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Abstract

To facilitate software maintenance and evolution, a helpful 

step is to locate features concerned in a particular maintenance 

task. In the literature, both dynamic and interactive approaches 

have been proposed for feature location. In this paper, we 

present a static and non-interactive method for achieving this 

objective. The main idea of our approach is to use the 

information retrieval (IR) technology to reveal the basic 

connections between features and computational units in source 

code. Due to the characteristics of the retrieved connections, we 

use a static representation of the source code named BRCG to 

further recover both the relevant and the specific computational 

units for each feature. Furthermore, we recover the 

relationships among the relevant units for each feature. A 

premise of our approach is that programmers should use 

meaningful names as identifiers. We perform an experimental 

study based on a GNU system to evaluate our approach. In the 

experimental study, we present the detailed quantitative 

experimental data and give the qualitative analytical results.

1. Introduction 
During the past several decades, the heavy costs of 

maintaining existing software systems have become a great 

concern for many software projects. As estimated in [22], about 

40 percent of the total cost of a software project is spent on 

software maintenance. 

Usually, a maintenance task is to change or add some 

functionalities or features [27] [5], or refactoring the program 

without changing its behavior [12]. Although some refactoring 

tasks (such as the refactoring for generalization [21]) can be 

fulfilled automatically, most maintenance tasks require 

maintainers to spend more than half of their working time 

analyzing the documents and the source code to understand the 

features of the system being maintained [7]. A basic but very 

helpful step for this kind of maintenance is to locate interesting 

features in the source code [26]. 

More theoretically, the feature location problem can be 

formulated as identifying the relationships between the user’s 

view and the programmer’s view [23]. The user’s view is made 

up of a collection of features denoted as FEATURES={f1,

f2, ...fn}, while the programmer’s view consists of a collection of 

computational units denoted as UNITS={u1, u2, ...um}. Thus, the 

feature location problem is to recover the implementation 

relationships over FEATURES × UNITS. In particular, two kinds 

of implementation relationships are usually distinguished [26] 

[11]. The first is the relevant relation, in which each feature is 

related to all the units contributing to the feature’s 

implementation. The second is the specific relation, in which 

each feature is related only to the units that contribute to the 

feature’s implementation but not to any other features’ 

implementation. 

There are mainly two categories of approaches addressing 

this problem. Firstly, interactive approaches based on 

maintainers browsing a graphical representation of the source 

code (such as [4], [6], [14] and [18]) can be used to assist 

maintainers to locate features. In the literature, this kind of 

approaches is also referred to as the static approaches. Secondly, 

automatic approaches based on dynamic execution of the system 

(see e.g. [24], [26] and [11]) are also reported in the literature. 

These approaches are usually referred to as the dynamic 

approaches. 

In this paper, we propose a Static Non-Interactive Approach 

to Feature Location (SNIAFL). Like the dynamic approaches, 

our approach works in a batch-like manner without much human 

involvement. However, unlike the dynamic approaches, which 

use test cases to exhibit the basic relationships between features 

and units, we use information retrieval (IR) to achieve this 

objective. In fact, our approach is inspired by recent advances in 

applying IR for recovering traceability between code and 

documentation (see e.g. [2] and [16]). According to the 

characteristics of the retrieved results, we use the Branch-

Reserving Call Graph [17] (an expansion of the call graph with 

branch information) to further recover the relevant and specific 

units and acquire the relationships among the relevant units for 

each feature. 

2. Related Work 
2.1. Feature Location 

As mentioned above, the central task of feature location is to 

match the knowledge about features and that about 

computational units. In the previous research, two mainstreams 

of ideas for this task can be identified. The first one assumes 

that maintainers with the knowledge about features can browse 

through the source code of computational units to establish the 

connections. Therefore, the feature location problem is turned 

into building up an efficient support to facilitate maintainers for 

this browsing. This leads to the various interactive approaches. 

On the other hand, the second one assumes that maintainers can 

create test cases corresponding to features. As a result, the 

connections between features and computational units can be 

established via recording the execution traces of the test cases. 

Therefore, the feature location problem is turned into analyzing 
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execution traces with feature tags. This leads to the various 

dynamic approaches. 

The forerunner of interactive feature location is [4], in 

which, this problem is referred to as a concept assignment 

problem. Thus, feature location is viewed as the process of 

assigning human-oriented concepts to program-oriented 

concepts. Several graphical representations of source code (such 

as the call graph, the program slice graph, and the program 

clustering graph) are exploited to facilitate this process. In [6], 

an interactive approach to feature location based on browsing 

the abstract system dependency graph (ASDG) is proposed. As 

ASDG can represent the dependencies among routines, types 

and variables at an abstract level, it can guide a user to search 

for the implementation of a particular feature. [14] reports the 

Aspect Browser, which can help maintainers to find feature 

implementations using lexical searches. This tool is based on 

Seesoft [9] and uses the map metaphor to graphically represent 

the location of the possible pieces of code for feature 

implementations. In [18], where features are referred to as 

concerns, the Concern Graphs is proposed as a facility of feature 

location. Compared to previous interactive approaches, the main 

difference is that the building of the Concerns Graphs is also 

interactive. Therefore, irrelevant source code will not be taken 

into consideration in the building process, and the piece of 

Concern Graphs used for locating a feature can be very small. 

As a result, this approach has a good scalability for large 

systems.  

The main advantage of the interactive approaches is that the 

maintainer using such an approach can just have a vague idea of 

the target feature in the beginning and build up his or her 

knowledge in the process of feature location. However, the 

interactive nature makes these approaches very difficult to be 

highly automatic, and intensive human involvement is required.

