
Enhancing an Artefact Management System with Traceability Recovery Features

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, Genoveffa Tortora
adelucia@unisa.it, ffasano@unisa.it, r.oliveto@tiscali.it, tortora@unisa.it

Dipartimento di Matematica e Informatica – Università di Salerno

Via Ponte don Melillo – 84084 Fisciano (SA) – Italy

Abstract

We present a traceability recovery method and tool based
on Latent Semantic Indexing (LSI) in the context of an ar-

tefact management system. The tool highlights the candi-

date links not identified yet by the software engineer and
the links identified but missed by the tool, probably due to

inconsistencies in the usage of domain terms in the traced

software artefacts.
We also present a case study of using the traceability re-

covery tool on software artefacts belonging to different

categories of documents, including requirement, design,
and testing documents, as well as code components.

1. Introduction

Software artefact traceability is widely recognized as an

important factor for effectively managing the develop-

ment and evolution of software systems. Traceability is

also fundamental to help in program comprehension,

maintenance, impact analysis, and reuse of existing soft-

ware. However, despite of its importance, the support for

traceability in contemporary software engineering envi-

ronments and tools is not satisfactory. This inadequate

traceability is one of the main factors that contributes to

project over-runs and failures [15], [21].

Several research and commercial tools are available that

support traceability between artefacts [7], [9], [10], [19],

[20], [24], [25], [26], [28], [29]. However, the main draw-

back of these tools is the lack of automatic or semi-

automatic traceability link generation and maintenance.

This results in the need for a costly activity of manual de-

tection and maintenance of the traceability links, that may

have to be done frequently due to the iterative nature of

software development [10]. Even when semi-automatic

support is provided, this task is time consuming, error

prone, and person-power intensive [12], [18].

Recently, researchers have addressed the problem of tra-

ceability link recovery between requirements [12], [18],

between code and documentation [2], [22] and between

maintenance requests and software documents [3]. These

methods are based on the observation that most of the sof-

tware documentation is text based or contains text

descriptions. For this reason, they apply Information Re-

trieval (IR) techniques [13], [17] to the traceability link

recovery problem.

The aim of our work is to support the software engineer in

the identification of the traceability links between soft-

ware artefacts within an artefact management system. In-

deed, the problem of maintaining traceability links in-

volves all the artefacts produced during a software devel-

opment process [7], [10], [14], [28]. This is especially

true for evolutionary processes, where artefacts can be

added, updated, or deleted in each phase, thus requiring a

continuous reorganization of the traceability links. In [14]

we have presented ADAMS (ADvanced Artefact Man-

agement System) an artefact-based process support sys-

tem for the management of human resources, projects,

and software artefacts. In particular, ADAMS provides

support for traceability and event-based notification of

changes, thus increasing the context awareness during the

evolution of software artefacts. In the current implementa-

tion of ADAMS, the software engineer is in charge of

maintaining traceability links between software artefacts.

In this paper we show how a traceability link recovery

tool based on the IR technique Latent Semantic Indexing

(LSI) [13], [16] can be integrated in ADAMS. For a given

artefact the tool identifies the list of artefacts whose simi-

larity is greater than or equal to a given threshold (candi-
date links) and compares them with the list of artefacts

traced by the software engineer. In this way, the tool is

able to show the list of candidate links the software engi-

neer has not identified yet and the list of links identified

by the software engineer and missed by the tool (warning
links). The latter links may indicate inconsistencies in the

usage of domain terms in the traced software artefacts.

We propose a process to iteratively identify these two

types of links by suitably tuning the similarity threshold.

We also present a case study of using the traceability re-

covery tool on software artefacts belonging to require-

ment and design documents, as well as testing artefacts

and code components. As further contribution of this pa-

per we show how better results can be achieved using a

variable similarity threshold, rather than a constant

threshold, and splitting the artefacts in the repository in

different categories.

The remaining of the paper is organized as follows. Sec-

tion 2 discusses related work in the fields of traceability

support tools and traceability recovery. Section 3 and 4

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

present the artefact management system ADAMS and the

traceability recovery method developed to enhance trace-

ability management, respectively. Section 5 discusses the

results of the case study, while Section 6 concludes.

2. Related Work

The subject of this paper covers two areas of interest: ar-

tefact traceability support tools and traceability recovery.

Each of them will be addressed below.

2.1. Artefact Traceability Support Tools

Several research and commercial tools are available that

support traceability between artefacts: DOORS [29], IBIS

[20], TOOR [24], REMAP [25], Rational RequisitePro

[26], and RDD.100 [19] are only a few examples. These

tools provide effective support for recording, displaying,

and checking the completeness of installed traces using

operations such as drag and drop [29], or by clicking on a

cell of a traceability link matrix [26].

Recently artefact traceability has been tackled within the

Ophelia project [28] which aims at developing a platform

supporting software engineering in a distributed environ-

ment. In Ophelia the artefacts of the software engineering

process are represented by CORBA objects. A graph is

created to maintain relationships among these elements

and can be used to navigate between them.

OSCAR [7] is the artefact management subsystem of the

GENESIS environment [5]. It has been designed to non-

invasively interoperate with workflow management sys-

tems, development tools, and existing repository systems.

Artefacts in OSCAR have a type hierarchy, similar to the

object-oriented style. Every artefact possesses a collection

of standard meta-data and is represented by an XML

document containing both meta-data and artefact data.

Some tools [9], [10] also combine the traceability layer

with event-based notifications to make users aware of ar-

tefact modifications. For example, Chen and Chou [9]

have proposed a method for consistency management in

the Aper process environment. The method is based on

maintaining traceability relations between artefacts and

using triggers to identify artefacts affected by changes to

a related artefact. Cleland-Huang et al. [10] have devel-

oped EBT (Event Based Traceability), an approach based

on a publish-subscribe mechanism between artefacts.

When a change occurs on a given artefact having the pub-

lish role, notifications are sent to all the subscriber (de-

pendent) artefacts.

The tools described in this section have a drawback: the

need for a manual detection and maintenance of the trace-

ability links while the system changes and evolves, even

when a semi-automatic support tool is adopted, is a time

consuming, error prone, and person-power intensive task

[10], [12], [18]. In general, such tools require the user to

assign keywords to all the documents prior to tracing and

to perform interactive searches for potential linking re-

quirements or design elements [1]. In addition, most of

them do not provide support for easily retracing new ver-

sions of documents. As a result, they return many poten-

tial or candidate links that are not correct and fail to return

correct links.

In [14] we have presented the artefact management sys-

tem ADAMS. In particular, ADAMS provides support for

artefact versioning, as most of the tools presented in this

section, and hierarchical composition of artefacts, like

OSCAR [7]. Like Aper [9] and EBT [10], ADAMS sup-

ports traceability in an active way, by propagating events

through the traceability layer whenever new artefacts are

added, updated, or deleted. In this paper we show how to

improve the artefact traceability in ADAMS by providing

the software engineer with information retrieval based

traceability recovery features.

2.2. Artefact Traceability Recovery

Several traceability recovery methods have been proposed

in the literature. Some of them deal with recovering trace-

ability links between design and implementation. Murphy

et al. [23] exploit software reflexion models to match a

design expressed in the Booch notation against its C++

implementation. Regular expressions are used to exploit

naming conventions and map source code model entities

onto high-level model entities. Similarly, Antoniol et al.
[4] present a method to trace C++ classes to an OO de-

sign. Both the source code classes and the OO design are

translated into an Abstract Object Language (AOL) in-

termediate representation and compared using a maxi-

mum match algorithm. Weidl and Gall [31] followed the

idea of adopting a more tolerant string matching, where

procedural applications are rearchitectured into OO sys-

tems.

The approach adopted in [30] is based on guidelines for

changing requirements and design documents based on a

conceptual trace model. A semi-automatic recovery sup-

port is provided by using name tracing. In [6] consistency

rules between UML diagrams, automated change identifi-

cation and classification between two versions of a UML

model, as well as impact analysis rules have been for-

mally defined by means of OCL constraints on an adapta-

tion of the UML meta-model. Sefika et al. [27] have de-

veloped a hybrid approach that integrates logic-based

static and dynamic visualization and helps determining

design-implementation congruence at various levels of

abstraction.

Other approaches consider text documents written in

natural language, such as requirements documents. Zis-

man et al. [32] automate the generation of traceability re-

lations between textual requirement artefacts and object

models using heuristic rules. These rules match syntacti-

cally related terms in the textual parts of the requirements

artefacts with related elements in an object model (e.g.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

classes, attributes, operations) and create traceability rela-

tions of different types when a match is found.

Recently, several authors have applied Information Re-

trieval (IR) methods [17] to the problem of recovering

traceability links between requirements [12], [18], be-

tween code and documentation [2], [22] and between

maintenance requests and software documents [3].

Dag et al. [12] perform automated similarity analysis of

textual requirements using IR techniques. They propose to

continuously analyze the flow of incoming requirements

to increase the efficiency of the requirements engineering

process. Huffman Hayes et al. [18] use different informa-

tion retrieval algorithms based on the vector space model

[17] to improve traceability recovery between require-

ments.

Antoniol et al. [2] use information retrieval methods ba-

sed on probabilistic and vector space models [17]. They

applies the two methods on two case studies to trace C++

source code onto manual pages and Java code to func-

tional requirements, respectively. In a different paper [3]

the authors also use the vector space model to trace main-

tenance requests on software documents impacted by

them. Marcus and Maletic [22] performed the same case

studies as in [2], but used a different IR method, namely

Latent Semantic Indexing (LSI) [13]. The advantage of

LSI with respect to classical probabilistic or vector space

models is that it does not require a preliminary morpho-

logical analysis (stemming) of the document words. This

allows the method to be applied without large amounts of

pre-processing, which drastically reduces the costs of

traceability link recovery. In addition, using a method that

avoids stemming is particularly useful for languages, such

as Italian, that presents a complex grammar, verbs with

many conjugated variants, words with different meanings

in different contexts, and irregular forms for plurals, ad-

verbs, and adjectives [2].

For the reason above, we also use LSI for traceability link

recovery. However, we aim at integrating the traceability

recovery tool in an artefact management system and

therefore we deal with any type of software artefacts, in-

cluding requirement and design artefacts, test case speci-

fications, and source code modules.

3. ADAMS

ADAMS (ADvanced Artefact Management System) is an

artefact-based Process Support System (PSS). It enables

the definition of a process in terms of the artefacts to be

produced and the relations among them, supporting a

more agile software process management than activity-

based PSSs, in particular concerning the deviations from

the process model [14].

ADAMS poses a greater emphasis to the artefact life cy-

cle by associating software engineers to the different op-

erations that can be performed on an artefact. The support

for cooperation is offered by ADAMS through typical

features of a configuration management system. ADAMS

enables groups of people to work on the same artefact,

depending on the required roles. Software engineers can

cooperate according to a lock-based policy or concur-

rently, if branch versions of artefacts are allowed.

