [6]-[8]. This section
presents an overview of how that information is extracted
and represented, as well as our representation of the com-
putational intent.

A. Structure and Linguistic Information

We use information available in several common pro-
gram representations in combination with information from
naming conventions and linguistic knowledge gained from
observations of thousands of Java programs. In particular,
we use information from the control flow graph, control
and data dependences (def-use chains), along with textual
clues which we obtain from the Software Word Usage Model
(SWUM) [6] of the program.

Identifiers must be split into component words, before any
word usage information can be extracted from names used
in the program. We use camel case splitting, which splits
words based on capital letters, underscores, and numbers
(e.g., childXMLElement would be split into “child XML
Element”), and aspects of more advanced splitting [7]. As

in any system that uses linguistic information, our technique
will be hindered if the source code does not include at
least some meaningful variable, method, and type names. We
believe this requirement is reasonable, given that developers
tend to choose long and descriptive names for highly visible
program entities such as methods and types [9].
Readability of the generated descriptions and the accu-
racy of our analysis can be reduced due to abbreviations
in variable and type names (e.g., Button butSelectAll,
MouseEvent evt). We use techniques from prior work [8]
to automatically identify and expand abbreviations in code.
The Software Word Usage Model (SWUM) [6] provides
us with the necessary linguistic information beyond indi-
vidual word frequencies necessary to generate parameter
comments. SWUM not only captures the occurrences of
words in code, but also their linguistic and structural re-
lationships. SWUM has been successfully used in concern
location, summary comment generation and high-level ac-
tion identification for Java methods [1], [2], [10].
Particularly, we use SWUM to obtain the action, theme,
and optional secondary arguments of a method to generate
succinct and smooth descriptions, and, in conjunction with
program structure, we use this information to identify the
statements that need to be used to describe a parameter, and,
statements that need to be used to integrate the parameter
comments with the computational intent of a method.
Consider the example method signature List.add(ltem i),
which can be captured by the phrase, “add item to list.” In
this example, the action is “add”, the theme is “item” and the
secondary argument is “(to) list”. Further, in this example,
the location of the theme is the given parameter while the
location of the secondary argument is the receiver object. In
addition to these locations, a theme or secondary argument
can be the method name itself (e.g., buildMenu()).

B. Automatically Determining the Computational Intent

To determine closeness of a given parameter use to the
computational intent of the method, we need a representation
of the method’s intent. In particular, we need to identify the
code statements that provide the content for a high-level
overview of the method’s intent. Developer-written com-
ments could potentially be used to represent the method’s
intent. However, automatically determining that a leading
comment is a summary comment, as opposed to other types
of comments and mapping the developer-written summary
back to individual statements within the method body is
not a trivial task. Further, for many methods, there are no
developer-written summaries.

Thus, to determine the intent of a method, we auto-
matically generate a summary for the method using the
summary comment generator defined previously by us in [2].
Using the structural and linguistic information from a given
method, our summary generator selects the content that
should be present in a summary and generates succinct

1 void buildResourceltem(ResourceType r, TreeNode parent) {

2 Imagelcon icon=library.getScaledBonusimagelcon(r,0.75f); X
3 TreeNode n= new TreeNode(new Treeltem(r,r.name,icon));%
4 }parent.add!n)’

5

Figure 2. Link To Summary Via Variable in Summary Phrase (Variable
n) : We choose Line 3 and not Line 2 to describe the parameter r

natural language phrases to describe the selected content.
We use the generated summary as a representation of the
method’s intent.

IV. GENERATING PARAMETER COMMENTS

To gain insight into closeness and linking context, con-
sider the example method in Figure 2 which has two parame-
ters parent and r. The computational intent is approximately
captured by the generated summary “add tree node to the
given parent tree node”, which is derived from Line 4.

The parameter parent already appears in the summary
phrase and thus nothing needs to be done to determine the
major role and integrate the parameter comments for parent
with the intent of the method. The parameter r is used on
both Lines 2 and 3. On Line 3, the parameter r is used
to define the variable n, which appears in the summary.
We generate the phrase “create tree node using the given
resource type” for Line 3. The noun phrase “tree node” in
this phrase overlaps with the noun phrase “tree node” in
the method summary, thereby integrating closely with the
generated summary already. For Line 2, we would generate
a phrase such as “get image icon from library using the given
resource type”. This phrase has no common words with the
summary. To link Line 2 with the summary, we would have
to include Line 3 as its linking context. In contrast, Line
3 links to the summary without the need for another line.
Thus, we consider the parameter usage on Line 3 closer to
the computational intent of the method than Line 2.

Approach. The major steps of our approach are depicted in
Figure 3. The input is a Java method along with the method’s
structural and linguistic representations, which are described
in Section III. The input also includes a representation
of the computational intent of the method. As described
in Section III-B, we use the generated summary for the
method [2] to represent the intent. Along with the actual
phrase(s) constituting the summary, the input also contains
the sUnit(s) from which the phrase(s) were generated. We
use the notion of an sUnit defined previously in [2] as a
Java statement, except when the statement is a control flow
statement; then, the sUnit is the control flow expression with
one of the if, while, for or switch keywords.

We first use def-use information to identify all uses of
the parameter. To identify the most important uses, we first
prune the uses that can be disqualified as irrelevant to the
parameter’s major role in the method (Step 2 in Figure 3).
Second, we estimate closeness of the remaining uses to the
computational intent along with identifying linking context

information (variables and statements) (Step 3 in Figure 3).
We select the closest sUnit and generate phrases for the
parameter comment and integrated summary comment us-
ing the linking context information. At this point, rules
for generating more concise comments can be applied as
desired by the tool user. The following subsections describe
the major steps in our approach - pruning, closeness and
linking context identification, phrase generation and phrase
transformation (i.e., steps 2, 3, 5 and 6).

Input:
1. Method M (signature + body)
2. Structural and Linguistic Representations of M
3. Computational Intent of M
(Represented by the Generated Summary for M)

Output:
Comment phrases for each formal parameter of M
which are connected to the computational intent of M.

Process:
For each formal paramter fp of M:

Step 1: Find AllUsesSet i.e. all sUnits in which fp is used.

Step 2: If needed, prune any unimportant sUnits from
AllUsesSet such that at least one sUnit remains.

Step 3: For each remaining sUnit:

Estimate how close the sUnit is to M's computational intent.
Also identify linking context information
(i.e., additional sUnits and variables needed for linking the
sUnit to the computational intent)

Step 4: Select sUnit (s) closest to M's computational intent

Step 5: Generate phrases for the selected sUnits and any
additional sUnits in the linking context information.

Step 6: Apply transformations to create concise parameter
comments, depending on user choice

Step 7: Depending on user preference, place the comments :
1. As an @param comment
2. As an addition to the existing summary for M

Figure 3. Overview of Approach: Generate Parameter Comments and
Integrate with Method’s Computational Intent

A. Step 2: Prune Uses

This step performs the first part of finding the most
important uses of a parameter. The main heuristic behind
pruning is to prune uses of the formal parameter that are less
likely to be executed from consideration as the major role
in the method. We statically estimate the relative execution
frequency by adapting some of the heuristics described
in [11]. For example, the heuristic references are typically
not null prunes based on known predicates, i.e., given an if
statement of the form if (X != null) ... else ..., the then block
is more likely to execute than the else block. Similarly,
given if(x < 0) ... else ..., the else block is more likely to
execute. In Figure 4, the formal parameter guiName is used
on Lines 2, 4, 6 and 8. The primary role of the parameter is
in the definition of the mainGUI object, on Line 4 (Line 4
gets the GUI to be started). Line 6 will be executed if and
only if mainGUI is null. Hence, according to [11], Line 6
is less likely to execute and will be pruned.

Other examples that indicate relative frequency of exe-
cution are an if or else block that (1) ultimately throws

void startGUI(String guiName, String[] args) {
assertTrue(guiName != null, "guiName must be non-null");
assertTrue(args != null, "args must be non-null");
IMegaMekGUI mainGui = getGui(guiName);

if (mainGui == null)
displayMessageAndExit(UNKNOWN_GUI_MESSAGE+guiName);
else {

StringBuffer message = new StringBuffer("Starting GUI"+guiName);
dumpArgs(message, args);

10 displayMessage(message.toString());

11 mainGui.start(args);

12 }

13}

CONOUBAWNE

Figure 4. Eliminating a use of the formal parameter (Line 6) in an
infrequently executed block (Line 5).

an exception or (2) returns the formal parameter without
modifying it (i.e., there are no assignments to the parameter
before it is returned).

Additionally, we use some heuristics similar to those used
to remove unnecessary sUnits from a method summary [2].
We select those sUnits that call a method with the same
action as the method under analysis and prune other sUnits.
For example, in Figure 5, the parameter shell is used on
Lines 2 and 3. However, the action for the call on Line
2 is the same as the action of the method (i.e., remove).
Thus, we delete Line 3. We also prune sUnits that deal
with logging, exception handling and sanity checks. After
all these heuristics are applied, we prune sUnits containing
an outer-most method call that is a get, set or a constructor.
If at any time during pruning, a heuristic would prune the
only remaining use, we keep the last use not pruned yet, so
there is at least one use for generating a parameter comment.