The pioneer work of dynamic feature location is Software

Reconnaissance [23][24]. In this approach, carefully designed 

test cases (among which, some are corresponding to a particular 

feature f, and others are not) are executed and the invoked 

computational units for each test case are recorded. Based on 

analyzing these units, four kinds of units regarding feature f can 

be distinguished: the commonly involved units, the potentially

involved units, the indispensably involved units, and the 

uniquely involved units. A similar approach is reported in [26]. 

The main difference is that it can present code that is unique to a 

feature or common to a group of features at different granularity 

levels (i.e. files, functions blocks, lines of code etc.). Eisenbarth 

et al. have published several papers on using concept analysis 

for dynamic feature location (see [10] and [11] etc.). This 

approach uses a concept lattice to represent the execution traces 

recorded in the dynamic execution. Based on the lattice, several 

different relationships between features and computational units 

can be easily recovered.  

The main advantage of the dynamic approaches is that they 

can automatically deal with many features in a batch-like 

manner after the test cases are acquired. However, they usually 

require a large number of test cases, and the design of these test 

cases may be a difficult task. 

A simple empirical comparison of Software Reconnaissance

and the approach in [6] is presented in [25]. The result of this 

comparison shows that Software Reconnaissance is more 

suitable for locating a number of features in a large but 

infrequently changed system, while the approach in [6] is more 

suitable for locating a specific feature under intensive changing. 

2.2. IR-Based Traceability Recovery 
In recent years, the use of information retrieval (IR) in 

recovering traceability between documentation and source code 

has become a focus. Antoniol et al. have published a series of 

papers on recovering code to documentation traceability (see i.e. 

[1] and [2]). In their approach, documentation pages are used as 

documents and summaries of classes in source code are used as 

queries. Two IR models (the probabilistic model [3] pp. 30-34 

and the vector space model [3] pp. 27-30) are used in this 

approach without much difference in terms of performance. In 

[16], Marcus and Maletic use the Latent Semantic Indexing 

(LSI) method [8] [3] (pp. 44-46) (which is based on the vector 

space model) for recovering the documentation-to-code 

traceability. In this approach, source code files without any 

parsing are used as documents, and sections in the 

documentation are used as queries. According to the 

experimental results reported in [16], Marcus and Maletic’s 

approach can to some extent outperform Antoniol et al.’s 

approach. Marcus and Maletic have also used the LSI method to 

define similarity measures between source code elements [15]. 

The traceability between documentation and source code 

recovered by the above two approaches is a kind of links 

between entities with large granularity, which are quite different 

from the entities (i.e. features and computational units) 

discussed in feature location. Therefore, these traceability 

recovery approaches are addressing a different problem other 

than the feature location problem. However, the use of IR does 

provide a means for connecting human-oriented knowledge and 

program-oriented knowledge. This is the starting point of our 

approach.

3. Approach Overview 
In this section, we briefly present the objective of our 

approach and the main idea behind this approach. A similar 

application of this idea can also be found in our previous work 

[28]. 

As our approach is evaluated on a system written in the C 

language, we use the term function instead of computational

unit for presenting our approach. In this paper, we concentrate 

on locating the relevant functions and the specific functions of a 

feature, although other relationships between features and 

functions can also be acquired via a slight extension of our 

approach. In this paper, the specific functions of a feature are 

defined as those functions that are definitely used to implement 

this feature but will not be used by any other features. The 

relevant functions of a feature are defined as all the functions 

that are involved in the implementation of the feature. 

Obviously, the specific function set is a subset of the relevant

function set for every feature. 

The goal of our approach is to solve the feature location 

problem statically. To achieve this goal, the basic idea is to use 

IR as the means to reveal the connections between features and 

functions, as indicated by recent studies on the effectiveness of 

using IR to recover traceability links. Obviously, the potential 

advantage of this idea is that it can save the costs for creating 

and executing test cases in dynamic approaches, and that for 

human involvement in interactive approaches. Like approaches 

to traceability recovery [2] [16], our idea requires that features 
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should be described in natural languages and meaningful 

identifier names should be used in the source code.

Due to the fuzzy matching nature of the IR technology, we 

cannot always acquire an accurate set of relevant functions for 

every feature directly from IR. This means that some irrelevant 

functions may be included due to the trivial description while 

some relevant functions may be excluded due to no 

corresponding descriptions in the features whatever IR method 

is used. As a result, we have to aim at correctly retrieving some 

specific functions for each feature when using IR since the 

specific description of each feature should not be lost. To 

achieve this, we use an IR model to decrease the importance of 

common words related to common functions, and for each 

feature acquire a function list ranked by the extent to which the 

function is specific to the feature. Then, an algorithm is 

involved to set a division point in the list. All functions before 

this division point will be used as the initial specific functions to 

each feature. We call them initial specific functions because 

some supporting specific functions, which are not mentioned in 

the feature descriptions, cannot be revealed through IR, and also 

they might not be completely correct. 

After the initial specific functions for each feature are 

acquired, the next step is to acquire all the relevant functions for 

the feature. Besides, as no information about the call-

relationships between the retrieved functions can be acquired 

from IR, it is also helpful to recover all the calling information. 

In our approach, we use a static representation of the source 

code for both purposes. The representation used in our approach 

is the Branch-Reserving Call Graph (BRCG), an expansion of 

the call graph with branching and sequential information, which 

is originally proposed for discovering use cases in source code 

[17]. This representation will be used to recover these 

relationships, and acquire those relevant functions according to 

the retrieved initial specific functions. Compared to the 

traditional call graph, the branch information in this 

representation can be used for eliminating irrelevant functions 

and refining call-relationships. Using this information, we can 

construct the pseudo execution traces for each feature. After all 

the relevant functions for each feature are determined, we can 

determine all the other relationships between features and 

functions, including the specific function sets that we are mostly 

interested in. 