The system has been enriched with features to deal with

some of the most common problems faced by cooperative

environments, in particular context awareness and com-

munication among software engineers. A first context-

awareness level is given by the possibility to see at any

time the people who are working on an artefact. Context

awareness is also supported through event notifications:

software engineers working on an artefact are notified

when another branch is created by another worker. This

provides a solution to the isolation problem for resources

working on the same artefact in different workspaces: in

fact context awareness allows to identify possible con-

flicts before they occur, since the system is able to notify

interested resources as soon as an artefact is checked-out

and potentially before substantial modifications have been

applied to it.

Software engineers can subscribe other events they would

like to be notified about. Events mainly concern the op-

erations performed on artefacts and projects. For example,

an event could be the modification of the status of an arte-

fact or the creation of a newer version for it. A number of

events are automatically notified without any need for

subscription. Examples include notifying a software engi-

neer he/she has been allocated to a project or an artefact.

ADAMS enables software engineers to create and store

traceability links between artefacts in terms of depend-

ences. A dependence consists of a relation between two

artefacts, together with some additional information to

specify the type of dependence, as starting conditions,

production constraints and output rules. Besides being

useful for impact analysis during software evolution,

traceability links in ADAMS are also useful to manage

the software process and notify software engineers that

the production of a given artefact can start, or that an arte-

fact has to be changed, because of some changes in the

artefacts it depends on: indeed, events concerning the

production of new versions of an artefact are propagated

through the traceability layer of ADAMS to the artefacts

depending directly or indirectly on it (and consequently to

the software engineers responsible for them).

Besides being used for event propagation, the traceability

links can be visualized by a software engineer (see Figure

1) and browsed to look at the state of previously devel-

oped artefacts, to download latest artefact versions, or to

subscribe events on them and receive notifications con-

cerning their development. Moreover, software engineers

that make use of previously developed artefacts to pro-

duce new artefacts may send feedbacks to the former arte-

facts if problems are discovered (see Figure 1). Feedbacks

are then notified to artefact mangers to make decisions

about.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

Feedbacks and event-based traceability are the two

mechanisms used by ADAMS to support process man-

agement. This approach is much more flexible than activ-

ity-based workflow management systems [5], in particular

with respect to the deviations from the process model.

Figure 1. Traceability in ADAMS

4. Traceability recovery in ADAMS

Even if ADAMS provides an intuitive interface to specify

traceability links, in the first release the charge of their

identification was delegated to the software engineer. The

latter also has the responsibility to manage traceability

links whenever new artefacts are added to the project, ex-

isting artefacts are removed or new versions are checked-

in. As the project grows-up, this task tends to be hard to

manage, so automatic or semi-automatic tools are needed.

We have developed a traceability link recovery tool based

on an IR technique, namely LSI [13]. In particular, the

tool proposes missing links and highlights probably

wrong or obsolete ones.

In Section 2 we have overviewed several papers discuss-

ing the benefits of using IR techniques to help during

traceability link recovery. All these studies have shown

that these tools cannot completely replace the work of the

software engineer, as the number of missed links and

links incorrectly retrieved by IR tools is not insignificant.

For a given document di, an IR based traceability link re-

covery compares the document di (used as a query)

against the other documents in the document space and

ranks these documents according to their similarity with

di. Moreover, these tools use some (fixed or variable)

threshold to present the software engineer only the subset

retrievedi of top documents in the ranked list that are

deemed similar to di. The set of retrieved documents does

not in general coincide with the set correcti of documents

in the document space that are in fact similar to di. Indeed,

the tool will fail to retrieve some of the correct docu-

ments, while on the other hand it will also retrieve docu-

ments that are not correct.

In general, the performances of IR tools and more specifi-

cally of traceability link recovery tools are measured us-

ing two IR metrics, namely, recall and precision:

i

ii

i

i

ii

i
retrieved

retrievedcorrect
precision

correct

retrievedcorrect
recall

Both measures will have values between [0, 1]. If the re-

call is 1, it means that all correct links were recovered,

though there could be recovered links that are not correct.

If the precision is 1, it means that all recovered links were

correct, though there could be correct links that were not

recovered. In general, retrieving a lower number of

documents for each query would result in higher preci-

sion, while a higher number of retrieved documents

would increase the recall. The values of recall and preci-

sion depends on the threshold used to cut the ranked list:

in general, the higher the threshold the lower the recall

(the higher the precision) and vice versa.

4.1. Traceability Recovery Process

All the studies on traceability recovery discussed in Sec-

tion 2 aim at maximizing the number of recovered correct

traceability links (i.e., the recall). As a consequence, the

threshold is kept low, thus resulting in the recovery of

many incorrect links.

Aware of the unfeasibility to completely substitute the

software engineer in the task of maintaining traceability

links during software evolution, in ADAMS we aim at

providing a support during this process. Accordingly, we

expect that for a given artefact di, the software engineer

provides the tool with an initial (possibly empty) set of

manually traced links. In the following, we denote with

linki the set of artefacts traced by the software engineer on

di and with ilink the complementary set of linki, i.e., the

set of all artefacts in the repository except the ones in

linki. As said before, given an artefact di, and a similarity

threshold , the tool will return the set retrievedi(), i.e.,

the set of artefacts whose similarity to di is greater than or

equals to . In the following we denote with (iretrieved

the complementary set of retrievedi().

The intersection of these four sets results in other four sets

of interest:

TracingAgreementi() = linki retrievedi()

NonTracingAgreementi() = ilink (iretrieved

LostLinksi() = ilink retrievedi()

WarningLinksi()= linki (iretrieved

The first two sets contain the artefacts retrieved and ex-

cluded, respectively, by both the software engineer and

the tool. The set LostLinksi() contains the artefacts not

traced by the software engineer and retrieved by the tool,

while WarningLinksi() contains the artefacts traced by

the software engineer and missed by the tool.