B. Step 3: Estimate Closeness to Method’s Intent and Iden-
tify Linking Context

This step performs the second part of finding the most
important uses of a parameter. In order to do so, we estimate
the closeness of a given parameter use to the method’s
computational intent. This step also finds the linkage context.
We describe the closeness estimation heuristics here. The
cases are described from closest to computational intent
to farthest, with increasingly more linking context to be
generated.

1: Parameter already appears in the summary text.
Here the chosen sUnit for parameter comment has also
been selected for inclusion in the method summary by the
heuristics in [2] and the generated phrase for the summary
already mentions the parameter. Hence, the parameter is
already integrated with the summary.

We can use the generated phrase for the sUnit as is for
the parameter comment or transform the phrase into another
form as described in Section IV-D. Figure 5 illustrates
this case. The generated summary already has the phrase
“remove the given shell from the list, shells” which contains
the input parameter shell. We can use this phrase as the
parameter comment or using the transformation templates
defined in IV-D, we can generate “@param shell: which

1 void removeWindow(Shell shell) {

2 shells.remove(shell);
3 notifyRemovelisteners(shell); X
4

}

Figure 5. Parameter already in summary phrase; we choose same-action
use (Line 2) and not Line 3

1 ParserResult importToOpenBase(String argument) {
2 ParserResult result=importFile(argument);

3 if (result !'= null)

4 result.setToOpenTab(true);

5 return result;

61}

Figure 6. Parameter in summary sUnit (Line 2) but not in summary phrase

is removed from the list, shells”. Note that the Java docu-
mentation writing guidelines [5] suggest that the @param
comments should be written for a parameter even when its
description is obvious.

2: Parameter is used in an sUnit selected for the
summary. This case is similar to case 1, with the following
difference: The parameter is used in an sUnit which has been
selected for the method summary, but does not appear in the
text phrases constituting the final summary.

Consider Figure 6. The underlined portions represent
the content chosen for the summary. In the method call
importFile on Line 2, the theme File of the action import
is present in the method name itself. In such cases, a phrase
such as “import file and get parser-result” is sufficient for a
concise summary, though argument was omitted.

However, as far as the formal parameter argument is
concerned, Line 2 represents an important use as the sUnit
on Line 2 has been selected for the summary. We generate
the @param comment “import file using the given argument
string and get parser result’. This provides a link to the
summary and describes the parameter role in the method.

3: A ubiquitous method. Typically a summary comment
for a method does not include ubiquitous operations such
as a setter for brevity. However, the most important use
of a parameter can be in such an ubiquitous method (e.g.,
Line 4 in Figure 7). In such cases, we generate a phrase
for this important parameter use but do not integrate the
generated parameter comment phrase with the summary. In
Figure 7, the summary consists of the underlined sUnits. The
role of the parameter C is not immediately obvious from
the signature alone. From Line 4, where the parameter is
used, we generate the stand-alone parameter comment “‘set
mnemonic to the given character for menu item”.

4: Link to summary via variable in summary phrase.
In this case, the parameter is used in an sUnit to define
another variable (i.e., the parameter is used on the Right
Hand Side of the = operator). The defined variable is
then used in another sUnit which has been selected for the
summary, and summary phrase includes the defined variable.
Figure 2 shows an example of this case. The linking context

1 void addMenultem(String name, char c) {
2 JMenultem mi = new JMenultem();

3 mi.setText(name);

4 mi.setMnemonic(c);

5 mi.addActionListener(this);

6 _thisMenu.add(mi);

7

}

Figure 7.
(line 4)

Important use of parameter (c) occurs in an ubiquitous method

1 void loadParseURL(String newURL,String cookie,
CleanupHandler cl) {

2 m_parser = new JHTMLParser(this);

3 StringBuffer loadedPage;

4 try {

5 URLConnection uc = Http.getPage(newURL, cookie, null);

6 loadedPage = Http.receivePage(uc);

7 if(loadedPage = null) {

8

if(cl !'= null)
cl.cleanup(loadedPage);
10 m_parser.parse(loadedPage);
11 m_loaded =true;

}
13 } catch(IOException e) {
14 loadedPage = null;
15 ErrorManagement.handleException(e);

6 }
17 if(loadedPage == null) m_loaded = false;
8}

Figure 8. Link to summary via variable (uc) in summary sUnit but not
in Summary Phrase (Line 6). We use Line 5 to describe the parameter,
newURL. We augment the summary phrase on Line 6 for linking.

includes the variable r. We generate the phrase, “create tree
node” using the phrase generation templates in [2]. We then
augment this phrase to include the linking context variable,
“create tree node, using the given resource type”.

5: Link to summary via variable in summary sUnit but
not in phrase. The difference between this case and case
4 is analogous to the difference between the cases 1 and
2. Here, the variable defined using the formal parameter,
is used later on in an sUnit selected for the summary, but
does not appear in the summary phrases. We now generate
a phrase for the sUnit in which the parameter is used and
augment the summary to include the variable defined using
the formal parameter.

Consider Figure 8. The underlined portions represent the
content chosen for the summary. The parameter newURL
is used on Line 5 to define the variable uc. Thus, we
generate a phrase for Line 5, “get URL connection from
Http using the given newURL”. The linking context includes
the variable uc which is used on Line 6. We augment the
phrase generated for Line 6 to include uc, “receive loaded-
page from Http using the URL connection”.

6: Link to summary via intermediate variables. This
case can be viewed as a generalization of case 4 except
that one or more intermediate statements are in the linking
context. For example, consider the Figure 1 in Section I.
The generated summary is ‘“start meta server”’, which comes
from Line 19. On Line 4, the parameter args is used but
the variable assigned on Line 4, port, is not directly used
in Line 19. However, the variable metaServer, which is
in the sUnit chosen for the summary, is defined on Line

1 void addGoods(Goods g,boolean enabled,boolean indent) {
2 String text = (indent? " ":"") + g.toString();

3 JMenultem mi = new JMenultem(text);

4 if (indent)

5 mi.setFont(mi.getFont().deriveFont(ITALIC));

6 if (lenabled)

7 mi.setEnabled(false);

8 add(mi);

9 hasAnltem = true;

10}

Figure 9. Use in a Conditional Expression not part of the Summary (line
6). We use Line 6 and 7 to describe the parameter, enabled

14 by using port. We call port an intermediate variable.
Thus, we generate the following @param comments with
the following phrases from Lines 4 and 14: “parse integer
and get port using the given arguments. create meta server
using the port”. This provides the reader with a better idea of
the role of the parameter args than the phrase produced only
from the sUnit on which it is used (i.e., Line 4). Note that
the rules for generating more concise parameter comments
can be applied to this generated comment as desired by the
tool user.

We use def-use chains to automatically establish the link
between an input parameter and a variable that appears in the
summary. Note that if there is a link to a variable which is
in an sUnit selected for the summary, but does not appear in
the summary phrase, then we augment the summary phrase
to include the intermediate variable.

7: Use in a conditional expression not part of the sum-
mary. Consider Figure 9 for which the underlined sUnits
represent the content for the summary. Often, conditional
expressions such as the one on Line 6 in Figure 9 are
not included in the summary, for conciseness. However, the
important role of a parameter could be in such an expression.
In this example, the important role of the parameter enabled
is on line 6 and the role is not clear from the signature.
Generating a phrase utilizing only the sUnit using the
parameter (Line 6 in Figure 9) is not sufficient to describe
the role of the parameter enabled as it gives a reader no idea
of what is done based on whether enabled is true or false.
Thus, we utilize sUnits within the if block to describe the
parameter. Currently, we select the last sUnit in the then
block. We generate, “if enabled flag is false, set enabled
flag to false for menu item”, which is more meaningful than
generating a phrase from Line 6 alone. We use a similar
heuristic for a parameter that appears in a looping expression
when the loop expression is not a part of the summary.

Illustrative example. We will now describe how the concept
of closeness allows the selection of Line 3 rather than Line
2 for the parameter r in Figure 2. For the sUnit on Line 3,
there is a link to the summary phrase via the variable n. In
contrast, for the sUnit on Line 2 for parameter r, there is a
no direct link to the summary, but from r, we define icon on
Line 2 and from icon, we define n on Line 3. Thus, there is
a link via the intermediate variable n (i.e., via the variable

fp = formal parameter; VP = Verb Phrase; SA = Secondary Argument;
t = transformed phrase; prep = preposition; rem = remaining;
pastPart = past participle

1 IF fp corresponds to theme in the generated VP AND VP has an SA THEN
t= which is <pastPart(action)> <prep in SA> <rem SA>
2 ELSE IF fp corresponds to theme in the generated VP THEN
t= which is <pastPart(action)>
3 ELSE IF fp corresponds to SA in the generated VP
t= <prep in SA> which <theme> is <pastPart(action)>
4 ELSE IF fp does not correspond to theme/SA AND VP has an SA
t= using which, <theme> is <pastPart(action)> <prep in SA> <rem SA>
5 ELSE IF fp does not correspond to theme/SA
t= using which, <theme> is <pastPart(action)>

Figure 10. Relative Clause Transformation Templates

chain r, icon, n to the computational intent).

Our heuristics consider the parameter use on Line 3 to be
closer to the computational intent of the method than Line
2. Thus, we select the sUnit on Line 3 ahead of the one on
Line 2 to generate the parameter comments for r.