4. The SNIAFL Approach 
4.1. The Process 

The process of SNIAFL approach is depicted in Fig. 1. There 

are four main steps in the approach. The first step is to acquire 

the initial specific connections between features and functions. 

In this step, we use IR to filter the specific information of the 

features and recover these initial connections. The second step is 

to rank functions against each feature according to the retrieved 

result and choose the initial specific functions for each feature. 

The third step is to acquire the relevant functions and the 

possible pseudo execution traces using the BRCG extracted 

from source code. Based on each feature’s initial specific 

functions, we complement all functions in the paths including 

the initial specific functions to acquire the relevant functions of 

the feature. As the BRCG maintains the branching and 

sequential information of source code, the possible pseudo 

execution traces of these relevant functions can also be acquired 

in the meantime. In the last step, we analyze the relevant 

functions to determine the final specific functions according to 

the definition of specific functions. 

4. Determine Final Specific Functions

2. Acquire Initial Specific Functions

3. Determine Relevant
Functions&Traces1. Acquire Initial Specific Connections between Features and Functions

Retrieve

connections

Feature

description

Function

description

Source codeExtract

function

descriptions

Recovered

connections Prune the BRCG

Final relevant

functions&Traces

Decide initial

specific

functions

Initial

specific

functions

BRCG

Analyze relevant

functions

Final specific

functions

Create the

BRCG

Fig. 1 The Process of SNIAFL Approach 

4.2. Acquiring Initial Specific Connections 

between Features and Functions 
4.2.1. The Vector Space Model 

In our approach, we use the vector space model for indexing 

documents and queries and ranking the results. We introduce the 

vector space model in brief here. Please refer to [3] (pp. 27-30) 

for details. 

The vector space model [19], [20] proposes a framework in 

which partial matching is possible. It treats queries and 

documents as vectors constructed by the index terms. The index 

terms are acquired from the text of queries and documents 

according to some rules (such as ignoring articles, punctuations, 

numbers, etc.). Each index term has different weights in 

different document and query vectors. These term weights are 

ultimately used to compute the degree of similarity between 

each document and each query. Vector (w1,q, w2,q, ... ,wt,q)

represents the query q, in which wi,q is the weight of the ith

index term in the query q, and t is the number of the index 

terms. Vector (w1,j, w2,j, ... ,wt,j) represents the document dj, in 

which wi,j is the weight of the ith index term in the document dj,

and t is the number of the index terms. The vector space model 

proposes to evaluate the degree of similarity of the document dj

with regard to the query q as the correlation. This correlation 

can be quantified by the cosine of the angle between these two 

vectors, which is shown in equation (1). 
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In order to compute the degree of similarity using equation 

(1), we need to specify how the index term weights are 

obtained. In the vector space model, the tf (term frequency) 

factor and the idf (inverse document frequency) factor are 

applied to decide the weights of index terms. The computation 

of these two factors is shown in equations (2) and (3). 
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In equation (2), freqi,j is the raw frequency of the ith index 

term in the document dj (i.e., the number of times the ith index 
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term is mentioned in the text of the document dj); the maximum 

is computed over all index terms which are mentioned in the 

text of the document dj; and fi,j is the normalized frequency of 

the ith index term in document dj.

The computation of inverse document frequency for the ith

index term, idfi, is given by 

i

i
n

N
idf log=                                                                    (3), 

where N is the total number of documents in the system and ni is 

the number of documents in which the ith index term appears. 

The motivation for usage of the idf factor is that terms that 

appear in many documents are not very useful for distinguishing 

a relevant document from a non-relevant one. 

Then, as suggested in [3] (pp. 27-30), the two following 

equations can be used to compute the weights of index terms in 

documents and queries. 

ijiji idffw ×= ,,
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4.2.2. Preparing Queries and Documents 
From the above introduction of the vector space model, we 

know that the nature of the vector space model is to treat the 

query and each document as the vectors and compute the 

similarity between them. tf and idf factors are used to measure 

the weights of index terms of the query and each document. The 

computations of tf and idf factors are based on the statistical 

data of all the documents. For the tf factor, the more 

appearances of one index term in a certain document, the higher 

the weight of this index term in this document. For the idf

factor, the more appearances of one index term in all the 

documents, the less contribution the index term do to judge the 

similarity between the query and the documents. 

As we are aiming at retrieving some specific functions for 

each feature, we can apply this idf factor to filter the specific 

information of the feature descriptions if we treat the features as 

the documents at the IR step. Thus, the common descriptions in 

different features will do less contribution to compute the 

similarity between the features and the functions, and the 

ranking will be mainly based on the specific descriptions in the 

features. Therefore, we treat the feature description set as 

documents, and the function description set as queries in our 

approach.

The set of feature descriptions (document set) can be 

acquired from the requirements documentation or domain 

experts or even users very familiar with the target system. For 

each feature, we will get a paragraph of text as its description. 

Usually, all the descriptions are in a natural language (e.g. 

English). Then each feature description is transformed into a set 

of index terms using the standard practice in IR. That is to say, 

only the nouns and the verbs in the description are considered in 

the transformation, and these words will be normalized to their 

original form (i.e. the single form of nouns and the infinitive 

form of verbs) to be the final index terms. 

The function description set (query set) is acquired from the 

source code as follows. For each function in the source code, we 

extract the set of identifiers associated with the function. The 

identifiers include the name of the function, the names of the 

parameters of the function. As we are aiming at retrieving 

specific connections between features and functions, we do not 

want to incorporate those less specific identifiers from the body 

of the function. As an identifier may not be in the standard form 

of a word, we preprocess the identifiers before we transform 

them into index terms. For example, an identifier in the form of 

several words connected by the symbol ‘_’, or in the form of 

several words with capitalized first letters directly linked 

together, will be separated into several words. That is to say, 

both feature_location and FeatureLocation will be turned into 

feature location. After the preprocessing, the words obtained 

from the identifiers will be transformed into a set of index terms 

using the same rules as mentioned above. Each set is a query in 

the query set. 

4.2.3. Retrieving Initial Connections 
After both the query set and the document set are prepared, 

we use the vector space model for the retrieval. For each query 

in the query set, we will retrieve a subset of documents from the 

document set ranked by the similarity between the query and 

each document in the subset. Therefore we recover all the 

connections between the function and all the features. If there is 

no connection between a function and a feature, the rank value 

will be zero. 

After we have done the above for all the queries in the query 

set, for each function we will have a list of features with 

similarity values. Then we can acquire a list of functions ranked 

by the similarity values for each feature through reorganizing 

the retrieval result. For example, there are n features in the 

feature set F={f1, f2, ...fn} and m functions in the function set 

U={u1, u2, ...um}. The similarity value between fi and uj is Sij

(1≤i≤n, 1≤j≤m). The original retrieval result for function uj is 

{f1, f2, ...fn} ranked by S1j, S2j, ...Snj. The reorganized result for 

feature fi is then {u1, u2, ...um} ranked by Si1, Si2, ...Sim.

4.3. Identifying Initial Specific Functions 
After acquiring the initial connections between features and 

functions considering the specific descriptions in the features, 

we identify the initial specific functions for each feature. In this 

step, for each feature, we sort the list of functions that have a 

connection (where the rank value is larger than zero) with it in 

descending order. We compute the distances between two 

consecutive functions for the function list. We simply use the 

arithmetic differences of the rank values of the functions as the 

distances between them. We use the position where the biggest 

distance appears as our division point to identify the initial 

specific functions. That is to say, the functions before this point 

will be chosen as the initial specific functions, while others not. 

It is obvious that, the functions before this point have much 

closer distances and therefore are more possible to have the 

same nature (i.e. the specific nature here) with the feature. The 

algorithm to determine the division point and choose the initial 

specific functions is depicted in Fig. 2. 

Input: u, m (where u is the functions array with the 

descending order, m is the number of this array) 

Output: S (the specific function set)

Step 1: S ← ∅
Step 2: for i = 2 to m

d[i-1] ← absolute value of (u[i].rankvalue-u[i-1].rankvalue)

Step 3: dmax ← d[1] 

     divisionpoint ← 1 

     for i = 2 to m-1 

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) 

0270-5257/04 $20.00 © 2004 IEEE 



     if(d[i]>dmax)

divisionpoint ← i

Step 4: for i = 1 to divisionpoint

     S ← S∪{u[i]} 

Fig. 2 Algorithm to Determine the Division Point and 

Choose the Initial Specific Functions 

The input is the descending function list for one feature with 

their rank values and the number of these functions. The output 

is the initial specific functions to the feature. 

The first step is to initialize the output initial specific 

function set. Step 2 calculates all distances between two 

consecutive functions sorted in descending order. In the third 

step, for all acquired distances, the biggest distance is chosen 

and therefore the division point is determined. In the final step, 

all functions before the division point will be chosen as the 

initial specific functions in our approach. Obviously, the worst 

case time complexity of this algorithm is O(m), where m is the 

number of functions. 

4.4. Determining Relevant and Specific Functions 
After the initial specific functions are identified, we begin to 

determine the relevant and specific functions. The basis of this 

step is obtaining the BRCG from the source code. We traverse 

the BRCG and determine the relevant functions according to the 

initial specific functions, and finally calculate the specific 

functions.

4.4.1. The BRCG 
The Branch-Reserving Call Graph (BRCG) is firstly 

introduced in [17] for discovering use cases. This structure is a 

representation of the source code by including branch 

information into the traditional call graph. In this structure, both 

branch statements and function-call statements are considered. 

For the simplicity, the if-statements, the case-statements and all 

the loop statements are all treated as branch statements. 

Each node in the BRCG is a function, a branch statement, a 

branch in a branch statement, or a return statement. 

Furthermore, the loop statement is simply regarded as a two-

branch condition statement; one branch does not have any 

nodes, and the other has all the nodes belonging to the loop. The 

relationships between the nodes are the sequential relationships 

and the branching relationships. Therefore, the BRCG can be 

formally defined as follows: the BRCG is a triple BRCG=<N, S, 

B>, where: 

i) N is the set of functions, branch statements, branches in 

branch statements, and return statements; 

ii) S is the set of sequential relationships, where for ∀<n1,

n2>∈S, n1∈N and n2∈N;

iii) B is the set of branching relationships, where for ∀<n1,

n2>∈B, n1∈N and n2∈N; and 

iv) for ∀<n1, n2>∈S and ∀n3∈N, <n1, n3>∉B, and for ∀<n1,

n2>∈B and ∀n3∈N, <n1, n3>∉S.

The first three conditions define that the BRCG is a graph 

with two kinds of relationships. The fourth condition defines 

that a node connects to its sub-nodes only through one kind of 

relationships. An example of the BRCG is depicted in the 

following two figures. Fig. 3 depicts the source code of a 

function, and Fig. 4 depicts the corresponding BRCG. 