The final goal of the traceability recovery process should

be to maximize the first two sets and consequently mini-

mize the other two sets, i.e., to have a complete agreement

between the software engineer and the tool. It is worth

noting that in case the final set of links traced by the soft-

ware engineer coincides with the set of correct links, a

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

complete agreement means achieving 100% of precision

and recall for the traceability recovery tool. Therefore,

this agreement is in general impossible to achieve, be-

cause of the limitations of both the humans developing

artefacts and the IR tool. For these reasons, we pursue an

incremental process aiming at reaching such an agree-

ment.

Given the initial set of traceability links defined by the

software engineer, an artefact di added or updated in

ADAMS, and a selected threshold , the traceability re-

covery tool will provide the software engineer with the

sets on which they disagree: LostLinksi() and Warn-

ingLinksi(). In particular, the software engineer has to

investigate the lost links to discover new traceability

links, thus enriching the set linki. On the other hand, the

warning links have to be investigated for two reasons: in

case the tool is actually right the traceability link has to be

removed, while in case the software engineer is right, the

indications of the tool might reveal some inconsistencies

in the usage of terms within the traced artefacts.

Figure 2 shows the way artefacts in the repository can

move from a set to another, depending on two different

operations made by a software engineer on artefact di,

namely changes to di and inserting/deleting traceability

links between di and other artefacts. In particular, the re-

sult of inserting a traceability link between di and an arte-

fact dj consists of moving dj from LostLinksi() to Tracin-

gAgreementi() or from NonTracingAgreementi() to

WarningLinksi(), respectively. On the other hand, remov-

ing a traceability link between di and dj results in the op-

posite moves. As a result of a change to the artefact di the

consistency of term usage with respect to the artefact dj

can increase or decrease. Increasing the consistency result

in moving dj from WarningLinksi() to TracingAgree-
menti() or from NonTracingAgreementi() to Lost-

Linksi(), respectively, in case the similarity of the two

documents becomes greater than or equal to the threshold

. Decreasing the consistency can result in the opposite

moves.

It is worth noting that the number of warning links in-

creases with the chosen similarity threshold and it is lim-

ited by the number of links traced by the software engi-

neer, so in general for a given artefact this is not a very

large number. On the other hand, the number of links

missed by the software engineer with respect to the IR

tool increases when the threshold decreases and it is lim-

ited by the number of artefacts in the repository; this

means that this set can be very large and contain a very

high number of false positives when the threshold is low.

For this reason, we propose to adopt an incremental trace-

ability link recovery process, that starts with a high

threshold. In this way, the set of warning links can be ini-

tially ignored, while the set of missed links will contain

very few false positives. At each iteration, the software

engineer will classify the missed links either as actual

links (thus including them in linki) or as false positives. In

both cases the tool will not propose them in the next itera-

tions, when a lower threshold is used. When the threshold

is enough low the software engineer should consider to

analyze the set of warning links, because this might be an

indication of a possible inconsistence. Another considera-

tion to make is the fact that the choice of the initial

threshold greatly depends on how accurately the software

engineer has initially defined the set linki: if linki is empty

(no definition at all of traceability links), then it is advis-

able to have a finer grained control on the process and use

a very high initial threshold and small decrements of it in

the following iterations. If the software engineer was very

accurate in manually defining traceability links then

he/she can use a lower initial threshold and larger decre-

ments of it, that results in fewer iterations and a more

coarse grained control over the process.

Figure 2. Traceability sets transitions

4.2. Latent Semantic Indexing

The IR technique used in ADAMS for traceability link

recovery is Latent Semantic Indexing (LSI) [13]. LSI is

an important extension of the Vector Space Model, in

which the dependencies between terms and between

documents, in addition to the associations between terms

and documents, are explicitly taken into account. This is

done by simultaneously modeling all the associations of

terms and documents. LSI assumes that there is some un-

derlying or “latent structure” in word usage that is par-

tially obscured by variability in word choice, and use sta-

tistical techniques to estimate this latent structure. A de-

scription of terms, documents and user queries based on

the underlying, “latent semantic”, structure is used for

representing and retrieving information. In this way LSI

partially overcomes some of the deficiencies of assuming

independence of words, and provides a way of dealing

with synonymy automatically without the need for a

manually constructed thesaurus.

The heart of LSI is Singular Value Decomposition (SVD),

a technique closely related to eigenvector decomposition

and factor analysis [11]. This technique is used to derive a

particular latent semantic structure model from the term-

by-document matrix. Any rectangular matrix, for example

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

a txd matrix of terms and documents, X, can be decom-

posed into the product of three other matrices:

000 DSTX

such that T0 and D0 have orthonormal columns and S0 is

diagonal. This is called singular value decomposition of

X. T0 and D0 are the matrices of left and right singular
vectors called terms matrix and documents matrix respec-

tively and S0 is the diagonal matrix of singular values

called concepts matrix.

SVD allows a simple strategy for optimal approximate fit

using smaller matrices. If the singular values in S0 are or-

dered by size, the first k largest values may be kept and

the remaining smaller ones set to zero. The product of the

resulting matrices is a matrix X’ which is only approxi-

mately equal to X, and is of rank k. Since zeros were in-

troduced into S0, the representation can be simplified by

deleting the zero rows and columns of S0 to obtain a new

diagonal matrix S, and deleting the corresponding col-

umns of T0 and D0 to obtain T and D respectively. The

result is a reduced model:

DSTXX '

which is the rank-k model with the best possible least

square fit to X.

