
Agraph is a simple, powerful, elegant
abstraction with broad applicability in

computer science and many related fields. Algorithms
that operate on graphs see heavy use in both theoreti-
cal and practical contexts. Graphs have a very natural
visual representation as nodes and connecting links
arranged in space. Seeing this structure explicitly can

aid tasks in many domains. Many
people automatically sketch such a
picture when thinking about small
graphs, often including simple
annotations.

The pervasiveness of visual repre-
sentations of small graphs testifies to
their usefulness. On the other hand,
although many large data sets can be
expressed as graphs, few such visual
representations exist. What causes
this discrepancy? For one thing,
graph layout poses a hard problem,1

one that current tools just can’t over-
come. Conventional systems often
falter when handling hundreds of
edges, and none can handle more
than a few thousand edges.2

However, nonvisual manipulation
of graphs with 50,000 edges is com-

monplace, and much larger instances exist. We can con-
sider the Web as an extreme example of a graph with
many millions of nodes and edges. Although many indi-
vidual Web sites stay quite small, a significant number
have more than 20,000 documents. The Unix file system
reachable from a single networked workstation might
include more than 100,000 files scattered across dozens
of gigabytes worth of remotely mounted disk drives.

Computational complexity is not the only reason that
software to visually manipulate large graphs has lagged
behind software to computationally manipulate them.
Many previous graph layout systems have focused on
fine-tuning the layout of relatively small graphs in sup-
port of polished presentations. A graph drawing system
that focuses on the interactive browsing of large graphs

can instead target the quite different tasks of browsing
and exploration. Many researchers in scientific visual-
ization have recognized the split between explanatory
and exploratory goals. This distinction proves equally
relevant for graph drawing.

Contribution
This article briefly describes a software system that

explicitly attempts to handle much larger graphs than
previous systems and support dynamic exploration
rather than final presentation. I’ll then discuss the applic-
ability of this system to goals beyond simple exploration.

A software system that supports graph exploration
should include both a layout and an interactive draw-
ing component. I have developed new algorithms for
both layout and drawing—H3 and H3Viewer. A paper
from InfoVis 97 contains a more extensive presentation
of the H3 layout algorithm.3 The H3Viewer drawing
algorithm remains under development, so this article
presents preliminary results.

I have implemented a software library that uses these
algorithms. It can handle graphs of more than 100,000
edges by using a spanning tree as the backbone for the
layout and drawing algorithms. We draw the graph
structure in 3D hyperbolic space to show a large neigh-
borhood around a node of interest. This also allows for
quick, fluid changes of the focus point. The H3Viewer
drawing algorithm uses both graph-theoretic and view-
dependent information to achieve a high guaranteed
frame rate.

The library has been incorporated into Site Manager
(http://www.sgi.com/software/sitemgr.html), a free
Web publishing product from Silicon Graphics aimed at
Webmasters and content creators. The first version of
Site Manager incorporated only the H3 layout algo-
rithm, while the current release also includes the
H3Viewer adaptive drawing function. Users can also
access the library from a stand-alone viewer.

Spanning trees
The H3 layout algorithm finds a spanning tree from

an input graph and then computes its layout. A span-

Tamara Munzner
Stanford University

Exploring Large
Graphs in 3D
Hyperbolic Space

0272-1716/98/$10.00 © 1998 IEEE

Information Visualization

18 July/August 1998

Drawing graphs as nodes

connected by links is visually

compelling but

computationally difficult.

Hyperbolic space and

spanning trees can reduce

visual clutter, speed up

layout, and provide fluid

interaction.

.

ning tree touches every node in a
graph, but only a subset of the links. In
a graph a node can have many incom-
ing links, but in a tree a canonical par-
ent is chosen for each child. We call
links that appear in the graph but not
in the spanning tree nontree links.
These links do not affect the layout
computation and are drawn for a
selected node or nodes only on
demand.

The backbone spanning tree used by
the layout and drawing algorithms
strongly influences our system’s visual
impact. As a fallback, we can always
find a default spanning tree using a
breadth-first search from a root node.
However, exploiting a small amount of
domain-specific knowledge lets us con-
struct a better spanning tree, one that
provides a more useful mental model.
If the node identifier has a hierarchical
structure, the library will determine
parentage based on a best match rather
than a breadth-first search. Such struc-
ture is available for Web sites like the
one shown in Figure 1. In this domain
the URL encodes the site’s directory
structure (often a deliberate choice by
the site creator). That directory struc-
ture serves to determine which of the
incoming hyperlinks to a document
should be chosen as its main parent in
the spanning tree.

A hierarchical identifier is not triv-
ially available in the case of a function
call graph—we must construct it. We
can use a combination of compiler
analysis and runtime profiling to find
the calling procedure responsible for
the majority of the child’s execution
time. Figure 2 shows an example of a
graph where this technique was used to construct hier-
archical identifiers for the nodes. Software engineers
who must modify or optimize unfamiliar code can
browse through a call graph’s H3 layout of to discover a
complex program’s structure. Such graphs are notori-
ously difficult to understand when all the links appear
in a 2D nonplanarized layout.

Our reliance on a spanning tree is both the algorithm’s
strength and its weakness. If we can use domain-specific
information to derive a good spanning tree, then our
methods work very well up to the limits of main mem-
ory. If we must fall back to a breadth-first search for a
fully connected graph, the resulting visualization may
not convey any useful information. In such cases a
spring-force graph drawing system like Frick’s Gem3D4

would serve better in principle. However, in practice this
class of methods does not scale—Frick’s measure of
“large” is only 500 edges.

The key idea is that many nontree graphs exist for
which the right spanning tree can provide a useful men-

tal model of the entire structure. Given a good domain-
specific way to decide which incoming link should be a
node’s parent in the spanning tree, our method would
work well. Many graphs, densely connected by graph-
theoretic standards, fall into this category. In the
extreme, trivial case of a tree, our system certainly suits
the task well. On the other hand, a bipartite graph will
almost certainly result in a misleading picture.

The particular domain-specific methods for finding
spanning trees mentioned here offer only one possibil-
ity. We want mainly to develop fast, robust layout and
drawing algorithms. If and when other researchers
determine more appropriate spanning trees for these or
other domains, they can explore those trees using the
infrastructure presented here.

Layout
Once we have determined a spanning tree, we must

find positions in space for the nodes and edges. Our
approach uses the influential cone tree method as a

IEEE Computer Graphics and Applications 19

1 Part of the Stanford graphics
group Web site drawn as a graph in
3D hyperbolic space. The entire site
has more than 20,000 nodes. About
4,000 of them in the neighborhood
of the papers archive appear in this
frame. In addition to the main
spanning tree, the image shows the
nontree outgoing links from an
index of every paper by title. The
tree is oriented so that ancestors of
a node appear on the left and its
descendants grow to the right.

2 The function call graph structure
for a Fortran scientific computing
benchmark, where compiler and
runtime analysis determined the
spanning tree. The node coloring
indicates whether a particular
global variable was untouched
(cyan), referenced (blue), or modi-
fied (pink).

.

springboard.5 The standard cone tree method lays out
nodes on the linear circumference of a cone’s mouth. The
H3 layout makes two changes. First, the nodes are laid
out on the surface of a hemisphere instead of a linear cir-
cumference. We use hemispheres, not full spheres, since
the process is recursive. If a child used an entire hemi-
sphere, the back half would intersect the area used by
the parental hemisphere. Second, the cone widens to its
maximum extent, spanning a full 180 degrees. The cone
body proper no longer takes up space but flattens out
into a disk at the base of the hemisphere. The child hemi-
spheres lie directly on the parental hemisphere’s tangent
plane, with no visible intervening cone body.

The layout algorithm requires two passes: a bottom-
up pass to estimate the radius needed for each hemi-
sphere to accommodate all of its children, and a
top-down pass to place each child node on its parental
hemisphere’s surface. These steps cannot be combined
because we need the radius of the parental hemisphere
before we can compute the final position of the children.

Laying out child hemispheres on the surface of their
parent introduces the circle packing problem, which has
received much attention from the mathematical com-
munity.6 We strike a balance between optimality and
simplicity by laying out the children in concentric bands
around the hemisphere’s pole. The amount of room each
node needs is directly proportional to the total number
of its descendants. We lay them out in sorted order to
avoid wasting space within the bands, and thus the disk
at the pole is the node with the most progeny (either
direct children or indirect descendants). A full exposi-

tion of the layout algorithm appears elsewhere,3 along
with an appendix including a detailed derivation.

Our hemispherical layout is particularly effective
because we lay out our tree in a mathematical space hav-
ing an exponential “amount of room” in the direction of
the hemisphere’s growth. The area of a hemisphere, 2πr,
increases polynomially with respect to its radius in
Euclidean space. In hyperbolic space—one of the non-
Euclidean geometries—the formula for hemisphere
area is 2πsinh2 (r). Since the hyperbolic sine and cosine
functions (sinh and cosh) are exponential, this space
can easily accomodate a layout of an exponential num-
ber of nodes (a classic problem in Euclidean tree lay-
out). Hyperbolic space is infinite in extent, just like
Euclidean space. However, you can map the entire infi-
nite space into a finite portion of Euclidean space. It
might surprise you that you can map an infinite amount
of space with “more room” into a finite piece of a space
with “less room,” but non-Euclidean geometries have
many unexpected consequences for Euclidean intu-
itions. Several standard mappings are used in the math-
ematical literature.7 We chose the projective (Klein)
model, which supports fast drawing because motions
can be expressed as standard 4 × 4 matrices.8 Figure 3
shows navigation in 3D hyperbolic space through a Unix
file system of more than 31,000 nodes.

While not yet commonplace, hyperbolic space has
appeared in the information visualization literature. A
hyperbolic browser from Xerox PARC handled trees in
two dimensions.9 The Webviz system from the Geome-
try Center drew graphs in three dimensions, but the lay-

Information Visualization

20 July/August 1998

3 Hyperbolic motion over a 30,000-element Unix file system. Many nodes and edges project to subpixel areas and
are not visible. The left column of images shows translation of a node to the center, while the right shows rotation
around that node. The rotation clarifies that objects lie inside a ball, not on the surface of a hemisphere. The file
system has a strikingly large branching factor when compared with the Web sites in Figure 1 or the call graphs in
Figure 2. The directory that approaches the center, /usr/lib, contains a large number of files and subdirectories.

.

out algorithm did not exploit 3D hyperbolic space to its
full potential. The amount of information displayed was
quite sparse compared to the amount of white space.10

The H3 layout strikes a reasonable balance between
information density and clutter. The traditional cone
tree layout in both the Xerox PARC Cone Tree and the
Geometry Center Webviz system places nodes on a cir-
cle—a 1D line. In H3, nodes are placed on a hemi-
sphere—a 2D surface. Carpendale et al.11 placed nodes
in a 3D grid—a 3D volume. In all three examples, the
space in which nodes are laid out is a 3D volume. When
the dimension of the surrounding space equals the
dimension of the node structures, occlusion becomes
the overriding issue. We lay out nodes on a surface,
which offers a happy medium between the sparseness of
a line and the density of a volume. An excessively sparse
layout like the Webviz system wastes screen real estate.
With too dense a layout, the leaf nodes near the ball’s
surface would block our view of the rest of the structure,
since we are outside of the ball looking in.

Drawing
The H3Viewer drawing algorithm depends on the

number of visible, not total, nodes and edges. The pro-
jection from hyperbolic to Euclidean space guarantees
that nodes sufficiently far from the center will project
to less than a single pixel. Thus the visual complexity
of the scene has a guaranteed bound—only a local
neighborhood of nodes in the graph will be visible at
any given time.

A guaranteed frame rate is extremely important for a
fluidly interactive user experience. We designed our
adaptive drawing algorithm to always maintain a tar-
get frame rate even on low-end graphics systems. A high

constant frame rate results from drawing only as much
of the neighborhood around a center point as the allot-
ted time permits. When the user is idle, the system fills
in more of the surrounding scene. A slow graphics sys-
tem will simply show less of the context surrounding the
node of interest during interactive manipulation, as in
Figure 4.

The drawing algorithm incorporates knowledge of
both the graph structure and the current viewing posi-
tion. We use the spanning tree’s link structure to guide
additions to a pool of candidate nodes and the nodes’ pro-
jected screen area to choose from among the candidates.
The largest projected area node from the previous frame
serves as a seed for the tree traversal on the next frame.

The current version of the drawing algorithm suc-
ceeds in maintaining the target interactive frame rate
nearly all the time. However, we have only partially
addressed one important issue mentioned in the H3 lay-
out paper.3 Any single mapping from hyperbolic to
Euclidean space permits drawing only a limited num-
ber of nodes before the drawing system succumbs to
precision problems. The previous drawing system sim-
ply truncated nodes beyond this limit. The H3Viewer
system will instead compute a remapping from hyper-
bolic to Euclidean space as necessary when the cumu-
lative error becomes too great. This remapping is a
global operation that depends on the total number of
nodes in the scene instead of only the visible nodes.
When drawing large graphs, this remapping will cause
a temporary interruption in the otherwise smooth frame
rate or a jump instead of an animated transition. A true
solution to this problem would require an incremental
mapping algorithm, which falls under the heading of
future work.

IEEE Computer Graphics and Applications 21

4 The H3Viewer guaranteed frame rate mechanism ensures interactive response for large graphs, even on slow
machines. On the top is a frame drawn in 1/20th of a second during user interaction. On the bottom is a frame
filled in by the idle callbacks for a total of 2 seconds after user activity stopped. The graph shows the peering rela-
tionships between the Autonomous Systems, which comprise the backbone of the Internet. The 3,000 routers
shown here are connected by more than 10,000 edges in the full graph.

.

Discussion
Our layout algorithm’s computed overview of the

graph structure provided by the geometry of nodes and
links offers a way for a user to explore a graph too large
to manipulate with traditional methods. However, an
interactive graph exploration system can offer a user
more than a global overview. Our layout and drawing
system has applicability for the following tasks:

■ Scaffolding for attributes
■ Local orientation
■ Context of part in whole
■ Graph as index

Scaffolding for attributes
When used as a scaffolding, the structure can show

static or dynamic attributes. Many graph drawing sys-
tems support color and line-width coding, text labels,
and filtering—as does our own. These filtering and cod-
ing capabilities can be very powerful when used to show
dynamic data. For instance, in the new Site Manager
release a Web site’s traffic logs can help show the paths
taken by Web users. A hit from one page to another is
shown by briefly highlighting those nodes and the link
between them, for a laser-like effect.

Local orientation
Our drawing and layout approaches also support find-

ing interesting places when browsing through an unfa-
miliar graph. When the user clicks on a node, it is
highlighted and undergoes an animated transition to
the center of the sphere. Animation proves critical in
helping the user maintain a sense of context.

The transition includes both a translational and a
rotational component. Thus, when a node reaches the
origin, its ancestors always appear on its left and its
descendants on the right. This “butterfly” configuration
provides a canonical local orientation and also serves to
minimize occlusion of both nodes and their text labels.
If the structure were aligned with the principal axes of
the window, the text labels would often occlude each
other, so we add a slight tilt. Our layout algorithm
always places the node with the most descendants at
the “pole” of the hemisphere along the same axis as the
incoming link from the parent node. Thus a simple and
effective navigation strategy for finding potentially inter-
esting complexity is to click on polar nodes after their
parents move into their canonical orientation.

In our drawing algorithm, we explicitly chose to draw
the links into and out of a node, even if we don’t have
time to draw the node at the other end. The presence of
an unterminated link during motion hints to the user of
something interesting in that direction. This situation
occurs frequently when drawing nontree links, whose
other end often lies far enough away from the center
that the drawing loop ends before the terminating node
can be drawn.

Context of part in whole
Hyperbolic space very effectively presents a large area

around a focus node. For instance, in Figure 1 the user
can see enough of the distant subtrees to identify dense

and sparse ones. The destinations of nontree links are
distorted, but the rough sense of their destination helps
the user construct and maintain a mental model of the
larger graph structure. Figure 3 shows how the details
become clear in a smooth transition when an area of the
structure moves towards the center. The context shows
up on several levels: the local parent-child relationships
of the spanning tree, the nontree links between dis-
parate nodes in the graph, and the rough structure far
away from the current focus of interest.

Graph as index
Although you could use the H3Viewer to create a

stand-alone application, it is most effective when inte-
grated with other tools. If a graph viewer is one of sev-
eral views that all support linked selection and filtering,
the graph structure becomes one way to index the infor-
mation. Such an index proves useful for selecting items
in a known graph in addition to discovering patterns in
an unfamiliar one. In the Site Manager system, we tight-
ly integrate the 3D hyperbolic browser with a 2D file
browser and a search window that shows all the match-
es of some string as a 1D list. The user can choose the
appropriate display—the one having the appropriate
attributes for the task at hand.

Conclusion
Our implementation can handle graphs two orders

of magnitude larger than previous systems by manipu-
lating a backbone spanning tree instead of the full
graph. Carrying out both layout and drawing in 3D
hyperbolic space lets us see a large amount of context
around a focus point. Our layout is tuned for a good bal-
ance between information density and clutter, and our
adaptive drawing algorithm provides a fluid interactive
experience for the user by maintaining a guaranteed
frame rate. ■

Acknowledgments
I appreciate the efforts of the following people and

organizations in collecting the data used here: function
call graph data from Anwar Ghuloum of the Stanford
University Intermediate Format (SUIF) compilers
group; Autonomous Systems data from Hans-Werner
Braun of the National Laboratory for Applied Network
Research (NLANR) and David M. Meyer of the Univer-
sity of Oregon Route Views Project. Thanks to François
Guimbretière and Pat Hanrahan for their advice and
ideas. I gratefully acknowledge the efforts of the rest of
the Site Manager team at Silicon Graphics: Ken Kersh-
ner, Greg Ferguson, Alan Braverman, Donna Scheele,
and Doug O’Morain. This work was supported in part
by Silicon Graphics, the National Science Foundation
(NSF) Graduate Research Fellowship Program, and
Advanced Research Projects Agency (ARPA).

References
1. F.J. Brandenburg, “Nice Drawing of Graphs are Computa-

tionally Hard,” in Visualization in Human-Computer Inter-
action, Lecture Notes in Computer Science 439, P. Gorney

Information Visualization

22 July/August 1998

.

and M.J. Tauber, eds., Springer-Verlag, Berlin, 1988, pp.
1-15.

2. G. Di Battisata et al., “Annotated Bibliography on Graph
Drawing Algorithms,” Computational Geometry: Theory
and Applications, Vol. 4, No. 5, 1994, pp. 235-282.

3. T. Munzner, “H3: Laying out Large Directed Graphs in 3D
Hyperbolic Space,” Proc. 1997 IEEE Symp. on Interactive 3D
Graphics, IEEE Computer Society Press, Los Alamitos,
Calif., 1997, pp. 2-10.

4. I. Bruss and A. Frick, “Fast Interactive 3D Graph Visual-
ization,” Proc. Graph Drawing 95, Lecture Notes in Com-
puter Science 1027, Springer-Verlag, Berlin, 1995, pp.
99-110.

5. G. Robertson, J. Mackinlay, and S. Card, “Annotated 3D
Visualizations of Hierarchical Information,” Proc. ACM
SIGCHI Conf. on Human Factors in Computing Systems, ACM
Press, New York, April 1991, pp. 189-194.

6. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices,
and Groups, Springer-Verlag, Berlin, 1988.

7. G.E. Martin, The Foundations of Geometry and the Non-
Euclidean Plane, Springer-Verlag, Berlin, 1975.

8. M. Phillips and C. Gunn, “Visualizing Hyperbolic Space:
Unususal Uses of 4 × 4 Matrices,” 1992 Symp. on Interac-
tive 3D Graphics, special issue of Computer Graphics, Vol.
25, ACM Siggraph, ACM Press, New York, 1992 pp. 209-
214.

9. J. Lamping, R. Rao, and P. Pirolli, “A Focus + Content Tech-
nique Based on Hyperboic Geometry for Viewing Large
Hierarchies,” Proc. ACM SiGCHI Conf. on Human Factors in
Computing Systems, ACM Press, New York, May 1995, pp.
401-408.

10. T. Munzner and P. Burchard, “Visualizing the Structure of
the World Wide Web in 3D Hyperbolic Space,” Proc. VRML
95 Symp., ACM Siggraph, ACM Press, New York, 1995, pp.
33-38.

11. M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia,
“Extending Distortion Viewing from 2D to 3D,” IEEE Com-
puter Graphics and Applications, Vol. 17, No. 4, July/August
1997, pp. 42-51.

Tamara Munzner is currently a
PhD candidate at Stanford Universi-
ty, where she received a BS in com-
puter science in 1991. In the
intervening years she was a member
of the technical staff at the Geometry
Center, a mathematical visualization

research group at the University of Minnesota. Her tech-
nical interests include graph drawing, information visu-
alization, mathematical visualization, interactive 3D
graphics systems, and pedagogical video creation.

Contact Munzner at the Department of Computer Sci-
ence, 360 Gates Building 3B, Stanford University, Stan-
ford, CA 94305, e-mail munzner@cs.stanford.edu,
http://graphics.stanford.edu/~munzner.

.