The construction of the BRCG for the whole system is based 

on the sub-BRCGs of all the functions. The entire BRCG of a 

system can be acquired through connecting all the sub-BRCGs 

for the functions into an entire graph by linking the root node of 

each sub-BRCG with the nodes of the same signature in other 

sub-BRCGs. Please refer to [17] for the algorithm to build the 

BRCG for each function from source code. In our approach, we 

do not include the edges of recursive function calls in the BRCG. 

void foo() 
{ f1(); 
 if(condition) 
 { f2(); 
  return; 
 } 
 else 
 { while(condition) 
  { f3() 
   f4(); 
  } 
  f5(); 
 } 
 f6(); 

}

Fig. 3 Sample Code for BRCG 

foo

B3

f5BSRSf2

B2B1

f1 f6BS

f3

B4

f4

sequential

sequential sequential

sequential

branching

branching

Fig. 4 A Sample BRCG 

4.4.2. Acquiring Relevant Functions using BRCG 
Since the specific functions of a feature mean that the 

implementation of this feature will definitely invoke the 

functions and the implementation of other features will not 

invoke them, it is very likely that the branches that will not 

invoke any of such functions are not relevant to the feature. 

Therefore, we can prune some branches according to the non-

existence of the specific functions.  

For example, if one branch statement BSi has two branches 

BSi_b1 and BSi_b2, and BSi_b1 includes some specific functions 

while BSi_b2 not, the branch BSi_b2 will be pruned according to 

the definition of specific functions. Furthermore, if the branch 

statement BSi lies in one of the branches (BSj_b1) of another 

branch statement BSj, the specific nature of the BSi_b1 can be 

propagate to BSj_b1. And the propagation ends at the root node 

of the BRCG. This is the main idea we use to prune BRCG. 

Obviously, all the functions left in the pruned BRCG should be 

the relevant functions to the feature. The algorithm for pruning 

the BRCG is depicted in Fig. 5. 

The input of this algorithm is the BRCG with root node n,

the set of functions F that includes all the appearances of the 
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initial specific functions and the number of this set m. The 

output is the pruned BRCG. 

Input: a BRCG with the root node n, the existences set F of the 

initial specific functions and the number of the set m.

Output: the pruned BRCG. 

Step 1: 

for each existence fi in set F (i = 1, 2, ..., m)

begin 

currentnode = fi

while (currentnode ≠ n)

begin 

if currentnode’s parent node is a branch 

begin 

 create a specific relation between this 

branch and its branch statement 

currentnode=currentnode’s parent node’s 

parent node 

end 

else if currentnode’s parent node is a function 

currentnode=currentnode’s parent node 

end 

end 

Step 2: traverse the BRCG marked by specific relation from n

currentnode=n

if currentnode is a leaf node 

 stop

if currentnode is a function 

 traverse all its sub nodes as step 2 

if currentnode is a branch statement 

      begin

if there is at least one specific branch of it 

     prune all the non-specific branches from the BRCG 

 traverse all sub nodes of all the rest branches as step 2 

end 

Step 3:return n

Fig. 5 Algorithm to Prune the BRCG According to the 

Initial Specific Functions 

This algorithm includes two main steps. The first step marks 

all branches where the initial specific functions are. The process 

of propagating the specific branches ends at the root node of the 

BRCG. The second step prunes those unmarked branches that 

have the same branch statement with those marked branches. 

The definitely used nodes and their sub-nodes will always be 

maintained in the pruned BRCG. This step is recursive, and it 

traverses the BRCG from root node with depth first strategy. 

When the node is a branch statement and there is at least one 

specific branch of it, all the non-specific branches will be 

deleted. Obviously, if there is more than one specific branch in a 

branch statement, all of them will be maintained in the BRCG. 

All functions existing in the pruned BRCG are the relevant 

functions of the feature. The worst-case time complexity of this 

algorithm is linear to the number of nodes in BRCG, which is 

then proportional to the size of the source code. 

4.4.3. Determining Specific Functions 
After we acquire all the relevant functions of each feature 

from the pruned BRCG, we can determine all the other 

relationships between features and functions in the same way a 

dynamic approach deals with the recorded functions invoked for 

each feature. Due to the space limit, we only present the 

algorithm for calculating the final specific functions for each 

feature, which is depicted in Fig. 6. This algorithm is based on 

the relevant relationships between the features and the 

functions. We construct a two-dimension array to store this 

relation. The rows denote all the features and the columns 

denote all the functions. In the algorithm, V is the two-

dimension array. V[i, j] equals 1 if the jth function is the 

relevant function to the ith feature, otherwise 0. 

Input: V, n, m (where V is the relevant array, n and m are the 

number of rows and columns respectively), 

Output: S (the specific array) 

for i = 1 to n

for j = 1 to m

if (V[i, j]) 

begin 

isSpecific←true

for k = 1 to n

if (V[k, j] and k≠i)

isSpecific←false

if (isSpecific)

S[i, j] = 1 

else 

S[i, j] = 0 

end 

Fig.6 Algorithm to Determine the Specific Functions 

The idea of this algorithm is to check each feature like this: 

1) It finds the first function that is relevant to this feature. 2) It 

checks whether this function is also relevant to another feature. 

3) If no, it marks the function to the feature with 1 in the output 

array, and otherwise 0. 4) It finds another relevant function, and 

does the same. 5) After all the functions are processed, the 

specific functions for one feature can be acquired. The worst 

case time complexity is O(n2m).

4.5. Recovering Relationships between Functions 
As the BRCG includes branching and sequential 

information, we can generate each possible execution trace by 

traversing the graph. For the relevant functions acquired in the 

pruned BRCG, we use the following algorithm to generate the 

possible execution traces. We call these traces pseudo execution 

traces since we do not acquire these traces by real execution and 

there are some simplifications in the BRCG (such as simplifying 

loop statements as branch statements simply). Fig.7 shows the 

algorithm. 

Input:  a BRCG, a root node n in the BRCG 

Output: a set of traces 

Step 1:

if n is a leaf node and not a return statement 

return{“enter_”+n.label+ “-”+“exit_”+n.label}

if n is a return statement

return{“return”}

Step 2: S=∅
Step 3: for each ni as a sub-node of n

generate the traces of ni into Si

Step 4: if the relationships between n and its sub-nodes are 

sequential

begin 

if n represents a function

U={“enter_”+n.label+ “-”} 

else 

U={“”} 

for each Si
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begin 

T:= ∅
for each trace t in Si

for each s in U and s does not end with 

“return”

T:= T∪{s+t}

U:=T

end 

if n represents a function 

for each s in U

S:=S∪{s+“-exit_”+n.label}

else 

S:=U

end 

Step 5: if the relationships between n and its sub-nodes are 

branching

for each Si

S:=S ∪ Si

Step 6: return S

Fig. 7 Algorithm to Generate Pseudo Execution Traces 

This algorithm is a recursive algorithm. During the 

generation, we only generate trace information for non-leaf 

nodes that represent functions and all the leaf nodes.

5. An Experimental Study 
In our experimentation we used a software system of GNU, 

named DC [13] (which is distributed with the BC package). We 

acquired the complete source code and the requirements 

specification documentation of the DC system, which contains 

49 functional requirements and 74 functions. Among the 49 

features, there are 21 primitive features, each of which 

implements a single functionality of the system. The others are 

composite features. Their location can be acquired through the 

analysis of all the locations of their component features. 

For example, a primitive requirement which implements the 

binary operation “add” is described in DC’s requirements 

specification as “Pops two values off the stack, adds them, and 

pushes the result”. Several representative relevant functions of 

this requirement are “dc_push, dc_binop, dc_pop, dc_add”, and 

the specific function is “dc_add”. 

5.1. Experimental Method 
To apply our method for the analysis of this system, we used 

SMART [20] as the tool in the IR step. SMART is an 

implementation of the vector space model of IR proposed by 

Salton back in the 60’s. The primary purpose of SMART is to 

provide a framework to conduct IR research. Therefore, 

SMART can be viewed as the standard version of indexing, 

retrieval and evaluation for the vector space model. 

For all the 21 features, we applied SNIAFL to get the 

relevant functions, the possible pseudo execution traces and the 

specific functions. For each feature, we got three groups of data 

by our approach: one group is the initial specific functions and 

the final specific functions of each feature; the second group is 

the relevant functions acquired by the BRCG using the initial 

specific functions; and third are the pseudo execution traces of 

these relevant functions constructed by the BRCG. 

To evaluate SNIAFL, we manually analyzed the DC system, 

and for each of the 21 features, we recorded the genuine 

relevant functions, the genuine execution traces for them and the 

genuine specific functions. As a comparison, we also designed 

test cases for each feature to execute an instrumented version of 

the DC system to get the dynamic results. As dynamic 

approaches are heavily dependent on the quality of the test 

cases, there will not be complete and/or precise results if the test 

cases are not sufficient or well designed. Therefore, for each 

feature, we designed two groups of test cases to imitate the test 

cases by an experienced maintainer and those by a common 

maintaining engineer. Each test case exactly invoked one 

execution trace, the functions invoked by the test cases for a 

feature were recorded as its relevant functions, and all the 

relevant function sets were used to calculate the specific 

functions for each feature in a way similar to the algorithm 

depicted in Fig. 6. To confirm the necessity of using the 

function to feature retrieving strategy and the BRCG in our 

approach, we also recorded the retrieval results of using features 

as queries and functions as documents as the relevant functions. 

We used 0.1 as the threshold to choose functions with higher 

similarity as the relevant functions. 

Therefore, SNIAFL was evaluated from three aspects: the 

relevant functions, the execution traces, and the specific 

functions. For the relevant functions, we compared the results of 

SNIAFL with the results of the dynamic approach, the results 

retrieved directly from the SMART using features as queries 

and functions as documents, and the genuine results. We used 

precision and recall to do the comparison. Precision is the ratio 

of the number of correct functions acquired for a given feature 

over the total number of functions acquired for that feature. 

Recall is the ratio of the number of correct functions acquired 

over the total number of accurate relevant functions. For the 

execution traces, we compared the results of SNIAFL with those 

of the dynamic approach and the genuine results. For the 

specific functions, we compared the initial results, the final 

results and the results of the dynamic approach with the genuine 

results.

5.2. Results on Acquiring Relevant Functions 
5.2.1. Quantitative Results 

We calculate the precision and recall of the relevant 

functions acquired by the three approaches. Table 1 shows the 

results of the three approaches for each feature. Since the 

functions invoked by the test cases for any feature should be 

relevant to the feature, the precision of the dynamic approach 

was always 100 percent. Therefore, we do not list it in the table. 

Table 1. The Recall and Precision of Relevant Functions of Three Approaches 

IR Only Recall of Dynamic Approach Our Approach 
No. 