The choice of k is critical: ideally, we want a value of k
that is large enough to fit all the real structure in the data,

but small enough so that we do not also fit the sampling

error or unimportant details. The proper way to make such

choice is an open issue in the factor analytic literature. In

our experiments, we used an operation criterion, i.e. a

value of k which yields good retrieval performances. In

particular we chose a k that have value between the 10%

to 50% of the dimension of the artefact space.

One can also interpret the analysis performed by SVD

geometrically. The result of SVD is a vector representing

the location of each term and document in the k-

dimensional LSI representation. The location of a term

vector reflects the correlation in term usage across the

document. In this space the cosine between vectors

corresponds to their estimated similarity. Since both term

and document vectors are represented in the same space,

similarities between any combination of terms and

documents can be easily obtained. Retrieval is then

performed using the database of singular values and

vectors obtained from the truncated SVD. The terms in a

query are used to identify a point in this space, and all

documents are then ranked by their similarity to the

query. The similarity between a pair of artefacts is

computed as the cosine of the angle between the

corresponding vectors.

LSI does not use a predefined vocabulary, or a predefined

grammar, therefore no morphological analysis or trans-

formation is required. However some text transformations

are needed to prepare the source code and documentation

to form the corpus of LSI. First, the white spaces in the

text are normalized and most non-textual tokens from the

text are eliminated (i.e. operators, special symbol, etc).

Then the identifiers in the source code are split into the

compounding names based on well-know coding stan-

dards. All these operations are automatically applied to

documents. It is worth nothing that the bulk of LSI proc-

essing time is anyway spent in computing the truncated

SVD of the large sparse term-by-document matrix.

5. Case study

We have experimented the LSI based traceability link re-

covery method on software artefacts produced during dif-

ferent phases of an on-going development project con-

ducted by final year students at the University of Salerno,

Italy. The project aims at developing a software system

implementing all the operations required to manage a

medical ambulatory. Table 1 shows the type and the num-

ber of artefacts analyzed.

Artefact type # artefacts

use cases 30

interaction diagrams 20

test cases 63

code classes 37

Total number 150

Table 1. Analyzed artefacts

5.1. Method used to assess the results

In section 4 we have mentioned some metrics used for

assessing the results of traceability link recovery tools,

called precision and recall. These metrics have been de-

fined for a single artefact used as a query, while to assess

the performances of the tool on the entire system we use

the following aggregate metrics:

i

i

i

ii

i

i

i

ii

retrieved

retrievedcorrect

precision
correct

retrievedcorrect

recall

Given a similarity measure between two artefacts, estab-

lishing if these have to be considered similar can be based

on different approaches. A first method consists of impos-

ing a threshold on the number of recovered links (cut

point) [2], [22], regardless of the actual value of the simi-

larity measure. In this way, we select the top µ ranked ar-

tefacts for each query, where µ {1, 2, …, n}. An exten-

sion of this method consists of specifying the percentage

of the documents of the ranked list that can be considered

similar to the query (cut percentage). In this way the cut

point depends on the size of the ranked list.

A different approach consists of using a threshold on the

cosine similarity measure. Among all the pairs of arte-

facts, only those having a similarity measure greater than

or equal to will be retrieved. We have also compared

other three methods to compute the cosine thresholds:

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

1. Constant threshold: this is the standard method used

in the literature [22]. The cosine threshold is constant

and has values between [-1, 1]; a good and widely

used threshold is = 0.7, that corresponds to a 45º an-

gle between the corresponding vectors.

2. Variable threshold: this is an extension of the previous

approach. The constant threshold is projected onto a

particular interval, where the lower bound is the mini-

mum similarity measure (instead of -1) and the upper

bound is the maximum similarity measure (instead of

+1). The variable threshold has values between 0%

and 100% and on the basis of this value this method

determines a cosine threshold that has values between

[min similarity, max similarity]. This approach has not

been used in previous researches.

3. Scale threshold: a threshold is computed as the per-

centage of the best similarity value between two arte-

facts, i.e., = c·MaxSimilarity, where 0 c 1 [2]. Of

course, this method can be applied when MaxSimilar-

ity is a positive value. In this case, the higher the value

of the parameter c, the smaller the set of documents

returned by a query.

It is worth noting that if MaxSimilarity is 1, the scale

threshold and the constant threshold methods are equiva-

lent. The scale threshold method is useful when the

maximum similarity measure is low, while the variable

threshold method is useful when the distance between the

maximum and minimum similarity is low.

5.2. Comparing different IR methods

In the first experiment we indexed all the artefacts within

the same collection. Figure 3 shows the results. The 100%

recall is reached with = 0.11 for the constant threshold

(with about 12% precision) and = 10% for the variable

threshold (with about 12% precision). For the cut point

method 132 artefacts are necessary to reach the 100% re-

call (with about 11.5% precision). Generally, the constant

threshold and variable threshold performs better than the

cut point. It is worth noting that in this experiment we

have not used the scale threshold, because for each query

the maximum similarity measure was very high, thus giv-

ing similar results as the constant threshold. The best re-

sults were achieved with = 0.28 for the constant thresh-

old, with = 31% for the variable threshold, and with 46

artefacts for the cut point method. For example, for the

variable threshold we achieved a good compromise be-

tween recall (about 80%) and precision (about 24%).

We observed that the artefacts belonging to the same ca-

tegory have similar structure and this increases their simi-

larity measure, even if they are not relevant to each other

(false alarm) [16]. If a use case description is used as

query, the related artefacts belonging to other categories

will have a similarity measure lower than irrelevant use

case descriptions. For this reason, we performed a second

experiment, where the artefacts are indexed in four

four different collections, one for each category of arte-

facts. Queries were then performed against each artefact

subspace, thus achieving different ranked lists.

Figure 4 shows the results: 100% recall is reached with

c = 0.23 for the scale threshold and = 17% for the vari-

able threshold. For the cut percentage method 96% of the

artefacts in each collections is necessary to reach the

100% recall. In this case we did not use the constant

threshold, because it does not take into account the differ-

ences in the maximum similarity values achieved in the

four different collections of artefacts. For the same reason

we used a cut percentage rather than a fixed cut point. It is

worth noting that the results achieved in this case are bet-

ter than the results achieved with a single collection of

artefacts (compare Figures 3 and 4). In particular, for the

variable threshold about 35% precision with more than

80% recall is achieved for = 66%.

Figure 3. Precision/recall without categorization

Figure 4. Precision/recall with categorization

To have more evidence that the categorization improves

the results, Figure 5 compare the variable threshold re-

sults of the two previous experiments. It is worth noting

that we compare the variable threshold performances be-

cause the variable threshold method, in general, gives the

best results in both the experiments. We observed that

when the recall is 80% with the categorization we have an

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

improvement of the precision of about 40% (35% against

25%) and when the recall is 70% the improvement is

more than 60% (42% against 26%). Another advantage of

using categorization is the fact that different thresholds

can be used for different categories of artefacts, thus fur-

ther improving the results. In conclusion, the two experi-

ments suggest that the best method used to define the co-

sine threshold is the variable threshold with categorization

of artefacts.

Figure 5. Variable threshold results

5.3. Analytical results

The precision/recall graphs shown in Figures 3-5 are use-

ful to compare the different IR methods. To evaluate the

effectiveness of the traceability link recovery tool we

need a deeper analysis of the results. For this reason we

analysed the results of recovering traceability links be-

tween all different pairs of artefact categories (16 pairs),

using the variable threshold method. For sake of space we

do not show all the results, but only the results achieved

by tracing code classes on the other categories of arte-

facts.

Figure 6 shows the precision/recall graph, while Table 2

summarizes the characteristics of the experiment: the first

column represents the artefact type (category); the second

column shows the number of artefacts in each category

(size of the artefact subspace), while the third column

represents the number of classes used as queries; finally

the fourth column shows the average number in the cor-

rect links between code classes and artefacts of the differ-

ent categories. As we can see, only for the use case and

the code class subspaces we used all the available code

classes as queries; for the other two subspaces we could

not use all the classes, because the set of available arte-

facts was incomplete and therefore some classes could not

be traced on any interaction diagram and test case.

In the following we will discuss in particular the results

achieved by tracing code classes on use cases and test

case specifications, respectively. We do not show the re-

sults achieved by recovering traceability links between

code classes and interaction diagram descriptions, be-

cause they are very similar to the results achieved by re-

covering traceability links between code classes and use

case descriptions (see Figure 6). Moreover, we do not

show the results achieved by recovering traceability links

between code classes because they are not very good (see

Figure 6); in our opinion IR methods are not adequate for

this purpose or should at least be combined with other

techniques [8].

Figure 6. Precision/recall for code tracing

Artefact type # artefacts
queries

(classes)

average

correct links

Use cases 30 37 2.66

Interaction

diagrams
20 30 2.30

Test cases 63 13 14.10

Code classes 37 36 2.76

Table 2. Code class tracing statistics

Tables 3 and 4 summarizes the results of tracing code

classes onto use cases and test case specifications, respec-

tively. The first column represents the threshold value; the

second column represents the average number of total ar-

tefacts retrieved by the tool, while the third and fourth

columns represent the average number of irrelevant re-

trieved artefacts (false positives) and the average number

of correct links missed by the tool, respectively. The fifth

and sixth columns show the aggregate recall and precision

values.

The higher threshold used in both cases is 95%. When we

relax the selection criterion and decrease the threshold we

get more false positives (the precision decreases) and

fewer missed links (the recall increases). As we can see

from the two tables and from Figure 6, tracing code

classes onto test case specifications gives better results

than tracing code classes onto use cases: for the use cases

a 100% recall is achieved with a threshold of 33% and a

precision of about 14%, while for the test case specifica-

tion we get 100% recall with a threshold of 51% and a

precision of about 65%.

For the code classes to use cases tracing a good compro-

mise is achieved when the threshold is 70% (see Table 3):

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

in this case on average of the 2.66 links that are correct

(see Table 2), only 0.54 links are missed by the tool,

while of the 4.48 links retrieved by the tool, only 2.37

links are false positives. On the other hand, the better re-

sults for the code classes to test case specifications tracing

are achieved when the threshold is 65% (see Table 4): in

this case on average of the 14.10 links that are correct (see

Table 2), only 1.50 links are missed by the tool, while of

the 17.10 links retrieved by the tool, only 4.50 are false

positive.

Threshold

(%) Retrieved

False

Positives

Missed

Links

Recall

(%)

Precision

(%)

95 1.23 0.26 1.69 36.56 79.07

90 1.48 0.31 1.49 44.09 78.85

85 2.23 0.65 1.09 59.13 70.51

80 2.80 0.97 0.83 68.82 65.30

75 3.49 1.43 0.60 77.42 59.02

70 4.48 2.37 0.54 79.57 47.13

65 5.57 3.31 0.40 84.95 40.51

60 7.00 4.63 0.29 89.25 33.88

55 8.34 5.94 0.26 90.32 28.77

50 10.20 7.74 0.20 92.47 24.09

45 12.54 10.03 0.14 94.62 20.05

35 16.80 14.17 0.03 98.92 15.65

33 18.03 15.37 0.00 100.00 14.74

Table 3. Code class to use case tracing results

Table 4. Code class to test case tracing results

It is worth noting that the data in Tables 3 and 4 are

shown from the point of view of the tool. Indeed, the set

of links missed by the tool corresponds to the set Warn-

ingLinksi() defined in Section 4 from the point of view of

the software engineer, in case he/she has identified and

traced all correct links (linki = correcti). Also, in this case

the set of false positives corresponds to the set Lost-
Linksi() from the point of view of the software engineer.

Therefore, assuming that the set of links identified and

traced by the software engineer is a subset of the correct

links, the values in the column Missed Links in Tables 3

and 4 are an upper bound for the number of warning links.

On the other hand, concerning the cardinality of the set

LostLinksi(), an upper bound is given by the total number

of artefacts retrieved by the tool (in case linki is empty),

while a lower bound is given by the number of false posi-

tives retrieved by the tool (in case linki = correcti). It is

worth noting that the cardinality of this set is acceptable

also for a low threshold value. For example, when tracing

code classes to use cases, if the initial set of links traced

by the software engineer is empty, with a 70% threshold

on average he/she can discover up to 2.11 correct links

(difference between average retrieved links and average

correct links) by analyzing only 4.48 retrieved links (see

Table 3). On the other hand, if the software engineer

would be accurate in manually tracing all correct links,

he/she can have a confirmation of about 80% (ratio be-

tween 2.11 average correct links retrieved by the tool and

2.66 average correct links) of the traced links. Similar

considerations can be made when tracing code classes to

test case specifications.

6. Conclusion

Software artefact traceability is fundamental to effectively

managing the development and evolution of software sys-

tems, to help in program comprehension, maintenance,

impact analysis, and reuse of existing software. However,

despite of its importance, contemporary artefact manage-

ment tools provides a limited support to automatic or

semi-automatic traceability link recovery.

In this paper we have shown how to enhance an artefact

management system called ADAMS, with a traceability

recovery tool based on a IR technique, namely Latent

Semantic Indexing (LSI) [13]. The tool provides the soft-

ware engineer with the set of links not traced by the soft-

ware engineer and retrieved by the tool and the set of

links traced by the software engineer and not retrieved by

the tool. The manual analysis of the links in these two sets

as well as the possibility of incrementally tuning the

threshold helps the software engineer to identify relevant

links not traced yet, as well as links previously traced that

are actually not relevant or cases of inconsistencies in the

usage of terms between traced software artefacts.

We have also presented a case study of using the trace-

ability recovery tool on different types of software arte-

facts. We have shown how better results can be achieved

using a variable threshold and categorizing the artefacts in

the repository in different subspaces. The latter findings

are similar to the results achieved by other authors with

documents of different nature [16].

Future work will be devoted to integrating the traceability

recovery tool in ADAMS and further experimenting it in

software projects.

Threshold

(%) Retrieved

False

positives

Missed

Links

Recall

(%)

Precision

(%)

95 3.30 0.40 11.20 20.57 87.88

90 4.30 0.50 10.30 26.95 88.37

85 6.10 0.90 8.90 36.88 85.24

80 8.60 1.50 6.70 52.48 83.15

75 10.70 2.00 5.40 61.70 81.31

70 13.90 3.40 3.60 74.47 75.54

65 17.10 4.50 1.50 89.36 73.68

60 19.20 5.90 0.80 94.33 69.27

55 20.10 6.60 0.60 95.74 67.16

51 21.60 7.50 0.00 100.00 65.28

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

References

[1] I. Alexander, “Towards Automatic Traceability in Indus-

trial Practice”, Proc. of the 1st Intern. Workshop on Trace-

ability, Edinburgh, UK, 2002, pp 26-31.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, “Recovering traceability links between code and

documentation”, IEEE Transactions on Software Engineer-

ing, vol. 28, no. 10, 2002, pp. 970-983.
[3] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia,

“Identifying the Starting Impact Set of a Maintenance Re-

quest”, Proc. of 4th European Conference on Software

Maintenance and Reengineering, Zurich, Switzerland,

IEEE CS Press, 2000, pp. 227-230.

[4] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “De-

sign-Code Traceability for Object Oriented Systems” An-

nals of Software Engineering, vol. 9, 2000, pp. 35–58.

[5] L. Aversano, A. De Lucia, M. Gaeta, and P. Ritrovato,

“GENESIS: a Flexible and Distributed Environment for

Cooperative Software Engineering”, Proc. of 15th Intern.

Conference on Software Engineering and Knowledge En-

gineering, S. Francisco, CA, USA, 2003, pp. 497-502.

[6] L. C. Briand, Y. Labiche and L. O’Sullivan, “Impact

Analysis and Change Management of UML Models” Proc.

of IEEE Intern. Conference on Software Maintenance, Am-

sterdam, The Netherlands, IEEE CS Press, 2003, pp. 256-

265.

[7] C. Boldyreff, D. Nutter, and S. Rank, “Active Artefact

Management for Distributed Software Engineering”, Proc.

of 26th IEEE Annual Intern. Computer Software and Appli-

cations Conference, Oxford, UK, IEEE CS Press, 2002, pp.

1081-1086.

[8] B. Caprile and P. Tonella, “Nomen Est Omen: Analyzing

the Language of Function Identifiers”, Proc. of 6th IEEE

Working Conference on Reverse Engineering, Atlanta, GA,

USA, IEEE CS Press, 1999, pp. 112-122.