C. Step 5: Generate Phrases

Step 4 selects the sUnit(s) closest to the method’s intent
as determined in Step 3. In this step 5, we generate a phrase
for the selected sUnits and any additional sUnits required
to link the parameter comments with the method intent. We
utilize the phrase generation templates defined in [2] with
some modifications to generate phrases. Phrase generation
also involves variable lexicalization [2], in which descrip-
tive noun phrases describing variables are generated with
modifiers extracted through type information. For example,
a variable current is transformed into the more descriptive
noun phrase, current document, based on the type of current.

D. Step 6: Apply Phrase Transformations

In a summary, a selected sUnit is described by a verb
phrase (VP). However, according to convention [5], param-
eter comments are written such that the emphasis is on
the parameter. Therefore, we apply transformations to the
verb phrase that involves the usage of relative clauses to put
the emphasis on the parameter. The current transformation
templates are shown in Figure 10.

Consider the following sUnit mb.add(m) in which m is
a formal parameter for the method under analysis. For this
sUnit the verb phrase “add the given menu to menu bar” [2]
is generated. Applying template 1 of Figure 10 transforms
the phrase into “@param m: which is added to menu bar”.

Consider Figure 1 in which we used the variable chain,
args, port, metaServer to establish a link between the
input parameter args and the method’s intent. While we
can generate verb phrases for Lines 4 and 14, depending on
user preference, we can also merge the phrases into a single
phrase for a concise comment.

Each phrase in the different verb phrases will have a verb;
the challenge is to determine which verb among the multiple
verbs should be used in the resulting single phrase. We use
the leading verb in the verb phrase for the sUnit in which the
last variable in the chain is assigned (Line 14 in Figure 1).

Thus, for Figure 1, we generate “create meta server using
the input arguments”. This can be further transformed into
“@param args: using which, meta server is created”, by
applying template 5 of Figure 10.

E. Additional Parameter Comments

In addition to descriptive comments for parameters, we are
able to extract and add the following information to @param
comments. Often, the actual parameter value across different
call sites can follow a pattern. For example, the actual values
might always be null or the same string value. Consider the
method addToolTo from the open-source project JHotDraw.
Across 53 call sites, the actual parameter value for the fourth
parameter, label, always begins with the word create. Such
a fact might be useful in alerting a caller of the method that
there is some uniformity in the string parameter and he must
adhere to the convention. We scan the call sites and check if
the actual values are always null, the same numerical value
(e.g., 0) or the same boolean value. For string parameters, we
check if the actual call site values are always the same string
literals or the leading words are the same, after splitting the
string literals into their constituent words [7].

Often the formal parameters to a method are always used
together in one or more sUnits. For example, in Figure 8§,
the parameters newURL and cookie are used together. We
mention this fact in the generated comments.

V. EVALUATION

We implemented the heuristics described in Section IV as
an Eclipse plug-in. We leveraged the Eclipse Java Develop-
ment Tools to provide the program structural information,
an implementation of SWUM [6] for linguistic information,
as well as an abbreviation expander [8] and identifier split-
ter [7]. We focused on the following questions:

o What is the accuracy of the generated parameter com-
ments?

o What is the utility of the parameter comments in aiding
a programmer in obtaining a high-level overview a

parameter’s role in a method?
o In helping a developer gain a high-level overview of

the computational intent of a method, what is the utility
of the phrases that we add or modify to integrate the

parameter comments with the method summary?
« Within the context of the summary, what is the necessity

of the phrases that we add or modify to integrate the
parameter comments with the summary?

Our goals are to generate accurate parameter comments,
provide important information about the high-level role of
a parameter, augment the summary with important phrases
when integrating the parameter comments with the summary
and avoid unnecessary additions/modifications to the sum-
mary during the integration.

Procedure. We asked nine human evaluators to judge the
generated comments and answer the above questions. The

programming experience of this group ranges from 4 to
20 years, with a median of 12 years. All the evaluators
considered themselves as expert or advanced programmers.
Four evaluators have software industry experience ranging
from 1 to 7 years.

We ran our prototype on methods from six open-source
Java projects from across different domains. Table I shows
some characteristics of these projects. We generated sum-
mary and parameter comments for all the methods in
these projects, and randomly selected methods for human
judgement. The evaluation task requires an evaluator to
read the entire method to answer the evaluation questions.
Thus, to avoid burdening the evaluators, we restricted the
methods to have at most 25 sUnits. We also did not choose
methods with less than ten sUnits as many such methods can
be read quickly to understand the role of the parameters.
We avoided methods in which all the formal parameters
already appeared in the generated summary phrases. We
also avoided methods in which the role of a parameter
is obvious such as constructors, comparison methods (e.g.,
boolean equals(Object 01, Object 02), methods for which
the underlying SWUM rules and summarization heuristics
are being developed.

Project #Methods | KLOC Project #Methods | KLOC

Freecol 5971 110 JBidwatcher 1877 30

GanttProject | 4956 60 JHotDraw 4267 63

Jajuk 2139 44 MegaMek 9256 200
Table I

SUBJECT PROGRAMS IN STUDY. KLOC: 1000 LINES OF CODE.

18 methods were judged by the developers. The 18 meth-
ods had 33 parameters in all. In integrating the parameter
comments with the method summaries, the automatic param-
eter comment generator added 22 new phrases to existing
summaries. In addition, it augmented 12 existing summary
phrases with additional information leading to a total of 34
modified or added phrases.

We gave each evaluator six methods to examine and to
account for subjectivity in the evaluation, we gathered three
independent opinions per method. Thus, we obtained 54
independent judgements on 18 methods by 9 developers
evaluating independently in groups of 3. To control for any
learning effects, the evaluators in a group did not see the
methods in the same order.

We showed evaluators the body of each method assigned
to them along with the generated summary and parameter
comments. We highlighted the 34 phrases in the summary
that were added/modified to integrate the parameter com-
ments with the summary. To avoid bias, we deliberately
did not provide an explicit definition or examples of a
summary/parameter comment. The evaluators were allowed
to use any resource to help in the evaluation. Table II shows
the questions and answer choices shown to the evaluators.

The questions on Accuracy and Utility-Standalone were
repeated for each formal parameter of the method. Necessity
was asked for each of the 34 phrases added to/modified in
the summary.

Threats to Validity. Our results may not generalize to
other Java programs. To mitigate this threat, we chose
six large open source programs across different domains
representative of typical Java programs. Our conclusions
might not hold with other languages or longer methods. In
the future, we will address portability to other languages and
perform studies with longer methods. It is possible that our
results may not be applicable to beginner Java programmers
since we had no such evaluators in our study. We plan to
conduct a study with such programmers. Finally, we did
not compare with developer-written parameter comments
as such comments can convey information that cannot be
obtained from code (i.e., domain knowledge), and there is
no obvious unbiased way of identifying methods with such
comments.

VI. RESULTS

Accuracy. Table III shows the individual developer re-
sponses and the majority opinion for Accuracy. The results
strongly suggest that the parameter comments that we gen-
erate are indeed accurate. In 89 of the 99 responses (for
33 parameters), developers said that the generated parameter
comment was accurate. When we consider the majority opin-
ion, for 32 of the 33 parameters, a majority of the developers
said that the comments were accurate. In the remaining case,
the “slight inaccuracy” was not due to the parameter per
se, but due to the majority of the developers feeling that
the comment had to include additional information given by
another variable appearing in a method call in the selected
sUnit.

Accurate | Slightly Inaccurate | Inaccurate
Individual Responses | 89 9 1
Majority Opinion 32 1 0
Table 11T

DEVELOPERS’ OPINION : ACCURACY OF PARAMETER COMMENTS

Utility-Standalone. The second column of Table IV shows
the opinions of the developers on the utility of the generated
parameter comments in providing a high-level overview of
the role of the parameter in the method. 47 of the 99 re-
sponses indicate that the generated parameter comments pro-
vided critically important information, while 42 responses
indicate that the comments provided important information.
If we consider the majority opinion per parameter, then
for all 33 parameters, the majority said that the generated
comments provided important or critically important infor-
mation. We believe these are promising results for automatic
parameter comment generation.

Criteria Question

Answer Choices

Accuracy

What is your opinion on the accuracy of the parameter comments?

e Accurate
o Slightly inaccurate
o Inaccurate

Utility-Standalone . . .
oy overview of the role of the parameter in the method?

What is your opinion on the parameter comments in terms of helping you gain a high-level

e Critically important

e Important

o Neither important nor unimportant
e Not important

o Detrimental

Utility-Integrated

What is your opinion on the highlighted text in the summary in terms of helping you gain a
high-level overview of the computational intent of the method?

Same as above

Necessity

What is your opinion on the necessity of each highlighted phrase in the summary?

o Necessary
e Probably unnecessary (but tolerable)
o Definitely unnecessary

Table II
QUESTIONS AND ANSWER CHOICES SHOWN TO EVALUATORS

Utility-Integrated. The third column of Table IV shows the
opinions of the developers on the utility of the added/-
modified phrases to the summary in providing a high-level
overview of the method’s intent. 41 of the 54 opinions
suggest that the added comments to the summary pro-
vided important or critically important information towards
gaining a high-level overview of the computational intent
of the method. For 15 of the 18 methods, the majority
felt that the added comments to the summary due to the
parameters provided important or critically important in-
formation. For no method, did the majority feel that the
added comments were “not important” or “detrimental”.
In 2 of the 18 methods, a majority felt that the added
comments were “neither important nor unimportant”. For
one method, the three opinions ranged from “not important”
to “important”. We analyzed these three methods, and the
reason for the evaluators’ responses are as follows: In
the method URLConnection makeRequest(URL source,
String cookie), the parameter comment for source is “using
which, url-connection is opened”. However, the summary
already contains the phrase “open url-connection”. Once the
summary is seen, it is obvious to an experienced developer
that an URL connection will be opened using the parameter
source and hence the evaluators felt that the modification
to the summary phrase had no impact. There were three
such methods where the role of the parameter was obvious
from the summary/method signature and thus the comments
added to the summary to depict the parameter role were not
perceived by the majority to be “important” or “critically
important” to understand the method’s intent.

Response Parameter Role | Method Intent
5: Critically Important 47 16
4: Important 42 25
3: Neither important nor unimportant 4 10
2: Not important 5 2
1: Detrimental 1 1
[Total [99 [54 I

Table IV
DEVELOPERS’ OPINION : UTILITY OF COMMENTS FOR : OVERVIEW OF
PARAMETER’S ROLE, OVERVIEW OF METHOD’S INTENT

Necessity. Table V shows the opinion of the programmers
on whether the phrases that were added to or modified in
the summary to integrate the parameter comments with the
summary were necessary at the level of the summary. We
had 34 phrases that were added or modified due to the
integration feature, and of the 100 opinionsl, 69 said that
the addition was necessary. Only one opinion suggested
that the addition was definitely unnecessary. According to
the majority, no phrase added or modified was definitely
unnecessary; 25 of 34 phrases were definitely necessary. For
9 of the 34 phrases, a majority felt that the the added or
modified phrases were probably unnecessary (but tolerable)
given that the purpose of a summary is to provide a high-
level overview. The reasons for evaluators feeling that the
phrases were probably unnecessary were due to the same
factors as explained in the paragraph for Utility-Integrated.
We view these results as quite positive overall for automatic
parameter comment generation.

Necessary | Probably Unnecessary | Definitely
but Tolerable Unnecessary
Individual Responses | 69 30 1
Majority Opinion 25 9 0
Table V

DEVELOPERS’ OPINION : NECESSITY OF ADDING THE PARAMETER
COMMENT PHRASES TO THE EXISTING SUMMARY

Summary of Results. The results from our study strongly
suggest that our system has met the stated goals of gener-
ating accurate parameter comments which help a developer
gain a high-level perspective on the role of a parameter in a
method. The system has also met the goal of integrating the
parameter comments with the summary such that a developer
gains a quick overview of the intent of the method.

VII. RELATED WORK

Studies suggest that well written comments can help in
program comprehension [12], [13]. Unfortunately, studies
also suggest that few software projects adequately document

10One evaluator did not evaluate two phrases.

the code to reduce future comprehension and maintenance
costs [14], [15].

Fowler advocates using extremely descriptive identifier
names to obviate comments [16]. Unfortunately, studies
suggest that precise identifiers that accurately describe an
entity lead to very long identifier names which hinder code
readability [9], [17].

There has been some limited work on comment gen-
eration. Semi-automated approaches either automatically
determine uncommented code segments and prompt de-
velopers to enter comments [18], [19], or automatically
generate comments from high level abstractions which the
programmer provides during development [20]. Although
useful for newly created systems, none of the semi-automatic
techniques apply to existing legacy systems.

Previously, we presented heuristics to automatically gen-
erate comments summarizing a given Java method [2].
Our comment generation focused on identifying important
content for the method summary and then generating text
for each selected statement in isolation. The emphasis was
on producing a succinct summary and hence the generated
summary need not contain any reference to the formal
parameters of the method.

We also presented a technique for identifying and describ-
ing high-level actions in statement sequences, conditionals
and loops [10]. However, those heuristics are not applicable
to this problem.

In addition, we are aware of other techniques that could
be used towards generating comments for legacy code [21]-
[24]. However, these approaches are limited to inferring
documentation for exceptions [21], generating API func-
tion cross-references [22], synthesizing method stereotype
information [23] or producing documentation for program
changes between versions [24]. The possibility of using nat-
ural language text summarization techniques to summarize
source code has been explored in [25]. We believe that none
of these techniques are intended for generating descriptive
parameter comments in relation to the method’s intent.

Harman et al. defined key statements as statements through
which the largest part of the program’s dependence appears
to flow [26]. The notion of key statements do not necessarily
help in identifying the main role of a parameter.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, we present the first tech-
nique to automatically generate comments for Java method
parameters, such that the comments provide a high-level
overview of the role of the parameter in facilitating the
envisaged functionality of the method. According to nine
experienced developers, the generated comments are accu-
rate and are useful in providing a quick perspective on the
parameter’s purpose in accomplishing the method’s intent.

We plan to continue to improve our system by analyzing
additional methods with varying features. We will expand

our evaluation to include longer methods and inexperienced
programmers. We plan to explore porting our system to other
languages such as C++.

REFERENCES

[1]1 E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically Capturing Source
Code Context of NL-Queries for Software Maintenance and Reuse,” in Intl
Conf on Software Engineering (ICSE), 2009.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,

“Towards Automatically Generating Summary Comments for Java Methods,”

in IEEE/ACM Intl conf on Automated Software Engineering, 2010.

[3] D. G. Novick and K. Ward, “What Users Say They Want in Documentation,”
in ACM Intl Conf on Design of Communication (SIGDOC), 2006.

[4] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The Roles Beacons Play in
Comprehension for Novice and Expert Programmers,” in Workshop of the
Psychology of Programming Interest Group (PPIG), 2002.

[5] SUN, “How to Write Doc Comments for the Javadoc Tool,” online, http:/
www.oracle.com/technetwork/java/javase/documentation/index- 137868 .html.

[6] E. Hill, “Integrating Natural Language and Program Structure Onformation to

improve Software Search and Exploration,” Ph.D. Dissertation, University of

Delaware, 2010.

E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining Source Code to

Automatically Split Identifiers for Software Analysis,” Intl Working Conf on

Mining Software Repositories (MSR), 2009.

E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock, and K. Vijay-

Shanker, “AMAP: Automatically Mining Abbreviation Expansions in Programs

to Enhance Software Maintenance Tools,” in 5th Intl Working Conf on Mining

Software Repositories, 2008.

B. Liblit, A. Begel, and E. Sweetser, “Cognitive Perspectives on the Role of

Naming in Computer Programs,” in Psychology of Programming Workshop

(PPIG), 2006.

[10] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically Detecting and
Describing High Level Actions within Methods,” in Intl Conf on Software
Engineering (ICSE’11), 2011, to Appear.

[11] T.Ball and J. R. Larus, “Branch Prediction for Free,” in Conf on Programming
Language Design and Implementation (PLDI), 1993.

[12] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The Effects of Comments
and Identifier Names on Program Comprehensibility: An Experimental Inves-
tigation,” J. Prog. Lang., vol. 4, no. 3, 1996.

[13] T. Tenny, “Program Readability: Procedures Versus Comments,” IEEE Trans.
Softw. Eng., vol. 14, no. 9, 1988.

[14] M. Kajko-Mattsson, “A Survey of Documentation Practice within Corrective
Maintenance,” Empirical Softw. Engg., vol. 10, no. 1, pp. 31-55, 2005.

[15] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A Study of the
Documentation Essential to Software Maintenance,” in Intl Conf on Design of
Communication (SIGDOC), 2005.

[16] M. Fowler, Refactoring: Improving the Design of Existing Code.
Wesley, 1999.

[17] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Impact of Limited Memory
Resources,” in Intl Conf on Program Comprehension (ICPC), 2008.

[18] T. E. Erickson, “An Automated FORTRAN Documenter,” in Intl Conf on
Systems Documentation (SIGDOC), 1982.

[19] D. Roach, H. Berghel, and J. R. Talburt, “An Interactive Source Commenter
for Prolog Programs,” SIGDOC Asterisk J. Comput. Doc., vol. 14, no. 4, 1990.

[20] P. N. Robillard, “Schematic Pseudocode for Program Constructs and its
Computer Automation by SCHEMACODE,” Commun. ACM, 29(11), 1986.

[21] R. P. Buse and W. R. Weimer, “Automatic Documentation Inference for
Exceptions,” in Intl Symp on Software Testing and Analysis (ISSTA), 2008.

[22] F. Long, X. Wang, and Y. Cai, “API Hyperlinking via Structural Overlap,” in
Foundations of Software Engineering (FSE), 2009.

[23] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse Engineering Method
Stereotypes,” in 22nd Intl Conf on Software Maintenance (ICSM), 2006.

[24] R. P. Buse and W. R. Weimer, “Automatically Documenting Program Changes,”
in IEEE/ACM Intl conf on Automated Software Engineering, 2010.

[25] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of Automated
Text Summarization Techniques for Summarizing Source Code,” in Working
conf on Reverese Engineering (WCRE ’10), 2010.

[26] M. Harman, N. Gold, R. Hierons, and D. Binkley, “Code Extraction Algorithms
which Unify Slicing and Concept Assignment,” in Working Conf on Reverse
Engineering, 2002.

2

[7

[8

[9

Addison-