Recall Precision Insufficient Well-designed Recall Precision 

1 12.50% 14.29% 100% 100% 100% 100% 

2 14.29% 33.33% 100% 100% 100% 100% 

3 6.67% 22.22% 63.33% 90 % 96.67% 96.67% 

4 5.71% 22.22% 68.57% 91.43% 100% 94.59% 

5 14.29% 31.25% 71.43% 91.43% 100% 94.59% 
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6 8.57% 60 % 71.43% 91.43% 100% 94.59% 

7 17.14% 37.5% 71.43% 91.43% 100% 94.59% 

8 11.43% 33.33% 71.43% 91.43% 100% 94.59% 

9 8.57% 42.86% 71.43% 91.43% 94.29% 89.19% 

10 11.43% 36.36% 71.43% 91.43% 100% 94.59% 

11 8.57% 30 % 71.43% 91.43% 100% 94.59% 

12 14.29% 35.71% 71.43% 91.43% 100% 94.59% 

13 11.76% 36.36% 70.59% 91.18% 100% 94.44% 

14 3.03% 14.29% 66.67% 90.91% 100% 94.29% 

15 15.15% 38.46% 72.73% 90.91% 100% 84.62% 

16 11.76% 36.36% 67.65% 91.18% 100% 89.47% 

17 8.82% 27.27% 76.47% 91.18% 100% 94.44% 

18 17.65% 46.15% 67.65% 91.18% 100% 89.47% 

19 14.71% 38.46% 67.65% 91.18% 100% 89.47% 

20 12.50% 26.67% 65.62% 90.63% 100% 94.12% 

21 3.70% 20.00 % 62.96% 88.89% 100% 37.5% 

Avg. 11.07% 32.53% 72.44% 91.91% 99.57% 90.97% 

For the results of the IR method, neither precision nor recall 

is good enough. The average recall is 11.07%, the worst is 

3.03%, and the best is only 17.65%. The average precision of 

the IR method is 32.53%, the worst is 14.29%, and the best is 

60%.

The dynamic approach is much better, but the pre-condition 

is that the test cases are well designed. In our experiment, the 

results on the two groups of test cases can confirm this. The 

recall of the dynamic approach with the insufficient test cases is 

much lower than that with the well-designed test cases. On 

average, the recall of the insufficient test cases is 72.44%. The 

well-designed test cases have a higher recall (91.91%), but still 

cannot reach 100 percent. This is because some unusual error 

handling branches are not invoked by those test cases. Our 

approach can avoid this weakness. 

For SNIAFL, recall is 99.57% and precision is 90.97% on 

average. The recall is higher than the dynamic approach and 

close to 100 percent. The average result confirms the 

effectiveness of SNIAFL to acquire the relevant functions to 

some extent. However, we still have an exceptionally bad case 

in which the precision is only 37.5%. 

5.2.2. Qualitative Analysis 
The bad performance of IR only approach is due to the 

imprecise nature of this technology. For the low recall, it is 

because some relevant functions of a feature do not have 

identifiers representing the content in the feature description. 

Therefore, they cannot be acquired by the IR only method. For 

the not high enough precision, the explanation lies in the feature 

to function retrieval strategy. Some commonly used words in 

the description of a feature will lead to retrieve all the functions 

having some of those words as identifiers. The dynamic 

approach is much more precise. Its only disadvantage is the 

dependence on the quality of test cases. 

The good recall of SNIAFL lies in two factors. Firstly, the 

static nature of SNIAFL causes it to take more than necessary 

functions as relevant. Secondly, the function to feature retrieval 

strategy should be quite effective, and thus good initial specific 

functions are usually selected. However, the imprecision of the 

initial specific functions results in that we cannot reach the 

completely correct result. The precision of our approach is not 

so good as the recall. This is due to the conservative nature of 

the static approach that takes all possibility into consideration. 

Especially in the worst case the precision is down to 37.5%. In 

this case, the semantic information of the program does much 

effect to the implement of this feature. Our approach cannot get 

such information and therefore collects some functions in such 

branches that are syntactically relevant but semantically 

irrelevant.

5.3. Results on Acquiring Function Relationships 
5.3.1. Quantitative Results 

Due to the simplification of the loop statement, the pseudo 

execution traces acquired from BRCG are not exactly same with 

the traces from dynamic execution in some cases. In these cases 

in our experiment, we still treat the acquired traces as the correct 

one to be calculated. 

Table 2 shows the execution traces acquired by SNIAFL, the 

dynamic approach and the genuine traces to each feature.

Table 2. Execution Traces 

Dynamic Approach Our Approach 
No

Insufficient 
Well-

designed
Generated Correct 

Genuine

1 1 1 3 2 2 

2 1 1 1 1 1 

3 6 24 756 0 42 

4 6 24 756 36 36 

5 3 12 504 30 30 

6 3 12 504 30 30 

7 3 12 504 30 30 

8 3 12 504 30 30 

9 3 12 504 0 30 

10 3 12 504 30 30 

11 3 12 504 30 30 

12 3 12 504 30 30 

13 3 12 252 27 27 

14 6 24 756 36 36 

15 6 24 2106 42 42 

16 6 24 1008 48 48 

17 3 12 504 0 30 

18 3 12 1008 18 18 

19 3 12 1008 30 30 

20 3 12 252 18 18 

21 3 12 >10000 18 18 
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For the dynamic approach, each test case invokes exactly 

one execution trace. It is obvious that the quality of test cases 

determines the result. For the well-designed test cases, there are 

still some traces lost, while for the insufficient test cases, more 

traces are lost. Except three features, SNIAFL can acquire all 

the genuine traces. The main problem with this approach is that 

there are too many traces generated. This is due to the static 

nature of our approach. 

5.3.2. Qualitative Analysis 
To be honest, our approach is not quite effective in 

acquiring execution traces for each feature. However, our 

approach can reveal some unusual traces for most features. This 

might be helpful in some special cases. To reduce the traces 

generated by our approach, we need to apply more restrictive 

static analysis methods to get rid of some wrongly generated 

traces. 

5.4. Results on Acquiring Specific Functions 
5.4.1. Quantitative Results 

Table 3 shows the results of initial and final specific 

functions of our approach and the results of the dynamic 

approach with insufficient and well-designed test cases in the 

experimentation. Due to the space limit, we use a concise way 

for presenting the results. 

Table 3. Specific Functions 

Totally 

correct

Totally 

wrong

Partially 

wrong

Correct

ratio

Initial  14 3 4 66.67% 

Final  18 3 0 85.71% 

Insufficient 20 0 1 95.24% 

Well-designed 21 0 0 100% 

Of all the 21 features in our experimentation, 66.67% of 

features acquire the completely correct specific functions during 

the IR step. Despite the imprecise nature of IR, the experimental 

results show that our approach is effective to some extent. 

Furthermore, we acquire the 85.71% correct ratio of the specific 

functions after analyzing the relevant functions. This ratio is 

quite acceptable practically. 

For dynamic approach, the correct ratio of the insufficient test 

cases is 95.24%, while the well-designed test cases 100%.

5.4.2. Qualitative Analysis
Due to the imprecise nature of IR technology, the 

effectiveness of the initial specific functions reflects the 

effectiveness of our retrieval strategy. We use features as 

documents and functions as queries to avoid commonly used 

functions being very similar to any feature. The algorithm for 

selecting initial specific functions will allow only very similar 

functions to be selected.

For the final specific functions, we analyze the relevant 

functions according to the definition of specific functions. This 

step is only effective to those partially wrong initial specific 

functions. The explanation is that we can eliminate the non-

specific functions from the partially wrong initial specific 

functions and complement those supporting ones, and for those 

totally wrong, we can do nothing at this stage. 

For the insufficient test cases of the dynamic approach, 

some non-specific functions are picked out due to the 

insufficient execution traces. 

5.5. Threats to Validity 
The main threat to validity is to what extent the 

experimented system is representative of all the possible target 

systems in practice. Although DC is a real world system for 

various versions of UNIX and Linux, its size is still small 

compared to a typical system in practice. This threat can be 

reduced via experimenting on more and larger systems. Another 

threat is the test cases used for dynamic feature location in the 

comparison. As we are not professional testers, we cannot 

ensure that the well-designed test cases are still so in the eyes of 

professional testers. However, this threat may not be very 

effective in the experiment because DC is quite a simple system. 

Therefore, it is quite easy for non-professional testers to create 

well-designed test cases. 

6. Discussion 
6.1. Automatic vs. Interactive 

Compared to previous static approaches to feature location, 

a distinct characteristic of our approach is the ease of 

automation. This is achieved by conceding the following price. 

A maintainer using our approach has to describe and retrieve all 

the features before locating a specific feature. This may cause 

some inconvenience in practice. Furthermore, the non-

interactive way of our approach will prevent a maintainer from 

building up the knowledge about the feature in the locating 

process. However, we think the gaining from the automatic 

nature can offset the price by saving much human involvement. 

The static representation used in our approach is also very 

simple compared to other representations used in static 

approaches. However, this representation is suitable for 

computer processing and there is no much imprecision 

incorporated when abstracting it from the source code. 

6.2. IR vs. Test Cases
Compared to dynamic approaches, a clear difference of our 

approach is the use of IR instead of test cases as the driving 

force. The advantage of using test cases is that the more test 

cases are involved, the more precise the result is, and there are 

no false positive relevant functions if no test case is wrongly 

credited to a feature. In our approach, we have to concede the 

imprecise nature of IR, and therefore incorporate errors in the 

first place. However, our approach can save the cost of 

designing and executing so many test cases. 

6.3. Granularity
The main weakness of our approach is the lack of flexibility 

of choosing granularity. The way of using IR to set up 

connections between features and functions determines that the 

granularity has to be at the function level. There are 

circumstances that feature implementations should be 

represented at the level of fragments of functions or even the 

statement level. As we cannot abstract specific descriptions for 

entities smaller than functions, it is difficult for our approach to 

support finer granularity. For many of other approaches, there is 

much more flexibility for choosing functions, branches or 

statements as the basic computational units. 

7. Conclusions and Future Work 
In this paper, we have proposed a static and non-interactive 

approach to locating relevant and specific functions for all the 

features. The starting point of our approach is to locate some 

initial specific functions to each of features through IR. Based 

on the initial specific functions, we recover all relevant 

functions through navigating a static representation of the code 

named BRCG using some algorithms. Due to the characteristics 

of the BRCG, we also acquire the pseudo execution traces for 

each feature. 
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An experimental study is reported in this paper also. We 

evaluate our approach from three aspects respectively – the 

relevant functions, the pseudo execution traces, and the specific 

functions. In the experiment, our approach works well on 

average, especially for specific functions and the relevant 

functions. For the recovered pseudo execution traces, there are 

too much irrelevant traces generated by our approach. However, 

our approach does find some unusual traces. In general, despite 

of this weakness, the overall effectiveness of our approach for 

this tested program is obvious.  

In the future, we will focus on doing experiments on more 

software systems to further evaluate the feasibility and usability 

of our approach. To apply IR more effectively, we will exploit 

more sophisticated preprocessing mechanisms to deal with 

identifiers using abbreviations and/or acronyms. We will also 

look at possible ways for reducing the number of pseudo 

execution traces generated by our approach. 
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