
Leveraged Quality Assessment using Information Retrieval Techniques

Dawn J. Lawrie Henry Feild David Binkley
Loyola College Loyola College Loyola College

lawrie@cs.loyola.edu hfeild@cs.loyola.edu binkley@cs.loyola.edu

Keywords: Language Processing, Information Retrieval, Software Quality, Software Assessment

Abstract

The goal of this research is to apply language processing
techniques to extend human judgment into situations where
obtaining direct human judgment is impractical due to the
volume of information that must be considered. On aspect
of this is leveraged quality assessments, which can be used
to evaluate third-party coded subsystems, to track quality
across the versions of a program, to assess the compression
effort (and subsequent cost) required to make a change, and
to identify parts of a program in need of preventative main-
tenance.

A description of the QALP tool, its output from just un-
der two million lines of code, and an experiment aimed at
evaluating the tool’s use in leveraged quality assessment are
presented. Statistically significant results from this experi-
ment validate the use of the QALP tool in human leverage
quality assessment.

1 Introduction
Assessing any non-trivial aspect of a large piece of soft-

ware is a difficult task. Unfortunately, for many such tasks,
automated techniques have failed to capture human intu-
ition (e.g., as to the quality or complexity of the code). The
goal of this research is to leverage techniques from informa-
tion retrieval (in particular, language processing) into a tool
that allows human evaluation of software in the large. Ex-
ample applications include quality assessment, comprehen-
sibility assessment, and complexity assessment (the com-
plexity of changing a piece of code rather than formal algo-
rithmic complexity).

Historically, Information Retrieval (IR) has been applied
to unstructured text (as opposed to the structured informa-
tion used by database management systems). Recently, IR
techniques, which narrow the amount of text a human has
to process, “have proven useful in many disparate areas, in-
cluding the management of huge scientific and legal liter-
ature, office automation, and to support complex software
engineering projects” [3]. Thus, IR techniques are a natural
choice for processing large code bases.

This paper introduces and empirically assesses the appli-
cation of IR’s language processing techniques to quality as-
sessment as implemented in the QALP (Quality Assessment
using Language Processing) tool. The QALP tool leverages
identifiers and related comments to extract aspects of the
program that are representative of the entire program’s qual-
ity. This facilitates the assessment of large systems where a
brute force approach is infeasible.

The QALP approach is quite general in the sense that
how quality is defined can vary depending on the extracted
quality indicator. For example, one indicator is based on
identifiers and thus, for this indicator, code quality is as-
sumed to be correlated with identifier quality. The main
focus of the empirical investigation presented in Section 4
is on function extraction. For this indicator, code quality is
defined in terms of the degree of correspondence of com-
ments and code.

Situations in which such an assessment are useful in-
clude the evaluation of third-party coded subsystems and
in the selection of code for preventative maintenance. Con-
sider, for example, the case of an organization that hires a
third party to code a software subsystem based on a high
level design. In addition to integration testing of the deliv-
ered subsystem, the organization would benefit from some
notion of its quality (and thus, for example, some notion
of the future costs to comprehend and maintain the sub-
system). While thoroughly assessing the entire subsystem
might take as much time as writing it, leveraged quality as-
sessment allows the selection of aspects of the code whose
quality is representative of the entire code base.

One motivation for the focus on identifiers is that most
of the application-domain knowledge that programmers
possess when writing the code is captured by identifiers’
mnemonics [3]. Antoniol et al. write “Programmers tend to
process application-domain knowledge in a consistent way
when writing code: program item names of different code
regions related to a given text document are likely to be, if
not the same, at least very similar.” Thus, an underlying
premise of their work and the QALP tool is that program-
mers use meaningful (high quality) names for code items.

1

The remainder of the paper includes background infor-
mation in Section 2, followed by a description of the QALP
tool in Section 3. The tool is empirically validated in Sec-
tion 4. The paper concludes with a discussion of related
work in Section 5 and a summary in Section 6.

2 Background
This section provides background on the IR techniques

used in the paper including the use of the vector space
model, the tf-idf method for term ranking, and the yari re-
trieval engine [17]. Finally, the subject programs and statis-
tical tests used are described.

2.1 Language Processing

The particular IR techniques used in the QALP tool are
based on Language Processing (LP). Although LP has his-
torically focused on the analysis of prose, many of the tech-
niques developed are applicable to arbitrary text documents,
including source code. For example, Antoniol et al. and
Marcus et al. have independently analyzed comments and
variables to (re)establish links between source code and its
documentation [3, 22].

In IR the term document refers to a cohesive unit of text
and is usually the artifact returned as the result of a query.
When considering source code, potential “documents” in-
clude a class or a function. The collection of documents is
processed to construct a corpus. This process, known as in-
dexing, stores information about the terms (usually words)
that appear in the documents. Note that the formation of the
corpus does not use a predefined vocabulary or grammar.

One method of processing documents is to create a vec-
tor space model (VSM) of the documents in the corpus.
VSM considers each word ��� as being a separate dimen-
sion in an � -dimensional vector space where similarity is
defined using the cosine of the angle between two vectors.
Given that a query can also be expressed as a vector, doc-
uments can be ranked according to their similarity to the
query. This same measure allows document comparison
when used to assess how similar a pair of documents are.

A VSM can be improved by using stemming and by em-
ploying a stop-list to decrease the dimensionality of the vec-
tor space. Since IR uses exact matches of words, stemming
is generally applied to natural language documents. This
eliminates suffixes so that the frequency of a word disre-
gards its particular forms.

A stop-list can be used to omit words that are not thought
to be relevant. In English, words such as “the” can be elim-
inated. Since the comments are written in natural English,
they are stopped using a standard English stop-list. The
code is then stopped using a special stop-list that includes
frequently used words that are not unique to the concepts
involved in the code. The stop-list for C includes keywords
(e.g., while), predefined identifiers (e.g., NULL), library

function and variable names (e.g., strcpy and errno),
and all identifiers that consist of a single character.

Once the vector space has been reduced using stem-
ming and stopping, weights are assigned to the words. Of
the many alternatives for assigning weights, the standard
method, term frequency-inverse document frequency (tf-idf)
is used [26]. It provides a method for weighting the im-
portance of a term (word) to a document relative to the fre-
quency of the term in the entire collection. The weighting
takes into account two factors: term frequency in the given
document and inverse document frequency of the term in
the whole collection. In short, term frequency in a docu-
ment shows how important the term is in that document.
Document frequency of the term (the average number of
times the term occurs in a given document) shows how gen-
erally important the term is. A high weight using tf-idf is
thus achieved by a term that occurs much more than the av-
erage in a document, but is rare in the entire collection.

The QALP tool uses the search engine Yari, developed
by Victor Lavrenko at the Center for Intelligent Informa-
tion Retrieval [17]. One advantage of using Yari is that the
search engine is freely available for research purposes along
with its source code, so that new applications can be devel-
oped based on a collection indexed by Yari. In addition to
the ability to build retrieval collections from arbitrary text,
additional functionality was been included in Yari. For ex-
ample, there are several similarity functions including co-
sine similarity and part-of-speech recognition functions that
enables the recognition of nouns in natural English.

2.2 Subject Programs
This paper presents empirical data from the 17 programs

shown in Figure 1. The figure includes two measures of
program size: the first uses the unix utility word-count (wc),
and the second the utility sloc count, which counts non-
comment-non-blank lines of code. As described in Sec-
tion 3.1, functions are used as documents. The next three
columns give the number of functions in each program, the
number of functions that include comments either before
or within the function, and finally the percentage of func-
tions that include comments. The final column gives a brief
description of each program. Note that gnugo underwent
“objectification” with Version 3.0, which accounts for the
large increase in the number of functions.

2.3 Statistical Tests
Several statistical tests are used in the paper. First, when

its normality assumption is satisfied, the student’s t-test is
used to provide statistical confidence when comparing the
means of two populations. When comparing means of more
than two populations or when normality cannot be ensured,
one of four different tests is used. First, the Mann-Whitney
test is a nonparametric alternative to the student’s t-test for

2

LOC LOC function functions with percent with
Program (wc) (sloc count) count comments comments Description

go 28,547 25,080 449 339 76% David Forland’s version of go
epwic 8,631 5,245 159 116 73% Image processor
bc 9,967 6,768 246 234 95% Calculator
ctags 16,946 13,426 731 255 35% Emacs and vi tag file generator
diffutils 16,054 10,369 233 187 80% File compare utilities
flex 20,156 14,455 343 228 66% Gnu Lex
named 101,827 70,042 2,631 1,687 64% Bind version 8.2.1
replace 563 512 21 1 5% String replacement utility
gcc 834,738 588,394 13,555 11,030 81% The gcc compiler version 2.95
barcode8 4,858 3,198 100 90 90% A barcode reader
gnugo-1.2 2,857 1,748 31 28 90% Seven versions of the
gnugo-2.0 26,388 21,721 947 163 17% Gnu implementation of go
gnugo-2.4 77,977 66,306 2,544 481 19%
gnugo-2.6 86,558 72,964 2,873 499 17%
gnugo-3.0 189,658 161,282 7,382 908 12%
gnugo-3.2 310,449 153,150 12,392 1,200 10%
gnugo-3.4 186,036 137,885 12,442 1,391 11%

Figure 1. Subject Programs Studied.

determining if two independent samples come from two dif-
ferent populations. When more than two populations are to
be considered, the Kruskal-Wallis test is used. This test de-
termines if at least one sample comes from a different pop-
ulation than the others. When the samples concern the same
participant (non-independent) then the Wilcoxon signed-
ranks test is used in place of the Mann-Whitney test, and
Friedman’s test is used in place of the Kruskal-Wallis test.
Both these later tests are nonparametric alternatives to an
analysis of variance (ANOVA).

Finally, the Kolmogorov-Smirnov test is used to de-
termine whether two underlying probability distributions
differ from each other (rather than simply their means
as in the aforementioned tests). It does so applying the
Mann-Whitney test to the Cumulative Distribution Func-
tions (CDFs) of two data sets. This test determines if the
populations from which the samples are taken have differ-
ent distributions. A CDF is constructed in a nonparametric
manner; thus, no default distribution shape is assumed. In
the case of a test involving more than two samples, when
there is evidence of a difference, the Student-Newman-
Keuls (SNK) test is used to identify groups of samples with
significant differences.

For both, the parametric and nonparametric tests, two
values are reported, the degrees of freedom and a � -score.
The � -score can be interpreted as follows: a value less than
0.01 indicates a strong rejection of the null hypothesis, a
value less then 0.05 indicates a rejection, and a value less
than 0.10 indicates a weak rejection. A � -score greater than
0.10 means that the null hypothesis cannot be rejected; thus,
there is no statistical evidence of a difference.

3 QALP
The techniques employed by the QALP tool are designed

to allow an engineer to form an opinion as to the quality of
the entire system (unlike metrics where quality is typically
measured on some ordinal scale). Each technique takes as
input source code (and potentially its accompanying doc-
umentation) and extracts from the code (and documenta-
tion) various quality indicators. An assessor (a software en-
gineer) is then called on to evaluate these indicators. By
evaluating the code from various perspectives, the assessor
provides multiple judgments of the code’s quality. These
judgments are then used to form a human-leveraged quality
assessment of the system.

Example extraction techniques include function quality
assessment, identifier extraction, machine learning, and ex-
ternal documentation correlations. This section focuses on
function quality assessment, which is empirically studied in
the next section. To provide some indication of the variety
of the techniques, identifier extraction is briefly described
at the end of this section. Following Takang et al., both of
these techniques are based on Brooks’ model of program
comprehension, where more comments and higher quality
identifier names are assumed to produce code that is easier
to comprehend [30].

3.1 Function Quality Assessment
The goal of Function Quality Assessment is to group

functions by relative quality. If successful, functions from
the same group will have similar quality. This allows a qual-
ity assessment for an entire program to be obtained by sam-
pling a subset of the functions from each group.

Function quality assessment uses cosine similarity to
score functions. A corpus is built for each program individ-

3

ually (and not for all programs together), which means the
idf value is relative to the particular program, not many pro-
grams. This process begins by dividing a program’s source
code into segments which are then treated as individual doc-
uments for the purposes of applying language processing
techniques. The exact source code that makes up a segment
can vary with language and application. For example, a
class is the obvious choice for an object-oriented language.
In this paper, the empirical study involves C programs; thus,
the obvious choice for a “segment” is a C function.

The QALP tool divides each function into two “docu-
ments”: One includes only source code and the other only
header and inline comments. The comments are stemmed
to remove suffixes and stopped using a standard English
stop-list. The code is then stopped using the programming
language-specific stop-list described in Section 2. The guid-
ing assumption here is that if the code is high quality then
the comments give a good description of the code (future
work will consider cases where this is not the case). Fur-
thermore, such code uses identifier names derived from the
same concepts as described in the comments.

Roughly speaking (good) comments can be divided into
two categories. Those that describe the internals of a func-
tion for future maintainers and those designed for external
users (callers) of the function. The techniques described
in this section work better with the former kind of com-
ment. The latter may not include significant overlap with
the code and thus will result in lower cosine similarity. Fu-
ture work with the QALP tool includes correlations with
external documentation. This is expected to work well with
comments aimed at external users as the goal of such com-
ments is to provide a different level of abstraction than
that of the function’s implementation. The external docu-
mentation will also be used with functions that contain no
comments. These approaches will complement the existing
techniques.

After dividing each function, the cosine similarity be-
tween source code and related comments is computed for
each function using tf-idf term weighting [26]. Figure 2 de-
picts all the scores for commented functions of at least 25
words from the program gcc. (The analysis omits small
functions (those having fewer than 25 words), as they tend
to have high similarities, but are otherwise unhelpful when
generating quality assessments in the large.) Scores are
sorted along the � -axis. Points to the left have higher
similarity as measured on the � -axis. The empirical data
presented in the next section shows that functions with
higher cosine similarities receive higher human quality as-
sessments.

A correlation between tool score and quality allows the
scores to be used to partition functions such that two func-
tions in the same partition should receive similar assessment
if shown to an engineer (hereafter the term “score” refers to

Figure 2. Sorted list of cosine similarities for
the 8322 functions of gcc that have more than
25 words. The � -axis shows the cosine simi-
larity score. The � -axis shows the percent of
gcc’s functions considered.

the tool’s output and the term “rating” refers to values given
by programmers including study participants). The parti-
tions are used in leveraged quality assessment where they
make it possible to reduce the quantity of code shown to the
engineer who will still come away with a sense of the over-
all quality of the code. As few as one function per partition
could be used, but a greater number increases confidence.
The QALP tool effectively selects this representative subset
of the functions.

In certain applications of the QALP approach this selec-
tion might consider not the entire program, but rather some
subset of its modules. This subset might contain those mod-
ules supplied by a third party, or might include the modules
identified by another tool as relevant for a particular activ-
ity. For example, when performing corrective maintenance
an extraction tool might identify those modules relevant to
a change. The extracted code could then be assessed by the
QALP tool to aid in providing a preliminary estimate of the
cost to comprehend and subsequently change the code.

A longitudinal application of the QALP tool supports a
quick assessment of the relative quality of several versions
of a system. For example, Figure 3 presents QALP tool
scores for seven versions of gnugo. The most striking fea-
ture, easily visible in the chart, is the three distinct bands
that correspond to the three major releases studied. The
short diagonal line in the lower left of the chart is Version
1.2. The three gray lines are from 2.X versions, and the
top three lines are from 3.X versions. At a minimum this
is evidence that commenting of the code occurs mostly at
the release of major revisions. The distances between these
groups are statistically significant (Kolmogorov-Smirnov,

������� ���
	�� , d.f. = 4663) (recall that the Kolmogorov-
Smirnov compares distributions). The SNK test applied to
all seven versions reports three groups that correspond ex-
actly to the three major versions of gnugo.

3.2 Identifier Extraction

Rilling and Klemola observe, “In computer programs,
identifiers represent defined concepts [and] identifier den-

4

Figure 3. Seven versions of gnugo. The � -axis
shows the tool score. The � -axis shows each
function sorted by score.

sity corresponds to comprehension cost” [25]. Knuth noted
that descriptive identifiers are a clear indicator of code qual-
ity and comprehensibility [16]. Identifier extraction is based
on these observations and the assumption that the clarity of
highly used identifiers is of particular importance.

In fairness, quality programs can have poor identifiers
(even though it is expected that quality identifiers would ac-
company quality programs); thus, this information is not
a perfect barometer. Extracting identifiers is, however, in
keeping with the QALP tool’s goal of extracting a variety
of indicators that a software engineer can use as evidence in
forming an overall assessment.

It is reasonable to ask if IR techniques are really neces-
sary as, for example, a developer could quickly assess iden-
tifiers quality by glancing over the source code (identifiers
might even be more meaningful in context). While for small
to mid-sized codes this is a reasonable approach, one of the
goals of the QALP project is the assessment of software in
the large. For example, Eclipse 3.0M7 has just over 2MLoC
and 94,829 different identifiers (which is around the same
number of words as in Oxford Advanced Learner’s Dic-
tionary) [10]. An unfortunate engineer might sample the
Eclipse source code to get a feel for its quality and end up
considering particularly good (or bad) identifiers (even in
context) and come away with the wrong impression.

Of course, looking through 2MLoC is a daunting task.
By selecting key identifiers, assessment of software in the
large becomes possible. The difficult task is defining which
identifiers are key. In the preliminary study discussed in
Section 4.4, this is done based on frequency. Further em-
pirical work will compare alternate definitions of “key,” for
example, those used in the most files, those declaring com-
mon data structures, or even those with high tf-idf scores in
a module relative to the entire program. Such a study will
also consider the pros and cons of considering identifiers
out of context.

To be used as a quality indicator, the extracted identifier
list is stopped; thus, removing common type names, single
character identifiers, library function names, etc. and then
sorted based on frequency of occurrence. While the present
tool does not perform this step, it would be possible to factor

replace gnugo 2.0
freq identifier freq identifier

62 pat 98 board size
43 result 86 dragon
31 arg 53 mx
25 junk 52 originj
24 lin 52 origini
9 lastj 19 found one
9 escjunk 11 GRAY BORDER
7 dest 10 propogate worm
7 CLOSURE 10 liberties
6 size 9 strategic distance to white

Figure 4. Frequency sorted identifier lists
from replace and gnugo. In all, replace has
75 unique identifiers while gnugo has 134.

in syntactic context by, for example, separating local vari-
ables by context.

For example, Figure 4 includes partial identifier lists
from the programs replace and gnugo. The top five most
frequent identifiers are shown followed by five of the bet-
ter identifiers from the top 30 of each list. An informal
inspection of the code by the authors reveals that these
identifier are indicative of code quality. For example, even
out of context, the identifier names board size and strate-
gic distance to white convey significant conceptual infor-
mation. In contrast, even the abbreviations used in replace
that could be considered good abbreviations, such as pat,
carry cognitive overhead [14]; thus, they accompany code
that will, for example, be harder to comprehend.

4 Empirical Validation
An empirical validation study of the function quality as-

sessment was conducted. The design of the experiments
and results are reported followed by a discussion of threats
to the validity and some preliminary results from a related
study of identifier usage. These results are important be-
cause they validate the use of the QALP tool in assessing
software quality, which is a necessary step in performing
leveraged quality assessment.

4.1 Experiment Design
The amount of code used in the survey instrument must

be large enough to obtain interesting results, but small
enough to allow the survey to be completed in a timely man-
ner. Using the cosine similarities as a guide, the following
procedure was used to select the study’s 18 functions. Start-
ing from a pool of 52 programs containing 58,959 func-
tions and over 2 million lines of code, Step 1 extracted all
commented functions with between eight and fifteen unique
identifiers. There were 10,686 functions that met this crite-
ria. Such functions have roughly fifteen to forty lines of
code, which make them an appropriate length for the sur-
vey instrument. From each program, a triple of functions

5

was chosen such that it included one function whose cosine
similarity score was high, one that was in the middle, and
one whose score was low. This limited the pool to 28 pro-
grams. Triples from six of these programs were selected for
the study. The resulting 18 functions contain a total of 692
lines of code.

The experiment was designed with the following three
parts. First, basic instructions (e.g., the scale used for the
rankings) and definitions such as, in general terms, the as-
pects of quality (e.g., that functions be single thought co-
hesive entities, etc.) were provided. These guidelines did
not mention comments or hint at any value in connecting
comments and the code. Along with a questionnaire used to
gather demographic information.

The second and third parts make up the core of the exper-
iment. The second had participants consider the six func-
tion triples (shown in random order). They were instructed
to first rate their comprehension of each function on a five
point scale from “not at all” to “crystal clear.” This allowed,
for example, the effect of poor understanding on quality
scores to be accounted for. The participants then were asked
for relative quality ratings of the three functions and to pro-
vided a measure of the confidence of their ranking.

The third part of the experiment asked participants to
order the six programs based on overall quality as gauged
from the three functions taken from each and to provide a
measure of their confidence in this ranking. While it was
important to collect the data in this order to familiarize par-
ticipants with the programs before asking that they order
them, the opposite order is preferable for presentation; thus,
below the data from the final question is considered first.

The target population from which the participants were
drawn includes novice through experienced software engi-
neers. In total eighteen participants took part in the study.
All participants were students (including pre- and post-
baccalaureate) or faculty at Loyola College (a convenience
sample) and ranged from the second year of study through
post graduate degree holders. Consistent with similar con-
trolled experiments in software engineering [28] experience
did not have a statistically significant effect on responses.
This is not a surprise, at least to the extent that the experi-
ment can be categorized as software psychology, where no
difference would be expected [28]. However, it is important
to note that the number of participants is small for such a
difference to appear statistically significant. Finally, given
the short duration there was no mortality (drop-outs) among
the subjects.

4.2 Experiment Results

Average tool scores and participant ratings for the six
programs are shown in Figure 5. The average is the aver-
age score of the functions used in the study. Informally,
there appears to be agreement for most of the programs.

Figure 5. Mean tool scores and participant rat-
ings for each program. (Scores are measured
on the left axis and ratings on the right.)

For example ctags it the worst and flex the best using both
the participants scores and tool ratings. To formally study
relative quality assessment the “percent precision in pair-
wise differences” (similar to the IR metric precision-recall)
is used. For each pair of programs the difference in mean
score and mean rating is computed. The data is then sorted
based on the magnitude of the difference in scores. The
average number of agreements in the top � entries yields
percent precision through � . The expected result is to find
agreement for “larger” differences. As the magnitude of the
difference in score approaches zero, agreement is expected
to become more random.

Figure 6 shows the sorted scores and ratings for each
pair of programs compared. The fourth column includes
“yes” iff the tool and the survey agree on the relative rank-
ing of the two programs. If the QALP tool assigned random
quality scores, then the probability of agreement would be
50%. If the tool were perfect, then this would be 100%. The
penultimate column gives the percent precision. The final
column provides the � score comparing the percent preci-
sion with a tool that made random quality assignments. As
the underlying distribution satisfies the normality test, the
student’s t-test was used to test the significance of each row.

The expected pattern is present in the data where for dif-
ferences of at least 0.23 in tool scores, there is 100% agree-
ment. Statistically, for a difference of at least 0.12 in tool
score (first underline), the percent precision is significantly
different from random. Even down as low as differences of
0.04, there is weak statistical evidence of non-randomness
(second underline).

Finally, attributing agreement failures to the programs
they involve, the program with the highest score (flex)
and the lowest score (ctags) had no agreement failures.
Thus, there is consistent agreement on which program is the
best and which is the worst. Considering the mean place-
ment of each program, statistically, there is weak evidence
that the six means do not come from the same population
(Wilcoxon, � � � � ������� , d.f. = 84). An SNK test identifies
two groups: the first includes all the programs except ctags

6

Differences Agreement �
Programs Tool Survey Survey Percent (Mean
Compared Score Rating - Tool Precision > 0.5)

p3 - p5 -0.38 -1.93 yes 100% -
p5 - p6 0.37 0.33 yes 100% -
p1 - p5 -0.34 -0.73 yes 100% -
p2 - p5 -0.26 -0.80 yes 100% -
p3 - p4 -0.24 -1.13 yes 100% -
p4 - p6 0.23 0.33 yes 100% -
p1 - p4 -0.20 0.07 no 86% 0.023
p4 - p5 -0.14 -0.80 yes 88% 0.010
p2 - p3 0.13 1.13 yes 89% 0.004
p2 - p4 -0.12 0.00 no 80% 0.026
p2 - p6 0.11 -0.47 no 73% 0.069
p1 - p2 -0.08 0.07 no 67% 0.133
p1 - p3 0.04 1.20 yes 69% 0.087
p1 - p6 0.03 -0.40 no 64% 0.151
p3 - p6 -0.01 -1.60 yes 67% 0.104

Figure 6. Tool - Survey Agreement (sorted by
magnitude of tool score difference).

and the second includes all the programs except flex; thus,
flex with a mean of 4.27 is of higher quality than ctags with
a mean of only 2.33. When directly compared, this differ-
ence is highly significant (Wilcoxon, � � � � ��� � , d.f. = 26).
Notice that the QALP tool does not indicate that flex is of
high quality only that flex is higher quality code than ctags.

The data for individual functions is now considered. The
question under investigation is do QALP tool scores and the
survey ratings assign the same relative order to the functions
of each program. To quantify the rankings onto a similar
scale as the cosine similarity, the highest ranked function
was assigned 1.0 points, the middle function 0.5 points, and
the low function 0.0 points. With three functions from each
of 6 programs, 18 intra-program comparisons exist. The
function comparisons are shown in Figure 7 sorted on the
magnitude of tool score difference.

Similar to the program quality comparisons, the differ-
ence in ranks was compared to the difference in scores.
As shown in Figure 7 the last point at which it is possi-
ble to reject the null hypothesis is for differences of at least
0.10 (t-test, � ����� � 	 �

, d.f. = 18). Thus, differences less
than 0.10 are not statistically interesting. This point is very
close to the score difference of 0.12 found when comparing
programs (Figure 6); these findings serve to reinforce each
other. Finally, it turns out that the last point for weak statis-
tical difference (� � ��� �
�) is the same as that of statistical
difference (� � � � ���).

To summarize the two studies, for “sufficient” differ-
ences in quality score, the QALP tool’s measure of relative
quality between functions is consistent with human judg-
ment. This validates the use of the QALP tool in leveraging
human quality assessment as the tool can be used to parti-
tion functions based on score.

Differences Agreement �
Functions Tool Survey Survey Percent (Mean
Compared Score Rating - Tool Precision > 0.5)

5a-5b -0.46 -0.06 yes 100% -
4a-4c 0.39 0.31 yes 100% -
4a-4b 0.33 0.06 yes 100% -
5b-5c 0.29 0.13 yes 100% -
1a-1b -0.20 -0.06 yes 100% -
5a-5c -0.18 0.06 no 83% 0.016
6a-6c -0.17 0.16 no 71% 0.071
1b-1c 0.17 0.03 yes 75% 0.032
2a-2c -0.16 0.31 no 67% 0.096
6a-6b -0.10 -0.16 yes 70% 0.049
2b-2c -0.09 0.16 no 64% 0.118
2a-2b -0.07 0.16 no 58% 0.225
6b-6c -0.07 0.31 no 54% 0.358
3a-3c -0.07 0.22 no 50% 0.500
3b-3c -0.06 0.16 no 47% 0.625
4b-4c 0.06 0.25 yes 50% 0.500
1a-1c -0.04 -0.03 yes 47% 0.625
3a-3b -0.002 0.06 no 44% 0.730

Figure 7. Function level agreement (sorted by
magnitude of score difference).

4.3 Threats to Validity

In any empirical study, it is important to consider threats
to validity (i.e., the degree to which the experiment mea-
sures what it claims to measure). There are four types of
validity relevant to this research: external validity, internal
validity, construct validity, and statistical conclusion valid-
ity.

External validity, sometimes referred to as selection va-
lidity, is the degree to which the findings can be generalized
to other organizations or settings. In this experiment, se-
lection bias is possible as the selected functions, programs,
and participants may not be representative of those in gen-
eral; thus, results from the experiment may not apply in the
general case. Careful selection of the functions mitigates
the impact of their selection. It is possible, but believed
unlikely, that programs written for domains not considered
(e.g., real-time systems, embedded systems, event-driven
systems, or even non-open source programs) may exhibit
significantly different behavior. Finally, only a few experi-
enced programmers took part in the experiment. While their
data does not appear different from the averages, there are
insufficient data for statistically significant conclusions to
be drawn. It is possible that repeating the experiment with
only advanced software engineers would produce stronger
or opposite results. The latter would render the tool of
greater use by junior professionals.

Second is the threat to internal validity: the degree to
which conclusions can be drawn about the causal effect of
the independent variable on the dependent variable. The

7

only significant potential threat to internal validity comes
from the three groups that took part in the survey doing so
at different times. Thus, it is possible that some participants
gained advanced knowledge of the identifiers, functions, or
questions. This is believed to be unlikely. Other potential
threats to internal validity, for example, history effects, at-
tention effects, and subject maturation [28] are non issues
given the short duration of the experiment. As is custom-
ary, selection effects were addressed using random selec-
tion. Finally, it is possible that exposure to early questions
had an effect on responses to later questions. No evidence
of this was found in the participants responses.

Construct validity assesses the degree to which the vari-
ables used in the study accurately measure the concepts they
purport to measure. As human assessment of quality is
rather subjective, it is possible that some other aspect of the
functions (and identifiers) assessed affected participants rat-
ings’. Indicators such as participants confidence were used
to mitigate threats to construct validity. A lesser issue is
the threat from potential faults in the QALP Tool. To miti-
gate this concern, mature IR tools were used and thoroughly
tested. This reduces the impact implementation faults may
have on the conclusions reached.

Finally, a threat to statistical conclusion validity arises
when inappropriate statistical tests are used or when viola-
tions of statistical assumptions occur. The statistical tests
used were chosen based on past experiments and guidance
of those trained in statistics. This serves to reduce the pos-
sibility of an inappropriate test being employed.

4.4 Preliminary Results on Identifier Lists

Two motivations for using identifier lists comes from the
work of Caprile and Tonella, who observe “identifier names
are one of the most important sources of information about
program entities” [6] and the work of Deienbck and Pizka,
who observe that “research on the cognitive processes of
language and text understanding shows that it is the se-
mantics inherent to words that determine the comprehen-
sion process.” Thus, they conclude that the importance of
identifier names is not surprising [10].

A preliminary experiment was run that considered iden-
tifier quality. The underlying hypothesis is that a list of fre-
quent identifiers can be a useful piece of evidence in form-
ing an overall quality assessment. In this experiment the top
30 most frequent identifiers were extracted from four pro-
grams. Each participant was asked to predict the program’s
quality based solely on the identifiers. Rather than bias
participants with the author’s definition of identifier qual-
ity, participants were instructed to apply the rules they use
when coding themselves.

Statistically, the quality ratings of the four programs are
drawn from different populations (Friedman, ��� ��� � ����� ,
d.f. = 77). An SNK multiple comparison yields two groups:

Group A (p1), which is better than Group B (p2, p3, and
p4). In a detailed inspection of the four programs by the
authors (performed before the experiment was conducted),
p1 had the highest quality, followed by p2, p3, and finally
p4. While there is not sufficient data for statistical compar-
ison, it is interesting that this order is consistent with the
two groups obtained using only identifier based quality rat-
ings. As identifiers carry significant semantic information,
this supports their incorporation as one piece of evidence in
the quality assessment of a program.

5 Related Work

This section considers work related to the QALP tool
and, where appropriate, highlights the similarities and dif-
ferences with the QALP approach. First three general appli-
cations of IR to source code are considered, and then a pro-
gression towards work more closely related work to QALP
is considered. This progression first samples projects that
consider general quality metrics, and then those that extract
information from comments, identifiers, and finally their
combination.

Three general areas of IR application to source code
emerge from the literature. First, IR techniques have been
used to improve, track, and identify the impact of require-
ment changes. Dag et al. presents an automated similar-
ity analysis of textual requirements using IR techniques [9].
They report that the technique helped engineers identify re-
lationships between requirements, including requirements
duplicates and interdependencies. Hayes et al. report suc-
cess with the related problem of improving requirements
tracing based on framing the problem as an information re-
trieval (IR) problem [13]. Finally, Antoniol et al. propose
an IR-based method that given a maintenance request, ef-
fectively identifies the set of system components initially
affected by the maintenance request [2].

The second area is (re)establishing links between source
code and its documentation. Here, Maletic et al. [20]
used Latent Semantic Analysis (LSA) to find links between
source code and documentation. They worked with com-
ments and identifier names within the source code to extract
semantic meaning with respect to the entire input document
space [22]. In similar work, Antoniol et al. and De Lucia
et al. investigated the use of IR methods to recover trace-
ability links between source code and documentation, and
between source code and requirements [3, 18]. Two case
studies support the hypothesis that the probabilistic and the
vector space IR models are suitable for recovering traceabil-
ity links between code and documentation.

The QALP tool’s use of cosine similarity is similar to the
use of cosine similarity in these techniques. While the infor-
mation gathered is applied to a different use, internally the
only significant difference is that the present QALP tools fo-
cuses on only internal documentation and the techniques of

8

Antoniol and Marcus focus on the external documentation.
Future work with the QALP tool includes incorporating in-
formation from the external documentation.

The third and final area finds commonalities directly
in the source code. This is similar to the early work of
Maarek [19] on the use of IR to automatically construct
software libraries. More recently, Marcus et al. use LSA
to identify semantic similarities between source code doc-
uments [21]. In similar work Kawaguchi et al. describe
an automatic software categorization algorithm to help find
similar software systems in software archives [15]. They
explore several known approaches including code clones-
based similarity metric, decision trees, and latent semantic
analysis. Finally, in a related vein, Marcus et al. address
the problem of concept location using latent semantic anal-
ysis [23]. Two concept locators are presented–one based on
user queries and the other on partially automated queries.

Most existing code based (quality assessment) metrics
focus on distilling a program down on to an ordinal scale.
For example, the object-oriented quality metrics proposed
by Chidamber and Kemerer [8] are all integer values. Al-
though they rely more on syntactic structures of C++ code
to predict quality, the techniques do associate metrics with
(a type of) software quality; empirical investigation of these
metrics [4, 5, 11], shows that they predict faults in classes
(higher metric values as associated with classes where a
high number of faults are found).

Two things distinguish the QALP approach from this
prior work. First, existing metrics tend to have a high cor-
relation with the simple metric “lines of code” [12], which
the techniques considered herein do not. Second, while it
computes numeric scores internally, the focus of the QALP
approach is to extract quality indicators from the source
code and then allow a programmer to evaluate them thereby
leveraging the programmer’s intuition and experience in
forming a quality assessment.

Representative work that extracts information from pro-
gram comments is that of Sayyad-Shirabad at el. who pro-
pose a technique for the creation of a “light-weight” concep-
tual knowledge base aimed at helping an apprentice “under-
stand, navigate, and search within the code” [27]. Their pro-
cess assumes that all the important high level concepts are
mentioned in the comments. These concepts are extracted
and then revised by a domain expert.

Switching to work that focuses on identifiers, Anquetil
and Lethbridge (among others) have observed that there
is some controversy over the value of general identifier
names [1]. For example, Sneed states that “in many legacy
systems, procedures and data are named arbitrarily ����� pro-
grammers often choose to name procedures after their girl-
friends or favorite sportsmen” [29]. This pattern was ob-
served by one of the authors at a previous industrial position
in the coding of a colleague who was fond of Star Wars. Fol-

lowing Anquetil et al., the QALP tool assumes that software
engineers are trying to provide significant names. With the
spread of true engineering discipline in the software con-
struction process, this assumption grows increasingly more
likely to be satisfied.

An example of a research project that considers both
comments and identifiers is the work of Takang et al. [30],
which describes testing three hypothesis: (i) commented
programs are more understandable than non-commented
programs; (ii) programs that contain full identifier names
are more understandable than those with abbreviated iden-
tifier names; and (iii) the combined effect of comments and
identifier names tend to enhance the understandability of a
program more than the independent effect of comments or
identifier names.

Using a two-way analysis of variance to study the re-
sults of objective and subjective information gather from a
survey instrument, hypothesis (i) was supported by the ob-
jective test scores, and hypothesis (ii) was supported by the
subjective scores.

Interestingly, there was no perceived improvement with
the combined effect of comments and full identifier names.
The authors observe that “This may have been because
the comments didn’t add a significant amount of informa-
tion (the program was fairly straight forward without com-
ments).” This can be contrasted with the “real world” code
used in the experiment described herein. By providing mul-
tiple aspects for an engineer to assess, the QALP tool at-
tempts to provide the best of both worlds as sometimes ob-
jective assessments and sometimes subjective assessments
are preferable.

6 Summary and Future Challenges
The goal of the QALP tool is to leverage human insight,

intuition, and judgment to assess code quality in the large.
It does so by using aspects of the system extracted by IR
techniques. The QALP tool fills the gap where automated
techniques have been found lacking and where direct human
assessment is prohibitively expensive. Leveraged quality
assessments can be used, for example, to assess the com-
pression effort (and subsequent cost) required to make a
change and to identify parts of a program in need of pre-
ventative maintenance. The empirical study from Section 4
demonstrates the promise of the QALP approach.

Three promising areas for future work include, investi-
gating scoring techniques for functions without comments.
Here it is possible that good internal documentation (pri-
marily through good identifier names) obviates the need for
(redundant) commenting. One approach to this end will
score a function based on a correlation between identifiers
and the external documentation. A second area includes
plans to extract other indicators including CVS comments
borrowing an idea from Chen et al. who use CVS com-

9

ments as a source of information for code search [7]. A
third area of future work is based on the observation of
Deienbck et al. that “a reader of a program tries to map
the identifiers read to the concepts they may refer to” [10].
Future QALP research will attempt to use ideas from ma-
chine learning [24] to select key components from a pro-
gram based on higher-level concepts. Parallel to the devel-
opment of these new techniques, is an ongoing investigation
of correlations between leveraged quality assessments and
other measures of quality such as bug frequency, reliability,
evolvability, robustness, performance, security, correctness,
and portability.

7 Acknowledgments

This work is supported by National Science Foundation
grant CCR0305330. Chris Morrell and Beth Domholdt pro-
vided invaluable statistical assistance. Erin Ptah, Jeri Hanly,
and Margaret Daley were extremely helpful in editing the
paper.

References

[1] N. Anquetil and T. Lethbridge. Assessing the relevance of identi-
fier names in a legacy software system. In Proceedings of the 1998
conference of the Centre for Advanced Studies on Collaborative Re-
search, Toronto, Ontario, Canada, November 1998.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identify-
ing the starting impact set of a maintenance and reengineering. In
Proceedings of 4th European Conference on Software Maintenance,
Zurich, Switzerland, 2003.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Re-
covering traceability links between code and documentation. IEEE
Transactions on Software Engineering, 28(10), October 2002.

[4] V. Basili, L. Briand, and W. Melo. A validation of object-
oriented design metrics as quality indicators. Software Engineering,
22(10):751–761, 1996.

[5] L. Briand, P. Devanbu, and W. Melo. An investigation into coupling
measures for c++. In International Conference on Software Engi-
neering, pages 412–421, 1997.

[6] B. Caprile and P. Tonella. Restructuring program identifier names.
In ICSM, pages 97–107, 2000.

[7] A. Chen, E. Chou, J. Wong, A. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: Searching through source code using CVS
comments. In Proceedings of the first IEEE Workshop on Source
Code Analysis and Manipulation (SCAM 2001), pages 364–373, Flo-
rence, Italy, November 2001.

[8] S. Chidamber and C. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493,
June 1994.

[9] J. Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson. A
feasibility study of automated natural language requirements analy-
sis in market-driven development. Requirements Engineering, 7(1),
June 2002.

[10] F. Deißenböck and M. Pizka. Concise and consistent naming. In
Proceedings of the 13th International Workshop on Program Com-
prehension (IWPC 2005), St. Louis, MO, USA, May 2005. IEEE
Computer Society.

[11] R. Ferenc, I. Siket, and T. Gyimthy. Extracting facts from open
source software. In Proceedings of 2004 International Confer-
ence on Software Maintenance, pages 60–69, Chicago Illinois, USA,
September 2004. IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, USA.

[12] T. Gyimthy, R. Ferenc, and I. Siket. Emperical validation of object-
oriented metrics on open source software for fault prediction. vol-
ume 31, pages 897–911, Washington, DC, October 2005. IEEE Com-
puter Society.

[13] J.H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements
traceability via information retrieval. In Proceedings of 11th IEEE
International Requirements Engineering Conference, Monterey, Cal-
ifornia, September 2003.

[14] D. Jones. Memory for a short sequence of assignment statements. C
Vu, 16(6):15–19, December 2004.

[15] S. Kawaguchi, P.K. Garg, M M. Matsushita, and K. Inoue. Automatic
categorization algorithm for evolvable software archive. In Proceed-
ings of International Workshop on Principles of Software Evolution,
Helsinki, Finland, September 2003.

[16] D. Knuth. Selected Papers on Computer Languages. Stanford, Cal-
ifornia: Center for the Study of Language and Information (CSLI
Lecture Notes, no. 139), 2003.

[17] V. Lavrenko and W.B. Croft. Relevance-based language models. In
W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors, Pro-
ceedings on the 24th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 365–379,
2001.

[18] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an
artifact management system with traceability recovery features. In
Proceedings of IEEE International Conference on Software Mainte-
nance, Chicago, IL, September 2004. IEEE Computer Society Press,
Los Alamitos, California, USA.

[19] Y.S. Maarek, D.M. Berry, and G.E. Kaiser. An information retrieval
approach for automatically constructing software libraries. IEEE
Transactions on Software Engineering, 17(8), 1991.

[20] J. Maletic and A. Marcus. Using latent semantic analysis to identify
similarities in source code to support program understanding. In Pro-
ceedings of

�������
IEEE International Conference on Tools with Arti-

ficial Intelligence (ICTAI), Vancouver, British Columbia, November
2000.

[21] A. Marcus and J. Maletic. Identification of high-level concept clones
in source code. In Proceedings of Automated Software Engineering,
San Diego, CA, November 2001.

[22] A. Marcus and J. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings
of the

�����	�
IEEE/ACM International Conference on Software En-

gineering, Portland, OR, May 2003.

[23] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An information
retrieval approach to concept location in source code. In IEEE Work-
ing Conference on Reverse Engineering, Delft, The Netherlands,
November 2004.

[24] T. Mitchell. Machine Learning. WCB McGraw-Hill, 1997.

[25] J. Rilling and T. Klemola. Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics. In Proceed-
ings of the

��� �	�
IEEE International Workshop on Program Compre-

hension, Portland, Oregon, USA, May 2003.

[26] G. Salton and M. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill Book Company, 1983.

[27] J. Sayyad-Shirabad, T. Lethbridge, and S. Lyon. A little knowledge
can go a long way towards program understanding. In 5th Interna-
tional Workshop on Program Comprehension, pages 111–117, Dear-
born, MI, USA, May 1997. IEEE Computer Society.

[28] D. Sjberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic,
N. Liborg, and A. Rekdal. A survey of controlled experiments in
software engineering. IEEE Transactions on Software Engineering,
19(4):379–389, 1993.

[29] H. Sneed. Object-oriented cobol recycling. In 3rd Working Confer-
ence on Reverse Engineering, pages 169–178. IEEE Computer Soci-
ety., 1996.

[30] A. Takang, P. Grubb, and R. Macredie. The effects of comments
and identifier names on program comprehensibility: An experiential
study. Journal of Program Languages, 4(3):143–167, 1996.

10