[9] J.Y.J. Chen and S.-C. Chou, “Consistency Management in

a Process Environment”, The Journal of Systems and Soft-

ware, vol. 47, 1999, pp. 105-110

[10] J. Cleland-Huang, C. K. Chang, and M. Christensen,

“Event-Based Traceability for Managing Evolutionary

Change”, IEEE Transactions on Software Engineering, vol.

29, no. 9, 2003, pp. 796-810.

[11] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms

for Large Symmetric Eigenvalue Computations, vol. 1:

Theory, Chapter 5: “Real rectangular matrices”, Brik-

hauser, Boston, 1985.

[12] J. Dag, B. Regnell, P. Carlshamre, M. Andersson, J. Karls-

son, “A Feasibility Study of Automated Natural Language

Requirements Analysis in Market-driven Development”,

Requirements Engineering, vol. 7, no. 1, 2002, pp. 20-33.

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-

dauer, and R. Harshman, “Indexing by Latent Semantic

Analysis”, Journal of the American Society for Information

Science, no. 41, 1990, pp. 391-407.

[14] A. De Lucia, F. Fasano, R. Francese, and G. Tortora,

“ADAMS: an Artefact-based Process Support System”,

Proc. of 16th Intern. Conference of Software Engineering

and Knowledge Engineering, Banff, Alberta, Canada, 2004,

pp. 31-36.

[15] R. Domges and K. Pohl, “Adapting Traceability Environ-

ments to Project Specific Needs”, Communications of the

ACM, vol. 41, no. 12, 1998, pp. 55-62.

[16] S. T. Dumais, “LSI meets TREC: A status report”, In D.

Harman (Ed.) The First Text REtrieval Conference (TREC-

1), NIST special publication 500-207, pp. 137-152.

[17] D. Harman, “Ranking Algorithms”, in Information Re-

trieval: Data Structures and Algorithms, Prentice-Hall,

Englewood Cliffs, NJ, 1992, pp. 363–392.

[18] J. Huffman Hayes, A. Dekhtyar, and J. Osborne, “Improv-

ing Requirements Tracing via Information Retrieval”,

Proc. of 11th IEEE Intern. Requirements Engineering Con-

ference, Monterey, CA, USA, IEEE CS Press, 2003, pp.

138-147.

[19] Holagent Corporation product RDD-100,

http://www.holagent.com/new/products/modules.html

[20] J. Konclin and M. Bergen, “Gibis: A Hypertext Tool for

Exploratory Policy Discussion,” ACM Transactions Office

Information Systems, vol. 6, no. 4, 1988, pp. 303–331.

[21] D. Leffingwell, “Calculating Your Return on Investment

from More Effective Requirements Management”, Rational

Software Corporation, 1997. Available online from

http://www.rational.com/products/whitepapers.

[22] A. Marcus and J. I. Maletic, “Recovering Documentation-

to-Source-Code Traceability Links using Latent Semantic

Indexing”, Proc. of 25th Intern. Conference on Software

Engineering, Portland, Oregon, USA, 2003, pp. 125-135.

[23] G.C. Murphy, D. Notkin, and K. Sullivan, “Software Re-

flexion Models: Bridging the Gap between Design and Im-

plementation” IEEE Transactions on Software Engineer-

ing, vol. 27, no. 4, 2001, pp. 364-380.

[24] F.A.C. Pinhero and J.A. Goguen, “An Object-Oriented To-

ol for Tracing Requirements”, IEEE Software, vol. 13, no.

2, 1996, pp. 52–64.

[25] B. Ramesh and V. Dhar, “Supporting Systems Develop-

ment Using Knowledge Captured During Requirements

Engineering” IEEE Transactions on Software Engineering,

vol. 9, no. 2, 1992, pp. 498–510.

[26] Rational RequisitePro,

http://www.rational.com/products/reqpro/index.jsp.

[27] M. Sefika, A. Sane, and R.H. Campbell, “Monitoring

Compliance of a Software System with Its High-Level De-

sign Models”, Proc. of 16th Intern. Conference on Software

Engineering, Berlin, Germany, 1996, pp. 387–396.

[28] M. Smith, D. Weiss, P.Wilcox, and R.Dewer, “The Ophelia

traceability layer”, in Cooperative Methods and Tools for

Distributed Software Processes, A. Cimitile, A. De Lucia,

and H. Gall (editors), Franco Angeli, 2003, pp. 150-161.

[29] Telelogic product DOORS, http://www.telelogic.com.

[30] A. von Knethen and M. Grund, “ QuaTrace: A Tool Envi-

ronment for (Semi-) Automatic Impact Analysis Based on

Traces” Proc. of IEEE Intern. Conference on Software

Maintenance, Amsterdam, The Netherlands, IEEE CS

Press, 2003, pp. 246-255.

[31] J. Weidl and H. Gall, “Binding Object Models to Source

Code” Proc. of 22nd IEEE Annual Intern. Computer Soft-

ware and Applications Conference, Vienna, Austria, IEEE

CS Press, 1998, pp. 26–31.

[32] A. Zisman, G. Spanoudakis, E. Perez-Miñana, and P.

Krause, “Tracing Software Requirements Artifacts”, Proc.

of Intern. Conference on Software Engineering Research

and Practice, Las Vegas, Nevada, USA, 2003, pp. 448-455.

Proceedings of the 20th IEEE International Conference on Software Maintenance (ICSM’04)

1063-6773/04 $20.00 © 2004 IEEE

	footer1:

