Runtime Visualisation of Object Oriented Software

Michael P. Smith and Malcolm Munro
Visualisation Research Group
Research Institute in Software Evolution
Department of Computer Science
University of Durham
Durham, DHI 3LE, UK
{M.P.Smith, Malcolm.Munro } @durham.ac.uk

Abstract

Software is inherently dynamic, yet much of the
analysis and comprehension processes focus entirely on
the static source code of the software. This paper looks at
how software visualisation offers a way to aid
comprehension by displaying both static and dynamic
aspects of a piece of software. A new visualisation is
presented with specific focus on a class level summary
view.

1. Introduction

The need to understand a piece of software, in terms of
its source code and how it works, is key to maintenance
and development tasks. Whether it is the need to add new
functionality, fix an error, or simply help a new developer
join an existing project, gaining an understanding of the
software is an essential task. However, despite its
commonality it has limited tool support. Documentation
on the software can help, but this can be incorrect or out-
of-date, especially for maintenance activities. This results
in the source code being the main source of information
for software engineers, yet simply studying the source
code in its entirety is unfeasible, given the size of the real
software systems. Even trying to find out the areas of the
code of interest is a time-consuming and error prone task.
In the case of object-oriented software, a number of other
difficulties arise when trying to gain an understanding of
the software. This is due to the discrepancies between the
static class descriptions and runtime behaviour as
networks of communicating objects [1]. The
understanding of software systems, and in particular,
object-oriented systems, could therefore benefit from tools
to aid in highlighting this runtime behaviour, as well as
the static aspects of the software. Software Visualisation
offers an approach to aid program understanding by
presenting the relationships within a piece of software
through visual means.

This paper presents a background to software
visualisation support for program comprehension tasks
and looks at a proposed visualisation for Java programs.
This attempts to aid comprehension by presenting runtime
information alongside static information.

2. Background

Program comprehension is a major and time-
consuming task. Understanding existing programs,
accounts for the majority of time which is spent on
maintenance, debugging, and code re-use processes [2]. A
number of program comprehension theories exist, and a
good summary can be found in Mayrhauser and Vans [3].
These suggest different methods for program
comprehension, which can be categorised into top-down,
bottom-up and opportunistic. The top-down approach is
goal driven, and consists of using domain knowledge
along with higher level information in order to identify
areas of functionality. Bottom-up comprehension occurs
when the code is studied and chunked together into higher
level abstractions. However, it is a combination of these
two approaches that is used, and this is the opportunistic
approach. Here, both top-down and bottom-up
comprehension processes are switched between,
depending on the cues available and the knowledge of the
person doing the comprehension in terms of their existing
program and domain knowledge.

Software Visualisation offers a way to support these
comprehension strategies, and many different
visualisations exist. In order to be useful, it is beneficial
for the visualisations to support the variations in
comprehension by allowing easy changing between top-
down and bottom-up strategies and user customisation.
The wvariations arise from differences in cognition,
comprehension strategies and knowledge between users,
as well as differences in tasks. Storey et al. offer a

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

framework to guide tool support for program
comprehension [2]. Jerding and Stasko [4] have called for
the need to visualise object-oriented systems, suggesting
that the object-oriented paradigm is a ’double-edged
sword’. The code provides the static descriptions of
classes and their relationships, however, at runtime there
exists a network of communicating objects, each an
instance of a certain class. Polymorphism and inheritance
can also complicate program understanding.

A number of visualisation tools exist that focus on
runtime information and a few of the more notable recent
examples are Jinsight [5], Look [6] and Visvue [7].

Jinsight [5] is a tool for visualising the execution of
Java programs developed by IBM. The Java program to be
analysed is run on a modified version of the Java Virtual
Machine that is supplied with Jinsight. This produces a
trace file of the execution, and user options allow
specification of which events to record. The trace file is
then loaded into Jinsight to be analysed. The system offers
a number of views, and is designed with object-oriented
and multithreaded programs in mind. It shows information
on the program, such as calling information, object
references and creations. It also has a pattern extraction
facility, which extracts patterns related to a given method
and shows how the method typically executes. This
pattern extraction aims to overcome the massive numbers
of invocations of a method, by being able to show the
cases when the methods execution diverges from the
general pattern. While the different views allow for
customisation they only show higher level calling
information and no support for linking to actual lower
level details such as the source code exists.

Look! [6] is a tool for visualising and debugging C++
programs. It offers a more comprehensive set of views
showing both low-level details, such as source code and
variable values, along with views of the inheritance
structure and referencing between objects using a graph
representation. The system also allows classes to be
clustered. This allows the message interaction between
clusters, and the objects which exist in a particular cluster,
to be viewed at a higher level of abstraction.

VisiVue [7] is a runtime visualisation tool for Java. It
provides an object reference view using a graph
representation and supports user filtering of classes from
the view. Trace events can also be output to a file,
recording method entry, and exits along with variable
changes. However, the system does not allow direct
browsing of source code, or show visually the method
usage or inheritance structures present in the program.
The graph of the object references is also subject to
problems of scale when a large number of objects exist,
especially if the objects have numerous fields as this
affects the size of the node in the graph.

These systems offer a number of types of views.
However, they lack support for user annotation and can
offer little help when it comes to trying to identify areas
for investigation in terms of which areas of code are
responsible for specific functionality. They can also suffer
from information overload as the size of the program
increases and a huge number of objects exist. For
example, simply representing the object references using a
graph is not adequate, because it fails to scale up when a
large number of objects of a particular class exist. Whilst
facilities such as zooming and overview windows help,
they cannot prevent this problem. More advanced filtering
along with higher level representations are needed.

Visualisation of the dynamic aspects of software faces
many challenges. Traditional issues, such as how to
represent an intangible system, are still faced, along with
the layout of these items and how to provide abstraction
mechanisms alongside detail views of the huge amount of
information that software involves. However, at runtime
there can be even more information. Not only is there the
static source code, and class structures to highlight, but
each of theses classes can have many instances, whose
interrelationships may be key to understanding how the
software works. Combined with this is the constant
change in information, such as object reference
relationships, which introduces further challenges for
representation and layout.

3. Visualising Object Oriented Software At
Runtime

In order to aid the comprehension of Object Oriented
software, this approach uses dynamic information
alongside the static class descriptions to provide greater
information. This aims to overcome the problems caused
by polymorphism and inheritance to static analysis. The
aim is to allow Java software to be visualised without
modification to its source code in an environment where
the user can investigate multiple relationships on
realistically sized programs.

3.1. Why Dynamic Analysis

The decision to use dynamic analysis of Java programs
was driven by a number of factors. The main reason is that
static analysis, while beneficial, can only go so far
especially in the case of Object Oriented Software. [8].
The Object Oriented paradigm offers a number of
problems to static analysis, due to its use of dynamic
binding and polymorphism. In order to extract the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

The call stack of a thread

Figure 1 The Runtime View

required information, a dynamic analysis method has been
chosen. This also offers the ability to allow user filtering,
based on knowledge gained from runtime information. For
example, by aiding the user in identifying class usage
patterns, thereby, helping them identify classes involved
in some specific functionality. This then allows them to
filter out classes of no consequence to their task.
However, the increased depth of information available
from dynamic analysis does not come without a cost.
Dynamic analysis, can result in huge information spaces
that can be difficult to store and process, never mind
visualise! With hundreds of thousands of events to
monitor, even for a small program, issues such as user
filtering and providing multiple levels of abstraction are
particularly important.

3.2.Viewing a running System

A visualisation tool, called DIJVis, has been
implemented in order to evaluate ideas and allow their
application to large-scale software. The runtime
information is extracted using the Java Platform Debug
Architecture (JPDA) [9]. This allows information to be
extracted without the need to modify the source of the
program under study. DJVis allows the program to be
stepped through using a typical debugger interface (e.g.
step to next line, run and break). As the program runs,
information is extracted on the classes involved, and the
methods being called. This information is presented in a
number of views, the main ones are: the Runtime View;
the Query View; and the Class View. These views focus
on different aspects of runtime information. The Runtime

The Main ThreadGroup

_ The ThreadGroup
hierarchy

A single Thread

View focuses on thread level events, such as calling
information and arguments. Whilst the Class View
focuses on class level interactions, such as class reference
relationships and class creation details. Combined with
this are a number of helper views, which are linked to the
main views, and provide another way to navigate the
information. All the views use colour extensively,
however, for the purposes of this paper, the different
features are identified by the differences in the grey scale
shading.

3.2.1. The Runtime View

This View presents runtime aspects of a Java program,
in terms of the threads, and the thread groups involved,
along with the call stack of each thread. The thread groups
form a hierarchical relationship, containing other thread
groups or threads. A tree layout is used to visualise this
relationship.

In Figure 1 the main platforms represent thread groups
with the lines showing the hierarchical relationship
between them. The smaller platforms upon them represent
the threads that exist in each thread group. Upon this
platform, details of each thread are presented, such as if
the thread is blocked by another thread. The call stack of
each thread can be seen, and at this level of detail it
simply gives an indication of the number of methods on
the stack. However, each call stack can be zoomed in on
to see details of the call stack in terms of the individual
methods. Figure 1 shows an example with a large number
of thread groups (eight in total) and the Main
ThreadGroup containing 5 threads. The view can be

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

customised to show the calling of particular classes. Thus
making it easy to see which threads are executing user
code and not just Java API code.

3.2.2. The Class View

The Class View presents the classes used in the
software, and the relationships between them. The
visualisation is based on a graph representation, with the
nodes representing the classes, and the edges representing
the relationships. The view is customisable, and can
present a number of information types dependent on the
users requirements. The edges of the graph can be used to
show different inter-class relationships, such as references
and creates. The use of dynamic analysis allows additional
information to be shown, on top of the usual static
information. For example, dynamic class references
through a common interface can be shown. Thus, making
it easier to see the actual class referencing at any one point
in the execution. The nodes represent the classes, and their
colouring and numbering can present information on the
number of objects of that class that have been created
(since the program started or from a particular point), to
the load order of the class. Around the circular node, the
methods of a class are represented as lines coming out
from the node. This allows the number of methods each
class has to be easily seen. The method lines can be
shaded and altered in length to represent information, such
as the method length, complexity, number of calls, and the
access rights of the method. For example, Figure 2 shows
the GraphDesktop class, with the method line length
representing the method length, and the shading
representing the number of calls for that method. The user
can easily configure these settings, by using drop down
list options for each mapping on the top of the Class View
window. As can be seen from Figure 2, the class has 11
methods (4 that haven’t been called (shown as white), 4
that have been called a few times (lightly shaded), 2 that
have been called slightly more (medium shading) and one
method that has been called many times (shown as dark
shading)). All of the methods, apart from two, are short in
length.

GraphDesktop

Figure 2 Viewing the GraphDesktop Class in
Class View

The Class View provides a good starting point for
investigating a program. Not only can the main classes
and their relationships be presented, but it is also easy to

spot classes with a large amount of functionality, both in
terms of a large number of methods or long methods. By
observing calling information, it is possible to spot which
classes are called within a particular span of the execution.
This could be used for highlighting areas for investigation,
for example, in order to understand a certain piece of
functionality.

The method line idea can also be applied to the fields
of a class. In this case, the length or shading would
indicate the number of accesses. This can be filtered on
whether they are read or write accesses, and on whether
they are from the object itself or, from another class if the
field is not private. This, combined with the ability to reset
the count of field accesses, allows the user to see which
fields are used, and in what way for certain functionality.
It could also help in performance tuning by showing
unexpectedly high field access that could be optimised.

The Class View can also be used to display additional
information, for example, the length or shading of the
method can be mapped to a measure of its complexity. As
well as showing information that could be extracted by the
tool itself, it could also be combined with other
information sources. Such as using Revision Control
Information, to show the number of changes in a method
by changing the shading of the method line. This could
give a higher level indication of where changes have
occurred, between this and another specified version, thus
allowing the user to investigate changes of interest.

Graph representations offer an intuitive representation
for software engineers, however, they suffer from
problems of scale and complexity as the number of nodes
and edges increase [10]. In order to aid the scalability of
the representation, user filtering is available, and the user
can group nodes in order to simplify known or unrelated
subsystems. This trade off between familiarity vs.
scalability was felt to be acceptable in this case. As in
general, the number of classes in a system tends to be
small, compared to, say, the number of nodes in a call
graph of the system or an object reference graph. The
graph also allows interactive scaling of the nodes and the
graph itself through slider controls. This allows for greater
control and the ability to zoom in and out quickly on the
details of the class nodes.

3.2.3. The Query View

The Query View, as its name suggests, iS a view
dedicated to user queries. It allows items to be dragged
from existing views and dropped into a query. These
queries can easily be created and named and provide a
means for the user to group information that is of interest

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

to them for a specific task. Here the user controls the
placement and inclusion of objects, so for example, they
could easily focus on two specific threads or look at
certain classes. This helps alleviate the problem of the
required information being spread out or in different
views. It also provides more flexibility, as information can
be accessed in more than one way, and grouped in a way
that has meaning to the user. This query view has been
implemented with support for a number of views
(Runtime and helper views). A full summary of the Query
View and the issues involved is beyond the scope of this
paper, whose aim is to focus on the visualisation of class
level interactions.

3.2.4. Example Scenario

In order to demonstrate some of the concepts
described above, an example scenario will be presented
which focuses on using the Class View. In this scenario, a
piece of software is to be inspected, in order to discover
how a piece of functionality is implemented. The software
is a tool for displaying and editing graphs, and for this
scenario the user has no other knowledge of the software
or its structure. The user is interested in finding out how

the different layout algorithms are implemented, as they
wish to add their own. The first task is, therefore, to gain
an overview of the software in terms of key classes and
data structures, in order to identify where the functionality
of interest is, so its detailed operation can be inspected. As
a first step, the program is run from within DJVis using
the Class View as the main focus. Using the Class View,
the user can observe the order in which the classes are
loaded, and how they reference each other. The class
naming, number of instances created, and referencing
patterns act as higher level cues that can drive further
investigation. The method lines allow an impression of
which classes have the main functionality.

Figure 3 shows the creation relationships for the
classes involved in the graph program. The nodes have
small scaling in order to allow an overview to be seen.
From this view, a number of things can be noticed. Firstly,
a large amount of the functionality is clustered into a
small number of classes. For example, the
GraphContainer class has a large number of methods,
some of which are long in length. (Figure 4 shows a
’zoomed in’ view of the class showing its 97 methods
more clearly, all the methods are public except for nine,
shown as darker shading). Other classes with a significant
number of methods are the Node and Edge classes, along
with the GraphCanvas class. It can be seen that the

! Class Level View M= B
Length represents: Colow represents: | - Edges represent | - Node Numbering 1| 7 Lapaut Reset Method Count '?rﬁDI[vE‘:\z?
LE”"J"M of Mathg v—| “Access H\ghtsj] “Creales j—| |VN°"‘e j| | T Show All Hidden Classes Reset Constructor Count' [min)
& =l
’., hToolM
G phToolMenu
et
GraphMenu
.""Q,
FileMenu
&/ i
CanvasScrotiCo €top
ViewMenu
unsuIeWinduw
&
1
SontexdtWindow [/ b
L ForceDirectedLayout
"B niquelDGegnerator
0 ¢ Y
40 Dy -
. b TPostsc ptPrinter 4 rele
UniquelD Rreferences 2 o =
5 HierarchicaILayn
\l " 3 .: 3 »
- AT 7 Edge IitGapord3D
7 Inlrf ePreferefces ! LA
-.,,.,’ il
rghjcalfreferpnces, 0 .i' 3
Dt Ly o I ContextPreferences Field
Priftifetencey_k
' Laya II. EileBseferences
kil] _'IJ

Figure 3 An overview of the class structure using the Class View

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

hagptainer

W

Figure 4 The GraphContainer Class

FrontEnd class is responsible for creating several of the
important classes, which it also references (this is
observable by changing the edges to show reference
relationships using the drop down list at the top of the
window). The shading of the nodes represents the number
of instances created of that class. As one would expect
there has been a large number of Node and Edge objects
created (at this point a graph had been loaded). The main
managing classes (FrontEnd, GraphContainer,
Preferences) have a small number of instances (typically
one), shown by the light shading. Static classes are also
shown as white nodes. For more detailed information on
instances created, the nodes can be numbered with the
exact number wusing the drop down list. The
BatchProcessor Class also stands out for having one very
long method.

Once an overview of the main classes has been gained,
it is possible to focus on the specific area of functionality
of interest. From the information presented so far, and
possibly any domain knowledge, there may be
expectations where, and how, the specific functionality is
implemented in the code. However, the visualisation can
support this by changing the length of the method lines in
the Class View to represent the number of method calls.
This can show the total number of method calls, or the
number of calls from a user specified point in the
execution. Setting such a point, can be easy when the
functionality is initiated by a GUI method. However,
when it is within a large amount of other functionality,
iterative investigation maybe needed to find a suitable

point to reset the method call count. Once the
functionality has finished, the program can be suspended
again and the results of the method calling shown. In the
case of this scenario, it can be already be seen from Figure
3 that the GraphContainer class creates a
ForceDirectedLayout object. This would therefore be the
obvious place to look for information on the layout.

Figure 5 shows the referencing of GraphContainer of
the interface Layout. Through this reference, the
ForceDirectedLayout class is referenced dynamically
(shown by the lighter coloured edge). The interface
Layout has one method namely DoLayout(Graph g) and
this is therefore the method by which new layouts can be
added to the tool. However, it is not always as easy, to
know where to focus investigation when trying to
understand a piece of functionality. In these cases, the
displaying of the method length as the number of calls
acts as a guide. It allows classes that aren’t involved to be
easily spotted, and gives an impression on the localisation
of the functionality by showing the number of classes
involved.

&FurceDirec{edLaynut

Figure 5 GraphContainer showing reference
relationships

Figure 6 clearly shows which, and how many times
each method was called. Using this information, areas for
further investigation can be identified. From Figure 6, it
can be seen that methods of the Node and Edge classes are
called in particular, as would be expected along with
methods of the ForceDirectedLayout class. Other classes
involved include the GraphDesktop and GraphCanvas as
well as MouseControl and ContextWindow. It can be
hypothesised by their names, that these classes are
involved in the graphical update side of the operation.
Investigation of the method names, and/or source, may
confirm this, allowing them to be removed from the
investigation. This leaves the ForceDirectedLayout and
Node and Edge classes for further investigation. This
could, therefore be a good point to start looking at the
source code in the syntax highlighted source view, using

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

! Class Level View

Length represents:— —Colour represents. | ~Edges represent - —~Node Mumbering; 1~
’V of TempCalld W“Accessﬂ\ghlsj”’l&eates j—| “None j| bt r

[_ [T x]

Lapout Feset Method Count IG“?D}‘" S‘iz? s Node scaling
Ly b n o o o o
Show Al Hidden Classes Fieset Constructor Court| | iy o) [[I —

o

., [

ElalPrm:essnr

sScrollControl

] GraphMenu =l

£
GraphDeskmp

ViewMenu

FileMenu

Field

FilePreferencés

]

Figure 6 Class View showing method calling counts

the Class View to navigate the source. In this scenario, the
class naming and functionality of interest allowed the
involved classes to be easily apparent. However, the same
technique could be used in more complex examples. This
technique can also be used to spot unexpected methods,
which the user may not have otherwise expected and
possibly ignored.

The Class View aims to aid top down comprehension
and allow quick checking of expectations in terms of
classes that one would expect in a given situation. It can
also provide an easy way to navigate views of lower level
details such as finding the source for particular methods.

4. Further Work

Many issues remain within the scope of visualisation
of runtime information, both in terms of the visualisation
presented in this paper and the problem in total.

The Class View is based on a graph representation,
which as previously mentioned, can suffer from problems
of scalability. In order to aid this, further development of
the view is needed in terms of user filtering and
abstractions. At present, the view supports basic user
grouping, filtering, and abstraction. These features could

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)

0-7695-1662-9/02 $17.00 © 2002 IEEE

/{08
HierarchicalLayout
. — PostscriptPrinter
- [= B,
FrontEnd 108 i
oord3D
. e e
oy
!
FindDialog
ks
niquelDGenerator 1
@ 4 ConsoleWindow orcelpirectedLayout
1 * ContextWindow
<
8 ®
Preferences
ik
£
V 7y \ UniquelD

= o

be expanded along with greater overview and zoom
facilities to help navigation within the graph. Without
such aids, the view would become overly complex and
difficult to understand, for example, when the number of
classes in the system is large or the inter-connection
between them is very high. This would result in increased
complexity of the view, which could act as an indication
that the software needs restructuring, for example, if the
coupling between the classes is excessively high.
However, it would mean the view was of limited use in
understanding the system.

Another issue that could be investigated within the
visualisation is the support for the evolution of Java
software under study. It would be beneficial if the
visualisation could incorporate new information with
minimal changes to the existing structure and highlight to
the user what has changed. Presently the layout of the
Class View uses a force directed layout algorithm.
Therefore, the picture presented will not necessarily be the
same through the different executions of the same
program. The scope for continuous change also poses
problems in that the graph can be modified at any time
through the execution, therefore the nodes in the graph
can change position. Ideally, a layout with minimal

YF]',F.

COMPUTER
SOCIETY

changes between executions and different versions is
desirable.

There is scope for greater user customisation, and one
such improvement would be to allow the user to easily
define the shading scheme and method length mapping
function for the Class View so they can customise it for
their task. For example, if they are looking for very small
changes within a small scale of numbers, they will want to
make these more prominent. On the other hand, if they are
looking at very large scales, they may only want to give
an indication of the order of magnitude.

When monitoring a program there must be a balance
met between the amount of information that is extracted
and the speed of the execution. For example, the Class
View style of method counting could be done for
individual objects as well as possible recording all field
values for the object. This could aid identification of
problems with a specific instance, such as checking if that
instance was initialised before use. However, such
detailed monitoring will slow the execution of the
program and require significantly greater storage space.

The visualisation focuses on the class level
interactions, and thread based events such as method calls.
Greater work is needed on unifying these, and providing
additional visualisations for details, such as object level
relationships. As previously mentioned, simply showing
this as a graph can lead to problems of scale. Therefore,
alternative representations need to be investigated, along
with methods of restricting the volume of information into
a more manageable form.

The Query View has been implemented with support
for a number of views, however, there is currently no
support between the Query View and the Class view. This
is due to the fact the Query View is currently 3D to
support objects from the Runtime View, while the Class
View uses a 2D representation. Many issues arise when
considering the use of these views together, and further
work is needed on assessing how to provide a consistent
querying method across all views. Links back from the
Query View are also needed in order for the user to
ascertain where they dragged the information from, thus
allowing them to see it in its context. Queries could also
be generated automatically based on some user constraint,
such as showing the details of all classes that inherit from
a particular class or interface.

The current visualisation only considers programs
running on a single Virtual Machine. The tool supports
networked connections, so, for example, a client and
server on different machines could both be visualised
using two instances of the tool. However, there is no
support for multiple connections using a single instance of
the tool at present. Such an approach would raise many
issues in terms of how to amalgamate the different
information sources.

5. Summary

This paper has presented a visualisation designed to
aid the comprehension of object oriented software with
specific focus on showing class level details. This gives an
overview of the program’s structure in terms of its classes
and their relationships, whilst also allowing an overview
of method and metric information to be shown. This view
allows easy user customisation, and could easily be
adapted to show additional information, provided that it
can be mapped to a length or colour shading scale.

A prototype tool has been implemented to demonstrate
the concepts described in this paper. This tool extracts
runtime information on a piece of Java Software using the
Java Platform Debug Architecture. The tool has allowed
the application of the ideas to real world Java programs.
However, the techniques proposed are not restricted to
Java and could be applied to other object oriented
languages, although new issues would be raised if the
language allowed code outside the scope of classes. The
Runtime View would also need to be modified, if it was
applied to another language, as the thread group hierarchy
of the Runtime View relies on the thread group idea of
Java.

Further work is being done on improving the current
visualisation and increasing interaction between the
different elements within the visualisation, as well as
looking at different representations for other runtime
aspects such as object level relationships.

Acknowledgements
Michael Smith is supported by an EPSRC studentship.

References

[1] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides., Design patterns: elements of
reusable object-oriented software, Addison-
Wesley, 1994

2] M. Storey, F.D. Fracchia,, and H.A. Miiller,
"Cognitive Design Elements to Support the
Construction of a Mental Model during
Software Visualization", Proceedings of the
Sth International Workshop on Program
Comprehension, Dearborn, Michigan, U.S.A.,
pp 17-28, May 28-30, 1997.

[3] A. Von Mayrhauser and A.M. Vans, "Program
Comprehension During Software Maintenance
and Evolution”, IEEE Computer, vol.28, no. 8,
August 1995, pp 44-55.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)
0-7695-1662-9/02 $17.00 © 2002 IEEE

(4]

(5]

(6]

(7]

(8]

[9]

[10]

Proceedings of the First International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT’02)

D.F. Jerding, and J.T. Stasko, "Using
Visualization to Foster Object-Oriented
Program Understanding", Graphics,
Visualization, and Usability Center, Georgia
Institute of Technology, Technical Report
GIT-GVU-94-33, 1994

Jinsight, IBM Research, Available:
http://www.research.ibm.com/jinsight/

Look!, Wind River Systems, Inc., Available:
http://www.wrs.com/products/html/look.html

VisiVue, VisiComp, Inc., Available:
http://www.visicomp.com/index.html

C. Knight "Smell the Coffee! Uncovering Java
Analysis Issues", Proceedings of First
International Workshop on Source Code
Analysis and Manipulation (SCAM 2001) ,
November 10, 2001

Java™ Platform Debugger Architecture
(JPDA). Available:
http://java.sun.com/products/jpda/

C. Knight and M.Munro, “Comprehension
with[in] Virtual Environment Visualisations”,
Proceedings of the IEEE 7m International
Workshop on Program Comprehension, pp4-
11, May 5-7, 1999.

0-7695-1662-9/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

