
SNIAFL: Towards a Static Non-Interactive Approach to Feature Location

Wei Zhao, Lu Zhang,
1
Yin Liu, Jiasu Sun, Fuqing Yang

Software Engineering Institute, Peking University, Beijing, P. R. China, 100871

{zhaow, zhanglu, sjs, yang}@sei.pku.edu.cn
1
mirainmay@hotmail.com

Abstract

To facilitate software maintenance and evolution, a helpful

step is to locate features concerned in a particular maintenance

task. In the literature, both dynamic and interactive approaches

have been proposed for feature location. In this paper, we

present a static and non-interactive method for achieving this

objective. The main idea of our approach is to use the

information retrieval (IR) technology to reveal the basic

connections between features and computational units in source

code. Due to the characteristics of the retrieved connections, we

use a static representation of the source code named BRCG to

further recover both the relevant and the specific computational

units for each feature. Furthermore, we recover the

relationships among the relevant units for each feature. A

premise of our approach is that programmers should use

meaningful names as identifiers. We perform an experimental

study based on a GNU system to evaluate our approach. In the

experimental study, we present the detailed quantitative

experimental data and give the qualitative analytical results.

1. Introduction
During the past several decades, the heavy costs of

maintaining existing software systems have become a great

concern for many software projects. As estimated in [22], about

40 percent of the total cost of a software project is spent on

software maintenance.

Usually, a maintenance task is to change or add some

functionalities or features [27] [5], or refactoring the program

without changing its behavior [12]. Although some refactoring

tasks (such as the refactoring for generalization [21]) can be

fulfilled automatically, most maintenance tasks require

maintainers to spend more than half of their working time

analyzing the documents and the source code to understand the

features of the system being maintained [7]. A basic but very

helpful step for this kind of maintenance is to locate interesting

features in the source code [26].

More theoretically, the feature location problem can be

formulated as identifying the relationships between the user’s

view and the programmer’s view [23]. The user’s view is made

up of a collection of features denoted as FEATURES={f1,

f2, ...fn}, while the programmer’s view consists of a collection of

computational units denoted as UNITS={u1, u2, ...um}. Thus, the

feature location problem is to recover the implementation

relationships over FEATURES × UNITS. In particular, two kinds

of implementation relationships are usually distinguished [26]

[11]. The first is the relevant relation, in which each feature is

related to all the units contributing to the feature’s

implementation. The second is the specific relation, in which

each feature is related only to the units that contribute to the

feature’s implementation but not to any other features’

implementation.

There are mainly two categories of approaches addressing

this problem. Firstly, interactive approaches based on

maintainers browsing a graphical representation of the source

code (such as [4], [6], [14] and [18]) can be used to assist

maintainers to locate features. In the literature, this kind of

approaches is also referred to as the static approaches. Secondly,

automatic approaches based on dynamic execution of the system

(see e.g. [24], [26] and [11]) are also reported in the literature.

These approaches are usually referred to as the dynamic

approaches.

In this paper, we propose a Static Non-Interactive Approach

to Feature Location (SNIAFL). Like the dynamic approaches,

our approach works in a batch-like manner without much human

involvement. However, unlike the dynamic approaches, which

use test cases to exhibit the basic relationships between features

and units, we use information retrieval (IR) to achieve this

objective. In fact, our approach is inspired by recent advances in

applying IR for recovering traceability between code and

documentation (see e.g. [2] and [16]). According to the

characteristics of the retrieved results, we use the Branch-

Reserving Call Graph [17] (an expansion of the call graph with

branch information) to further recover the relevant and specific

units and acquire the relationships among the relevant units for

each feature.

2. Related Work
2.1. Feature Location

As mentioned above, the central task of feature location is to

match the knowledge about features and that about

computational units. In the previous research, two mainstreams

of ideas for this task can be identified. The first one assumes

that maintainers with the knowledge about features can browse

through the source code of computational units to establish the

connections. Therefore, the feature location problem is turned

into building up an efficient support to facilitate maintainers for

this browsing. This leads to the various interactive approaches.

On the other hand, the second one assumes that maintainers can

create test cases corresponding to features. As a result, the

connections between features and computational units can be

established via recording the execution traces of the test cases.

Therefore, the feature location problem is turned into analyzing

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

execution traces with feature tags. This leads to the various

dynamic approaches.

The forerunner of interactive feature location is [4], in

which, this problem is referred to as a concept assignment

problem. Thus, feature location is viewed as the process of

assigning human-oriented concepts to program-oriented

concepts. Several graphical representations of source code (such

as the call graph, the program slice graph, and the program

clustering graph) are exploited to facilitate this process. In [6],

an interactive approach to feature location based on browsing

the abstract system dependency graph (ASDG) is proposed. As

ASDG can represent the dependencies among routines, types

and variables at an abstract level, it can guide a user to search

for the implementation of a particular feature. [14] reports the

Aspect Browser, which can help maintainers to find feature

implementations using lexical searches. This tool is based on

Seesoft [9] and uses the map metaphor to graphically represent

the location of the possible pieces of code for feature

implementations. In [18], where features are referred to as

concerns, the Concern Graphs is proposed as a facility of feature

location. Compared to previous interactive approaches, the main

difference is that the building of the Concerns Graphs is also

interactive. Therefore, irrelevant source code will not be taken

into consideration in the building process, and the piece of

Concern Graphs used for locating a feature can be very small.

As a result, this approach has a good scalability for large

systems.

The main advantage of the interactive approaches is that the

maintainer using such an approach can just have a vague idea of

the target feature in the beginning and build up his or her

knowledge in the process of feature location. However, the

interactive nature makes these approaches very difficult to be

highly automatic, and intensive human involvement is required.

The pioneer work of dynamic feature location is Software

Reconnaissance [23][24]. In this approach, carefully designed

test cases (among which, some are corresponding to a particular

feature f, and others are not) are executed and the invoked

computational units for each test case are recorded. Based on

analyzing these units, four kinds of units regarding feature f can

be distinguished: the commonly involved units, the potentially

involved units, the indispensably involved units, and the

uniquely involved units. A similar approach is reported in [26].

The main difference is that it can present code that is unique to a

feature or common to a group of features at different granularity

levels (i.e. files, functions blocks, lines of code etc.). Eisenbarth

et al. have published several papers on using concept analysis

for dynamic feature location (see [10] and [11] etc.). This

approach uses a concept lattice to represent the execution traces

recorded in the dynamic execution. Based on the lattice, several

different relationships between features and computational units

can be easily recovered.

The main advantage of the dynamic approaches is that they

can automatically deal with many features in a batch-like

manner after the test cases are acquired. However, they usually

require a large number of test cases, and the design of these test

cases may be a difficult task.

A simple empirical comparison of Software Reconnaissance

and the approach in [6] is presented in [25]. The result of this

comparison shows that Software Reconnaissance is more

suitable for locating a number of features in a large but

infrequently changed system, while the approach in [6] is more

suitable for locating a specific feature under intensive changing.

2.2. IR-Based Traceability Recovery
In recent years, the use of information retrieval (IR) in

recovering traceability between documentation and source code

has become a focus. Antoniol et al. have published a series of

papers on recovering code to documentation traceability (see i.e.

[1] and [2]). In their approach, documentation pages are used as

documents and summaries of classes in source code are used as

queries. Two IR models (the probabilistic model [3] pp. 30-34

and the vector space model [3] pp. 27-30) are used in this

approach without much difference in terms of performance. In

[16], Marcus and Maletic use the Latent Semantic Indexing

(LSI) method [8] [3] (pp. 44-46) (which is based on the vector

space model) for recovering the documentation-to-code

traceability. In this approach, source code files without any

parsing are used as documents, and sections in the

documentation are used as queries. According to the

experimental results reported in [16], Marcus and Maletic’s

approach can to some extent outperform Antoniol et al.’s

approach. Marcus and Maletic have also used the LSI method to

define similarity measures between source code elements [15].

The traceability between documentation and source code

recovered by the above two approaches is a kind of links

between entities with large granularity, which are quite different

from the entities (i.e. features and computational units)

discussed in feature location. Therefore, these traceability

recovery approaches are addressing a different problem other

than the feature location problem. However, the use of IR does

provide a means for connecting human-oriented knowledge and

program-oriented knowledge. This is the starting point of our

approach.

3. Approach Overview
In this section, we briefly present the objective of our

approach and the main idea behind this approach. A similar

application of this idea can also be found in our previous work

[28].

As our approach is evaluated on a system written in the C

language, we use the term function instead of computational

unit for presenting our approach. In this paper, we concentrate

on locating the relevant functions and the specific functions of a

feature, although other relationships between features and

functions can also be acquired via a slight extension of our

approach. In this paper, the specific functions of a feature are

defined as those functions that are definitely used to implement

this feature but will not be used by any other features. The

relevant functions of a feature are defined as all the functions

that are involved in the implementation of the feature.

Obviously, the specific function set is a subset of the relevant

function set for every feature.

The goal of our approach is to solve the feature location

problem statically. To achieve this goal, the basic idea is to use

IR as the means to reveal the connections between features and

functions, as indicated by recent studies on the effectiveness of

using IR to recover traceability links. Obviously, the potential

advantage of this idea is that it can save the costs for creating

and executing test cases in dynamic approaches, and that for

human involvement in interactive approaches. Like approaches

to traceability recovery [2] [16], our idea requires that features

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

should be described in natural languages and meaningful

identifier names should be used in the source code.

Due to the fuzzy matching nature of the IR technology, we

cannot always acquire an accurate set of relevant functions for

every feature directly from IR. This means that some irrelevant

functions may be included due to the trivial description while

some relevant functions may be excluded due to no

corresponding descriptions in the features whatever IR method

is used. As a result, we have to aim at correctly retrieving some

specific functions for each feature when using IR since the

specific description of each feature should not be lost. To

achieve this, we use an IR model to decrease the importance of

common words related to common functions, and for each

feature acquire a function list ranked by the extent to which the

function is specific to the feature. Then, an algorithm is

involved to set a division point in the list. All functions before

this division point will be used as the initial specific functions to

each feature. We call them initial specific functions because

some supporting specific functions, which are not mentioned in

the feature descriptions, cannot be revealed through IR, and also

they might not be completely correct.

After the initial specific functions for each feature are

acquired, the next step is to acquire all the relevant functions for

the feature. Besides, as no information about the call-

relationships between the retrieved functions can be acquired

from IR, it is also helpful to recover all the calling information.

In our approach, we use a static representation of the source

code for both purposes. The representation used in our approach

is the Branch-Reserving Call Graph (BRCG), an expansion of

the call graph with branching and sequential information, which

is originally proposed for discovering use cases in source code

[17]. This representation will be used to recover these

relationships, and acquire those relevant functions according to

the retrieved initial specific functions. Compared to the

traditional call graph, the branch information in this

representation can be used for eliminating irrelevant functions

and refining call-relationships. Using this information, we can

construct the pseudo execution traces for each feature. After all

the relevant functions for each feature are determined, we can

determine all the other relationships between features and

functions, including the specific function sets that we are mostly

interested in.

4. The SNIAFL Approach
4.1. The Process

The process of SNIAFL approach is depicted in Fig. 1. There

are four main steps in the approach. The first step is to acquire

the initial specific connections between features and functions.

In this step, we use IR to filter the specific information of the

features and recover these initial connections. The second step is

to rank functions against each feature according to the retrieved

result and choose the initial specific functions for each feature.

The third step is to acquire the relevant functions and the

possible pseudo execution traces using the BRCG extracted

from source code. Based on each feature’s initial specific

functions, we complement all functions in the paths including

the initial specific functions to acquire the relevant functions of

the feature. As the BRCG maintains the branching and

sequential information of source code, the possible pseudo

execution traces of these relevant functions can also be acquired

in the meantime. In the last step, we analyze the relevant

functions to determine the final specific functions according to

the definition of specific functions.

4. Determine Final Specific Functions

2. Acquire Initial Specific Functions

3. Determine Relevant
Functions&Traces1. Acquire Initial Specific Connections between Features and Functions

Retrieve

connections

Feature

description

Function

description

Source codeExtract

function

descriptions

Recovered

connections Prune the BRCG

Final relevant

functions&Traces

Decide initial

specific

functions

Initial

specific

functions

BRCG

Analyze relevant

functions

Final specific

functions

Create the

BRCG

Fig. 1 The Process of SNIAFL Approach

4.2. Acquiring Initial Specific Connections

between Features and Functions
4.2.1. The Vector Space Model

In our approach, we use the vector space model for indexing

documents and queries and ranking the results. We introduce the

vector space model in brief here. Please refer to [3] (pp. 27-30)

for details.

The vector space model [19], [20] proposes a framework in

which partial matching is possible. It treats queries and

documents as vectors constructed by the index terms. The index

terms are acquired from the text of queries and documents

according to some rules (such as ignoring articles, punctuations,

numbers, etc.). Each index term has different weights in

different document and query vectors. These term weights are

ultimately used to compute the degree of similarity between

each document and each query. Vector (w1,q, w2,q, ... ,wt,q)

represents the query q, in which wi,q is the weight of the ith

index term in the query q, and t is the number of the index

terms. Vector (w1,j, w2,j, ... ,wt,j) represents the document dj, in

which wi,j is the weight of the ith index term in the document dj,

and t is the number of the index terms. The vector space model

proposes to evaluate the degree of similarity of the document dj

with regard to the query q as the correlation. This correlation

can be quantified by the cosine of the angle between these two

vectors, which is shown in equation (1).

==

=

×

×
=

×
•

=
t

i

qi

t

i

t

i

qiji

j

j

j

ww

ww

qd

qd
qdsim

ji

1

2

,

1

1

,,

2

,

||||
),(

(1)

In order to compute the degree of similarity using equation

(1), we need to specify how the index term weights are

obtained. In the vector space model, the tf (term frequency)

factor and the idf (inverse document frequency) factor are

applied to decide the weights of index terms. The computation

of these two factors is shown in equations (2) and (3).

jll

ji

ji
freq

freq
f

,

,

,
max

=

(2)

In equation (2), freqi,j is the raw frequency of the ith index

term in the document dj (i.e., the number of times the ith index

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

term is mentioned in the text of the document dj); the maximum

is computed over all index terms which are mentioned in the

text of the document dj; and fi,j is the normalized frequency of

the ith index term in document dj.

The computation of inverse document frequency for the ith

index term, idfi, is given by

i

i
n

N
idf log= (3),

where N is the total number of documents in the system and ni is

the number of documents in which the ith index term appears.

The motivation for usage of the idf factor is that terms that

appear in many documents are not very useful for distinguishing

a relevant document from a non-relevant one.

Then, as suggested in [3] (pp. 27-30), the two following

equations can be used to compute the weights of index terms in

documents and queries.

ijiji idffw ×= ,,

(4)

i

qll

qi

qi idf
freq

freq
w ×+=)

max

5.0
5.0(

,

,

,

(5)

4.2.2. Preparing Queries and Documents
From the above introduction of the vector space model, we

know that the nature of the vector space model is to treat the

query and each document as the vectors and compute the

similarity between them. tf and idf factors are used to measure

the weights of index terms of the query and each document. The

computations of tf and idf factors are based on the statistical

data of all the documents. For the tf factor, the more

appearances of one index term in a certain document, the higher

the weight of this index term in this document. For the idf

factor, the more appearances of one index term in all the

documents, the less contribution the index term do to judge the

similarity between the query and the documents.

As we are aiming at retrieving some specific functions for

each feature, we can apply this idf factor to filter the specific

information of the feature descriptions if we treat the features as

the documents at the IR step. Thus, the common descriptions in

different features will do less contribution to compute the

similarity between the features and the functions, and the

ranking will be mainly based on the specific descriptions in the

features. Therefore, we treat the feature description set as

documents, and the function description set as queries in our

approach.

The set of feature descriptions (document set) can be

acquired from the requirements documentation or domain

experts or even users very familiar with the target system. For

each feature, we will get a paragraph of text as its description.

Usually, all the descriptions are in a natural language (e.g.

English). Then each feature description is transformed into a set

of index terms using the standard practice in IR. That is to say,

only the nouns and the verbs in the description are considered in

the transformation, and these words will be normalized to their

original form (i.e. the single form of nouns and the infinitive

form of verbs) to be the final index terms.

The function description set (query set) is acquired from the

source code as follows. For each function in the source code, we

extract the set of identifiers associated with the function. The

identifiers include the name of the function, the names of the

parameters of the function. As we are aiming at retrieving

specific connections between features and functions, we do not

want to incorporate those less specific identifiers from the body

of the function. As an identifier may not be in the standard form

of a word, we preprocess the identifiers before we transform

them into index terms. For example, an identifier in the form of

several words connected by the symbol ‘_’, or in the form of

several words with capitalized first letters directly linked

together, will be separated into several words. That is to say,

both feature_location and FeatureLocation will be turned into

feature location. After the preprocessing, the words obtained

from the identifiers will be transformed into a set of index terms

using the same rules as mentioned above. Each set is a query in

the query set.

4.2.3. Retrieving Initial Connections
After both the query set and the document set are prepared,

we use the vector space model for the retrieval. For each query

in the query set, we will retrieve a subset of documents from the

document set ranked by the similarity between the query and

each document in the subset. Therefore we recover all the

connections between the function and all the features. If there is

no connection between a function and a feature, the rank value

will be zero.

After we have done the above for all the queries in the query

set, for each function we will have a list of features with

similarity values. Then we can acquire a list of functions ranked

by the similarity values for each feature through reorganizing

the retrieval result. For example, there are n features in the

feature set F={f1, f2, ...fn} and m functions in the function set

U={u1, u2, ...um}. The similarity value between fi and uj is Sij

(1≤i≤n, 1≤j≤m). The original retrieval result for function uj is

{f1, f2, ...fn} ranked by S1j, S2j, ...Snj. The reorganized result for

feature fi is then {u1, u2, ...um} ranked by Si1, Si2, ...Sim.

4.3. Identifying Initial Specific Functions
After acquiring the initial connections between features and

functions considering the specific descriptions in the features,

we identify the initial specific functions for each feature. In this

step, for each feature, we sort the list of functions that have a

connection (where the rank value is larger than zero) with it in

descending order. We compute the distances between two

consecutive functions for the function list. We simply use the

arithmetic differences of the rank values of the functions as the

distances between them. We use the position where the biggest

distance appears as our division point to identify the initial

specific functions. That is to say, the functions before this point

will be chosen as the initial specific functions, while others not.

It is obvious that, the functions before this point have much

closer distances and therefore are more possible to have the

same nature (i.e. the specific nature here) with the feature. The

algorithm to determine the division point and choose the initial

specific functions is depicted in Fig. 2.

Input: u, m (where u is the functions array with the

descending order, m is the number of this array)

Output: S (the specific function set)

Step 1: S ← ∅
Step 2: for i = 2 to m

d[i-1] ← absolute value of (u[i].rankvalue-u[i-1].rankvalue)

Step 3: dmax ← d[1]

 divisionpoint ← 1

 for i = 2 to m-1

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

 if(d[i]>dmax)

divisionpoint ← i

Step 4: for i = 1 to divisionpoint

 S ← S∪{u[i]}

Fig. 2 Algorithm to Determine the Division Point and

Choose the Initial Specific Functions

The input is the descending function list for one feature with

their rank values and the number of these functions. The output

is the initial specific functions to the feature.

The first step is to initialize the output initial specific

function set. Step 2 calculates all distances between two

consecutive functions sorted in descending order. In the third

step, for all acquired distances, the biggest distance is chosen

and therefore the division point is determined. In the final step,

all functions before the division point will be chosen as the

initial specific functions in our approach. Obviously, the worst

case time complexity of this algorithm is O(m), where m is the

number of functions.

4.4. Determining Relevant and Specific Functions
After the initial specific functions are identified, we begin to

determine the relevant and specific functions. The basis of this

step is obtaining the BRCG from the source code. We traverse

the BRCG and determine the relevant functions according to the

initial specific functions, and finally calculate the specific

functions.

4.4.1. The BRCG
The Branch-Reserving Call Graph (BRCG) is firstly

introduced in [17] for discovering use cases. This structure is a

representation of the source code by including branch

information into the traditional call graph. In this structure, both

branch statements and function-call statements are considered.

For the simplicity, the if-statements, the case-statements and all

the loop statements are all treated as branch statements.

Each node in the BRCG is a function, a branch statement, a

branch in a branch statement, or a return statement.

Furthermore, the loop statement is simply regarded as a two-

branch condition statement; one branch does not have any

nodes, and the other has all the nodes belonging to the loop. The

relationships between the nodes are the sequential relationships

and the branching relationships. Therefore, the BRCG can be

formally defined as follows: the BRCG is a triple BRCG=<N, S,

B>, where:

i) N is the set of functions, branch statements, branches in

branch statements, and return statements;

ii) S is the set of sequential relationships, where for ∀<n1,

n2>∈S, n1∈N and n2∈N;

iii) B is the set of branching relationships, where for ∀<n1,

n2>∈B, n1∈N and n2∈N; and

iv) for ∀<n1, n2>∈S and ∀n3∈N, <n1, n3>∉B, and for ∀<n1,

n2>∈B and ∀n3∈N, <n1, n3>∉S.

The first three conditions define that the BRCG is a graph

with two kinds of relationships. The fourth condition defines

that a node connects to its sub-nodes only through one kind of

relationships. An example of the BRCG is depicted in the

following two figures. Fig. 3 depicts the source code of a

function, and Fig. 4 depicts the corresponding BRCG.

The construction of the BRCG for the whole system is based

on the sub-BRCGs of all the functions. The entire BRCG of a

system can be acquired through connecting all the sub-BRCGs

for the functions into an entire graph by linking the root node of

each sub-BRCG with the nodes of the same signature in other

sub-BRCGs. Please refer to [17] for the algorithm to build the

BRCG for each function from source code. In our approach, we

do not include the edges of recursive function calls in the BRCG.

void foo()
{ f1();
 if(condition)
 { f2();
 return;
 }
 else
 { while(condition)
 { f3()
 f4();
 }
 f5();
 }
 f6();

}

Fig. 3 Sample Code for BRCG

foo

B3

f5BSRSf2

B2B1

f1 f6BS

f3

B4

f4

sequential

sequential sequential

sequential

branching

branching

Fig. 4 A Sample BRCG

4.4.2. Acquiring Relevant Functions using BRCG
Since the specific functions of a feature mean that the

implementation of this feature will definitely invoke the

functions and the implementation of other features will not

invoke them, it is very likely that the branches that will not

invoke any of such functions are not relevant to the feature.

Therefore, we can prune some branches according to the non-

existence of the specific functions.

For example, if one branch statement BSi has two branches

BSi_b1 and BSi_b2, and BSi_b1 includes some specific functions

while BSi_b2 not, the branch BSi_b2 will be pruned according to

the definition of specific functions. Furthermore, if the branch

statement BSi lies in one of the branches (BSj_b1) of another

branch statement BSj, the specific nature of the BSi_b1 can be

propagate to BSj_b1. And the propagation ends at the root node

of the BRCG. This is the main idea we use to prune BRCG.

Obviously, all the functions left in the pruned BRCG should be

the relevant functions to the feature. The algorithm for pruning

the BRCG is depicted in Fig. 5.

The input of this algorithm is the BRCG with root node n,

the set of functions F that includes all the appearances of the

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

initial specific functions and the number of this set m. The

output is the pruned BRCG.

Input: a BRCG with the root node n, the existences set F of the

initial specific functions and the number of the set m.

Output: the pruned BRCG.

Step 1:

for each existence fi in set F (i = 1, 2, ..., m)

begin

currentnode = fi

while (currentnode ≠ n)

begin

if currentnode’s parent node is a branch

begin

 create a specific relation between this

branch and its branch statement

currentnode=currentnode’s parent node’s

parent node

end

else if currentnode’s parent node is a function

currentnode=currentnode’s parent node

end

end

Step 2: traverse the BRCG marked by specific relation from n

currentnode=n

if currentnode is a leaf node

 stop

if currentnode is a function

 traverse all its sub nodes as step 2

if currentnode is a branch statement

 begin

if there is at least one specific branch of it

 prune all the non-specific branches from the BRCG

 traverse all sub nodes of all the rest branches as step 2

end

Step 3:return n

Fig. 5 Algorithm to Prune the BRCG According to the

Initial Specific Functions

This algorithm includes two main steps. The first step marks

all branches where the initial specific functions are. The process

of propagating the specific branches ends at the root node of the

BRCG. The second step prunes those unmarked branches that

have the same branch statement with those marked branches.

The definitely used nodes and their sub-nodes will always be

maintained in the pruned BRCG. This step is recursive, and it

traverses the BRCG from root node with depth first strategy.

When the node is a branch statement and there is at least one

specific branch of it, all the non-specific branches will be

deleted. Obviously, if there is more than one specific branch in a

branch statement, all of them will be maintained in the BRCG.

All functions existing in the pruned BRCG are the relevant

functions of the feature. The worst-case time complexity of this

algorithm is linear to the number of nodes in BRCG, which is

then proportional to the size of the source code.

4.4.3. Determining Specific Functions
After we acquire all the relevant functions of each feature

from the pruned BRCG, we can determine all the other

relationships between features and functions in the same way a

dynamic approach deals with the recorded functions invoked for

each feature. Due to the space limit, we only present the

algorithm for calculating the final specific functions for each

feature, which is depicted in Fig. 6. This algorithm is based on

the relevant relationships between the features and the

functions. We construct a two-dimension array to store this

relation. The rows denote all the features and the columns

denote all the functions. In the algorithm, V is the two-

dimension array. V[i, j] equals 1 if the jth function is the

relevant function to the ith feature, otherwise 0.

Input: V, n, m (where V is the relevant array, n and m are the

number of rows and columns respectively),

Output: S (the specific array)

for i = 1 to n

for j = 1 to m

if (V[i, j])

begin

isSpecific←true

for k = 1 to n

if (V[k, j] and k≠i)

isSpecific←false

if (isSpecific)

S[i, j] = 1

else

S[i, j] = 0

end

Fig.6 Algorithm to Determine the Specific Functions

The idea of this algorithm is to check each feature like this:

1) It finds the first function that is relevant to this feature. 2) It

checks whether this function is also relevant to another feature.

3) If no, it marks the function to the feature with 1 in the output

array, and otherwise 0. 4) It finds another relevant function, and

does the same. 5) After all the functions are processed, the

specific functions for one feature can be acquired. The worst

case time complexity is O(n2m).

4.5. Recovering Relationships between Functions
As the BRCG includes branching and sequential

information, we can generate each possible execution trace by

traversing the graph. For the relevant functions acquired in the

pruned BRCG, we use the following algorithm to generate the

possible execution traces. We call these traces pseudo execution

traces since we do not acquire these traces by real execution and

there are some simplifications in the BRCG (such as simplifying

loop statements as branch statements simply). Fig.7 shows the

algorithm.

Input: a BRCG, a root node n in the BRCG

Output: a set of traces

Step 1:

if n is a leaf node and not a return statement

return{“enter_”+n.label+ “-”+“exit_”+n.label}

if n is a return statement

return{“return”}

Step 2: S=∅
Step 3: for each ni as a sub-node of n

generate the traces of ni into Si

Step 4: if the relationships between n and its sub-nodes are

sequential

begin

if n represents a function

U={“enter_”+n.label+ “-”}

else

U={“”}

for each Si

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

begin

T:= ∅
for each trace t in Si

for each s in U and s does not end with

“return”

T:= T∪{s+t}

U:=T

end

if n represents a function

for each s in U

S:=S∪{s+“-exit_”+n.label}

else

S:=U

end

Step 5: if the relationships between n and its sub-nodes are

branching

for each Si

S:=S ∪ Si

Step 6: return S

Fig. 7 Algorithm to Generate Pseudo Execution Traces

This algorithm is a recursive algorithm. During the

generation, we only generate trace information for non-leaf

nodes that represent functions and all the leaf nodes.

5. An Experimental Study
In our experimentation we used a software system of GNU,

named DC [13] (which is distributed with the BC package). We

acquired the complete source code and the requirements

specification documentation of the DC system, which contains

49 functional requirements and 74 functions. Among the 49

features, there are 21 primitive features, each of which

implements a single functionality of the system. The others are

composite features. Their location can be acquired through the

analysis of all the locations of their component features.

For example, a primitive requirement which implements the

binary operation “add” is described in DC’s requirements

specification as “Pops two values off the stack, adds them, and

pushes the result”. Several representative relevant functions of

this requirement are “dc_push, dc_binop, dc_pop, dc_add”, and

the specific function is “dc_add”.

5.1. Experimental Method
To apply our method for the analysis of this system, we used

SMART [20] as the tool in the IR step. SMART is an

implementation of the vector space model of IR proposed by

Salton back in the 60’s. The primary purpose of SMART is to

provide a framework to conduct IR research. Therefore,

SMART can be viewed as the standard version of indexing,

retrieval and evaluation for the vector space model.

For all the 21 features, we applied SNIAFL to get the

relevant functions, the possible pseudo execution traces and the

specific functions. For each feature, we got three groups of data

by our approach: one group is the initial specific functions and

the final specific functions of each feature; the second group is

the relevant functions acquired by the BRCG using the initial

specific functions; and third are the pseudo execution traces of

these relevant functions constructed by the BRCG.

To evaluate SNIAFL, we manually analyzed the DC system,

and for each of the 21 features, we recorded the genuine

relevant functions, the genuine execution traces for them and the

genuine specific functions. As a comparison, we also designed

test cases for each feature to execute an instrumented version of

the DC system to get the dynamic results. As dynamic

approaches are heavily dependent on the quality of the test

cases, there will not be complete and/or precise results if the test

cases are not sufficient or well designed. Therefore, for each

feature, we designed two groups of test cases to imitate the test

cases by an experienced maintainer and those by a common

maintaining engineer. Each test case exactly invoked one

execution trace, the functions invoked by the test cases for a

feature were recorded as its relevant functions, and all the

relevant function sets were used to calculate the specific

functions for each feature in a way similar to the algorithm

depicted in Fig. 6. To confirm the necessity of using the

function to feature retrieving strategy and the BRCG in our

approach, we also recorded the retrieval results of using features

as queries and functions as documents as the relevant functions.

We used 0.1 as the threshold to choose functions with higher

similarity as the relevant functions.

Therefore, SNIAFL was evaluated from three aspects: the

relevant functions, the execution traces, and the specific

functions. For the relevant functions, we compared the results of

SNIAFL with the results of the dynamic approach, the results

retrieved directly from the SMART using features as queries

and functions as documents, and the genuine results. We used

precision and recall to do the comparison. Precision is the ratio

of the number of correct functions acquired for a given feature

over the total number of functions acquired for that feature.

Recall is the ratio of the number of correct functions acquired

over the total number of accurate relevant functions. For the

execution traces, we compared the results of SNIAFL with those

of the dynamic approach and the genuine results. For the

specific functions, we compared the initial results, the final

results and the results of the dynamic approach with the genuine

results.

5.2. Results on Acquiring Relevant Functions
5.2.1. Quantitative Results

We calculate the precision and recall of the relevant

functions acquired by the three approaches. Table 1 shows the

results of the three approaches for each feature. Since the

functions invoked by the test cases for any feature should be

relevant to the feature, the precision of the dynamic approach

was always 100 percent. Therefore, we do not list it in the table.

Table 1. The Recall and Precision of Relevant Functions of Three Approaches

IR Only Recall of Dynamic Approach Our Approach
No.

Recall Precision Insufficient Well-designed Recall Precision

1 12.50% 14.29% 100% 100% 100% 100%

2 14.29% 33.33% 100% 100% 100% 100%

3 6.67% 22.22% 63.33% 90 % 96.67% 96.67%

4 5.71% 22.22% 68.57% 91.43% 100% 94.59%

5 14.29% 31.25% 71.43% 91.43% 100% 94.59%

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

6 8.57% 60 % 71.43% 91.43% 100% 94.59%

7 17.14% 37.5% 71.43% 91.43% 100% 94.59%

8 11.43% 33.33% 71.43% 91.43% 100% 94.59%

9 8.57% 42.86% 71.43% 91.43% 94.29% 89.19%

10 11.43% 36.36% 71.43% 91.43% 100% 94.59%

11 8.57% 30 % 71.43% 91.43% 100% 94.59%

12 14.29% 35.71% 71.43% 91.43% 100% 94.59%

13 11.76% 36.36% 70.59% 91.18% 100% 94.44%

14 3.03% 14.29% 66.67% 90.91% 100% 94.29%

15 15.15% 38.46% 72.73% 90.91% 100% 84.62%

16 11.76% 36.36% 67.65% 91.18% 100% 89.47%

17 8.82% 27.27% 76.47% 91.18% 100% 94.44%

18 17.65% 46.15% 67.65% 91.18% 100% 89.47%

19 14.71% 38.46% 67.65% 91.18% 100% 89.47%

20 12.50% 26.67% 65.62% 90.63% 100% 94.12%

21 3.70% 20.00 % 62.96% 88.89% 100% 37.5%

Avg. 11.07% 32.53% 72.44% 91.91% 99.57% 90.97%

For the results of the IR method, neither precision nor recall

is good enough. The average recall is 11.07%, the worst is

3.03%, and the best is only 17.65%. The average precision of

the IR method is 32.53%, the worst is 14.29%, and the best is

60%.

The dynamic approach is much better, but the pre-condition

is that the test cases are well designed. In our experiment, the

results on the two groups of test cases can confirm this. The

recall of the dynamic approach with the insufficient test cases is

much lower than that with the well-designed test cases. On

average, the recall of the insufficient test cases is 72.44%. The

well-designed test cases have a higher recall (91.91%), but still

cannot reach 100 percent. This is because some unusual error

handling branches are not invoked by those test cases. Our

approach can avoid this weakness.

For SNIAFL, recall is 99.57% and precision is 90.97% on

average. The recall is higher than the dynamic approach and

close to 100 percent. The average result confirms the

effectiveness of SNIAFL to acquire the relevant functions to

some extent. However, we still have an exceptionally bad case

in which the precision is only 37.5%.

5.2.2. Qualitative Analysis
The bad performance of IR only approach is due to the

imprecise nature of this technology. For the low recall, it is

because some relevant functions of a feature do not have

identifiers representing the content in the feature description.

Therefore, they cannot be acquired by the IR only method. For

the not high enough precision, the explanation lies in the feature

to function retrieval strategy. Some commonly used words in

the description of a feature will lead to retrieve all the functions

having some of those words as identifiers. The dynamic

approach is much more precise. Its only disadvantage is the

dependence on the quality of test cases.

The good recall of SNIAFL lies in two factors. Firstly, the

static nature of SNIAFL causes it to take more than necessary

functions as relevant. Secondly, the function to feature retrieval

strategy should be quite effective, and thus good initial specific

functions are usually selected. However, the imprecision of the

initial specific functions results in that we cannot reach the

completely correct result. The precision of our approach is not

so good as the recall. This is due to the conservative nature of

the static approach that takes all possibility into consideration.

Especially in the worst case the precision is down to 37.5%. In

this case, the semantic information of the program does much

effect to the implement of this feature. Our approach cannot get

such information and therefore collects some functions in such

branches that are syntactically relevant but semantically

irrelevant.

5.3. Results on Acquiring Function Relationships
5.3.1. Quantitative Results

Due to the simplification of the loop statement, the pseudo

execution traces acquired from BRCG are not exactly same with

the traces from dynamic execution in some cases. In these cases

in our experiment, we still treat the acquired traces as the correct

one to be calculated.

Table 2 shows the execution traces acquired by SNIAFL, the

dynamic approach and the genuine traces to each feature.

Table 2. Execution Traces

Dynamic Approach Our Approach
No

Insufficient
Well-

designed
Generated Correct

Genuine

1 1 1 3 2 2

2 1 1 1 1 1

3 6 24 756 0 42

4 6 24 756 36 36

5 3 12 504 30 30

6 3 12 504 30 30

7 3 12 504 30 30

8 3 12 504 30 30

9 3 12 504 0 30

10 3 12 504 30 30

11 3 12 504 30 30

12 3 12 504 30 30

13 3 12 252 27 27

14 6 24 756 36 36

15 6 24 2106 42 42

16 6 24 1008 48 48

17 3 12 504 0 30

18 3 12 1008 18 18

19 3 12 1008 30 30

20 3 12 252 18 18

21 3 12 >10000 18 18

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

For the dynamic approach, each test case invokes exactly

one execution trace. It is obvious that the quality of test cases

determines the result. For the well-designed test cases, there are

still some traces lost, while for the insufficient test cases, more

traces are lost. Except three features, SNIAFL can acquire all

the genuine traces. The main problem with this approach is that

there are too many traces generated. This is due to the static

nature of our approach.

5.3.2. Qualitative Analysis
To be honest, our approach is not quite effective in

acquiring execution traces for each feature. However, our

approach can reveal some unusual traces for most features. This

might be helpful in some special cases. To reduce the traces

generated by our approach, we need to apply more restrictive

static analysis methods to get rid of some wrongly generated

traces.

5.4. Results on Acquiring Specific Functions
5.4.1. Quantitative Results

Table 3 shows the results of initial and final specific

functions of our approach and the results of the dynamic

approach with insufficient and well-designed test cases in the

experimentation. Due to the space limit, we use a concise way

for presenting the results.

Table 3. Specific Functions

Totally

correct

Totally

wrong

Partially

wrong

Correct

ratio

Initial 14 3 4 66.67%

Final 18 3 0 85.71%

Insufficient 20 0 1 95.24%

Well-designed 21 0 0 100%

Of all the 21 features in our experimentation, 66.67% of

features acquire the completely correct specific functions during

the IR step. Despite the imprecise nature of IR, the experimental

results show that our approach is effective to some extent.

Furthermore, we acquire the 85.71% correct ratio of the specific

functions after analyzing the relevant functions. This ratio is

quite acceptable practically.

For dynamic approach, the correct ratio of the insufficient test

cases is 95.24%, while the well-designed test cases 100%.

5.4.2. Qualitative Analysis
Due to the imprecise nature of IR technology, the

effectiveness of the initial specific functions reflects the

effectiveness of our retrieval strategy. We use features as

documents and functions as queries to avoid commonly used

functions being very similar to any feature. The algorithm for

selecting initial specific functions will allow only very similar

functions to be selected.

For the final specific functions, we analyze the relevant

functions according to the definition of specific functions. This

step is only effective to those partially wrong initial specific

functions. The explanation is that we can eliminate the non-

specific functions from the partially wrong initial specific

functions and complement those supporting ones, and for those

totally wrong, we can do nothing at this stage.

For the insufficient test cases of the dynamic approach,

some non-specific functions are picked out due to the

insufficient execution traces.

5.5. Threats to Validity
The main threat to validity is to what extent the

experimented system is representative of all the possible target

systems in practice. Although DC is a real world system for

various versions of UNIX and Linux, its size is still small

compared to a typical system in practice. This threat can be

reduced via experimenting on more and larger systems. Another

threat is the test cases used for dynamic feature location in the

comparison. As we are not professional testers, we cannot

ensure that the well-designed test cases are still so in the eyes of

professional testers. However, this threat may not be very

effective in the experiment because DC is quite a simple system.

Therefore, it is quite easy for non-professional testers to create

well-designed test cases.

6. Discussion
6.1. Automatic vs. Interactive

Compared to previous static approaches to feature location,

a distinct characteristic of our approach is the ease of

automation. This is achieved by conceding the following price.

A maintainer using our approach has to describe and retrieve all

the features before locating a specific feature. This may cause

some inconvenience in practice. Furthermore, the non-

interactive way of our approach will prevent a maintainer from

building up the knowledge about the feature in the locating

process. However, we think the gaining from the automatic

nature can offset the price by saving much human involvement.

The static representation used in our approach is also very

simple compared to other representations used in static

approaches. However, this representation is suitable for

computer processing and there is no much imprecision

incorporated when abstracting it from the source code.

6.2. IR vs. Test Cases
Compared to dynamic approaches, a clear difference of our

approach is the use of IR instead of test cases as the driving

force. The advantage of using test cases is that the more test

cases are involved, the more precise the result is, and there are

no false positive relevant functions if no test case is wrongly

credited to a feature. In our approach, we have to concede the

imprecise nature of IR, and therefore incorporate errors in the

first place. However, our approach can save the cost of

designing and executing so many test cases.

6.3. Granularity
The main weakness of our approach is the lack of flexibility

of choosing granularity. The way of using IR to set up

connections between features and functions determines that the

granularity has to be at the function level. There are

circumstances that feature implementations should be

represented at the level of fragments of functions or even the

statement level. As we cannot abstract specific descriptions for

entities smaller than functions, it is difficult for our approach to

support finer granularity. For many of other approaches, there is

much more flexibility for choosing functions, branches or

statements as the basic computational units.

7. Conclusions and Future Work
In this paper, we have proposed a static and non-interactive

approach to locating relevant and specific functions for all the

features. The starting point of our approach is to locate some

initial specific functions to each of features through IR. Based

on the initial specific functions, we recover all relevant

functions through navigating a static representation of the code

named BRCG using some algorithms. Due to the characteristics

of the BRCG, we also acquire the pseudo execution traces for

each feature.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

An experimental study is reported in this paper also. We

evaluate our approach from three aspects respectively – the

relevant functions, the pseudo execution traces, and the specific

functions. In the experiment, our approach works well on

average, especially for specific functions and the relevant

functions. For the recovered pseudo execution traces, there are

too much irrelevant traces generated by our approach. However,

our approach does find some unusual traces. In general, despite

of this weakness, the overall effectiveness of our approach for

this tested program is obvious.

In the future, we will focus on doing experiments on more

software systems to further evaluate the feasibility and usability

of our approach. To apply IR more effectively, we will exploit

more sophisticated preprocessing mechanisms to deal with

identifiers using abbreviations and/or acronyms. We will also

look at possible ways for reducing the number of pseudo

execution traces generated by our approach.

Acknowledgements
This effort is sponsored by the National 973 Key Basic

Research and Development Program No. 2002CB31200003, the

State 863 High-Tech Program No. 2001AA113070, and the

National Science Foundation of China No. 60125206, 60233010

and 60373003.

References
[1] G. Antoniol, G. Canfora, G. Casazza, and A. DeLucia,

“Information Retrieval Models for Recovering

Traceability Links between Code and Documentation,”

Proc. IEEE International Conf. Software Maintenance, pp.

40–49, Oct. 2000.

[2] G. Antoniol, G. Canfora, G. Casazza, A. DeLucia, and E.

Merlo, “Recovering Traceability Links between Code and

Documentation,” IEEE Transactions on Software

Engineering, 28(10), pp. 970-983, Oct.2002.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information

Retrieval, ACM Press, New York: Addison-Wesley,

1999, ISBN 0-201-39829-X.

[4] T. Biggerstaff, B. Mitbander, and D. Webster, “The

Concept Assignment Problem in Program

Understanding,” Proc. International Conf. Software

Engineering, pp. 482-498, May 1993.

[5] S. Bohner and R. Arnold, “An Introduction to Software

Change Impact Analysis”, Software Change Impact

Analysis, IEEE Computer Society, 1996.

[6] K. Chen and V. Rajlich, “Case Study of Feature Location

Using Dependence Graph,” Proc. International Workshop

Program Comprehension, pp. 241-249, June 2000.

[7] T. A. Corbi, “Program Understanding: Challenge for the

1990’s,” IBM Systems Journal, 28(2), pp. 294-306, 1989.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman, “Indexing by Latent

Semantic Analysis,” Journal of the American Society for

Information Science, 41, pp. 391-407, 1990.

[9] S. Eick, J. Steffen, and E. Summer, “Seesoft—A Tool for

Visualizing Line-Oriented Software Statistics,” IEEE

Transactions on Software Engineering, 18(11), pp. 957-

968, Nov. 1992.

[10] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding

Program Comprehension by Static and Dynamic Feature

Analysis,” Proc. International Conf. Software

Maintenance, pp. 602-611, Nov. 2001.

[11] T. Eisenbarth, R. Koschke, and D. Simon, “Locating

Features in Source Code,” IEEE Transactions on Software

Engineering, 29(3), pp 210-224, March, 2003.

[12] M. Fowler, Refactoring - Improving the Design of

Existing Code. Addison-Wesley, 1999.

[13] GNU, “DC: An Arbitrary Precision Calculator,”

(http://www.gnu.org/directory/GNU/bc.html)

[14] W. G. Griswold, J. J. Yuan, and Y. Kato, “Exploiting the

Map Metaphor in a Tool for Software Evolution,” Proc.

International Conf. on Software Engineering. pp. 265-274,

May 2001.

[15] J. I. Maletic and A. Marcus, “Supporting Program

Comprehension Using Semantic and Structural

Information,” Proc. International Conference on Software

Engineering (ICSE 2001), pp. 103-112, May, 2001,.

[16] A. Marcus and J. I. Maletic, “Recovering Documentation-

to-Source-Code Traceability Links using Latent Semantic

Indexing,” Proc. International Conf. on Software

Engineering, pp. 125 –135, May 2003.

[17] T. Qin, L. Zhang, Z. Zhou, D. Hao, and J. Sun,

“Discovering Use Cases from Source Code using the

Branch-Reserving Call Graph,” Proc. Asia-Pacific

Software Engineering Conference, pp. 60-67, December

2003.

[18] M. P. Robillard and G. C. Murphy, “Concern Graphs:

Finding and Describing Concerns Using Structural

Program Depnedencies,” Proc. International Conference

on Software Engineering, 3-10 May 2002, pp. 406 –416.

[19] G. Salton and M. E. Lesk, “Computer Evaluation of

Indexing and Text Processing,” Journal of the ACM,

15(1):8-36, January 1968.

[20] G. Salton, The SMART Retrieval System - Experiments

in Automatic Document Processing, Prentice Hall Inc.,

Englewood Cliffs, NJ, 1971.

[21] F. Tip, A. Kiezun, and D. Baeumer, “Refactoring for

generalization using type constraints,” Proc. Annual

Conference on Object-Oriented Programming Systems,

Languages, and Applications, pp. 13-25 , October 2003.

[22] R. J. Turver and M. Malcolm, “An Early Impact Analysis

Technique for Software Maintenance,” Journal of

Software Maintenance: Research and Practice, 6(1),

pp.35-52, January-February 1994.

[23] N. Wilde, J.A. Gomez, T. Gust, and D. Strasburg,

“Locating User Functionality in Old Code,” Proc.

International Conference on Software Maintenance, pp.

200-205, Nov. 1992.

[24] N. Wilde and M.C. Scully, “Software Reconnaissance:

Mapping Program Features to Code,” J. Software

Maintenance: Research and Practice. Vol. 7(1), pp. 49-62,

Jan. 1995.

[25] N. Wilde, M. Buckellew , H. Page, V. Rajlich, and L.

Pounds, “A Comparison of Methods for Locating Features

in Legacy Software, ” Journal of Systems and Software,

65(2), pp. 105-114, 2003.

[26] W. E. Wong, S. S. Gokhale, J. R. Horgan, and K. S.

Trivedi, “Locating Program Features using Execution

Slices,” Proc. Symposium on Application-Specific

Systems and Software Engineering Technology, pp. 194-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

203, March, 1999.

[27] S.S. Yau, R.A. Nichol, J.J. Tsai and S. Liu, “An

Integrated Life-Cycle Model for Software Maintenance”,

IEEE Transactions on Software Engineering, 15(7), pp

58-95, July 1988.

[28] W. Zhao, L. Zhang, Y. Liu, J. Luo, and J. Sun,

“Understanding How the Requirements Are Implemented

in Source Code,” Proc. Asia-Pacific Software Engineering

Conference, pp. 68-77, December 2003.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

	footer1:

