

Source Code Retrieval for Bug Localization using
Latent Dirichlet Allocation

Stacy K. Lukins
Univ. of Alabama in Huntsville

slukins@cs.uah.edu

Nicholas A. Kraft
Univ. of Alabama
nkraft@cs.ua.edu

Letha H. Etzkorn
Univ. of Alabama in Huntsville

letzkorn@cs.uah.edu

Abstract

In bug localization, a developer uses information
about a bug to locate the portion of the source code to
modify to correct the bug. Developers expend
considerable effort performing this task. Some recent
static techniques for automatic bug localization have
been built around modern information retrieval (IR)
models such as latent semantic indexing (LSI);
however, latent Dirichlet allocation (LDA), a modular
and extensible IR model, has significant advantages
over both LSI and probabilistic LSI (pLSI). In this
paper we present an LDA-based static technique for
automating bug localization. We describe the
implementation of our technique and three case
studies that measure its effectiveness. For two of the
case studies we directly compare our results to those
from similar studies performed using LSI. The results
demonstrate our LDA-based technique performs at
least as well as the LSI-based techniques for all bugs
and performs better, often significantly so, than the
LSI-based techniques for most bugs.

1. Introduction

Software aging, documentation deficiency, and
developer mobility can make software difficult to
understand. Because understanding is involved in fifty
to ninety percent of the software maintenance effort
[26], these factors can slow software maintenance and
as a result increase maintenance costs. To help curb
these costs, many recent research efforts have focused
on (partially or fully) automating software
maintenance tasks.

Bug localization is a software maintenance task in
which a developer uses information about a bug
present in a software system to locate the portion of
the source code that must be modified to correct the
bug. Due to the size and complexity of modern
software, effectively automating this task can reduce
maintenance costs by reducing developer effort.

Techniques for automating bug localization take
as input information about a subject software system
and produce as output a list of entities such as classes,
methods, or statements. Static bug localization
techniques gather information from the source code
(or a model of the code), whereas dynamic techniques
gather information from execution traces of the
system. Static techniques have some advantages over
dynamic techniques: static techniques do not require a
working subject software system; thus, they can be
applied at any stage of the software development or
maintenance processes. Also, unlike most dynamic
techniques, static techniques do not require a test case
that triggers the bug.

Some recent static techniques for automating bug
localization have been built around modern
information retrieval (IR) models such as latent
semantic indexing (LSI) [21][22][28] and its
probabilistic extension pLSI [11]. In this paper we
describe a static technique for automating bug
localization that is based on another IR model, latent
Dirichlet allocation (LDA), whose properties, which
include modularity and extensibility, provide
advantages over both LSI and pLSI. LDA has
previously been applied to mining concepts from
source code [17][23] but not to automating bug
localization. We provide three case studies that
examine whether the advantages of LDA extend to
source code retrieval for bug localization. Our results
demonstrate the promise of our LDA-based technique
for automating bug localization.

2. Background

We begin this section by describing the
application of information retrieval (IR) to source code
(source code retrieval). We next compare and contrast
three information retrieval models: latent semantic
indexing (LSI), probabilistic latent semantic indexing
(pLSI), and latent Dirichlet allocation (LDA). Finally,
we discuss static techniques for bug localization.

2008 15th Working Conference on Reverse Engineering

1095-1350/08 $25.00 © 2008 IEEE

DOI 10.1109/WCRE.2008.33

155

2008 15th Working Conference on Reverse Engineering

1095-1350/08 $25.00 © 2008 IEEE

DOI 10.1109/WCRE.2008.33

155

2008 15th Working Conference on Reverse Engineering

1095-1350/08 $25.00 © 2008 IEEE

DOI 10.1109/WCRE.2008.33

155

2008 15th Working Conference on Reverse Engineering

1095-1350/08 $25.00 © 2008 IEEE

DOI 10.1109/WCRE.2008.33

155

2008 15th Working Conference on Reverse Engineering

1095-1350/08 $25.00 © 2008 IEEE

DOI 10.1109/WCRE.2008.33

155

2.1. Source Code Retrieval

Some recent source code retrieval techniques
operate on models of the source code that are
constructed from semantic information embedded in
the code, including identifiers and comments, and
serve as the “documents”' that are provided as input to
an IR technique. An individual document is
constructed from an element of the source code such
as a package, file, class, or method. The element used
to partition the documents determines the granularity
of the results returned by the IR technique in response
to a user query. The results are a ranked list of
documents; the rank of a document is calculated as the
similarity between the document and the user query.

2.2. Information Retrieval Models

Latent semantic indexing (LSI) is the application
of latent semantic analysis (LSA) to document
indexing and retrieval [4] and is the focus of much
recent work on source code retrieval [22][28][29]. LSI
is based on the vector space model, an algebraic model
that represents text documents as vectors of terms, and
represents the relationships among the terms and
documents in a collection as a term-document co-
occurrence matrix where a row in the matrix is a
vector that corresponds to a term and gives the relation
to each document and a column in the matrix is a
vector that corresponds to a document and gives the
relation to each term. LSI uses singular value
decomposition (SVD) to reduce the co-occurrence
matrix; this reduction shrinks the search space and
eliminates noise in the document representation while
retaining the semantic meanings of the actual
documents. The reduced co-occurrence matrix
encodes a concept space, and similarity between two
documents in the concept space is shown by
calculating the cosine of the angle between their
vectors [3]. To compare a user query to the
documents, the user query is transformed into a
document in the concept space before comparing it to
the other documents.

The results returned by LSI can be difficult to
interpret, because they are expressed using a numeric
spatial representation. In addition, while LSI
represents synonymy, terms with similar meaning, it
does not do well when representing polysemy, terms
with multiple meanings. To address these (and other)
shortcomings of LSI, Hofmann introduced
probabilistic latent semantic indexing (pLSI), a
generative topic model with a strong foundation in
statistics [11]. In pLSI each term in a document is
modeled as a mixture over a set of multinomial
random variables that can be interpreted as topics and

each document is modeled as a probability distribution
on a fixed set of topics [2]. Studies comparing LSI and
pLSI have shown that pLSI has significant advantages
over LSI [2][11].

While pLSI provides improvements over LSI, it
also introduces new problems. The number of
parameters in the pLSI model grows linearly with the
number of documents in the collection; thus, pLSI is
susceptible to overfitting [8]. In addition, pLSI is not
able to predict appropriate topic distributions for new
documents, because it is a generative model of the
documents in the collection on which it was estimated
and hence must choose from the topic distributions
generated for those training documents. Thus, pLSI
does not perform well when predicting new documents
[2][34]. Girolami and Kaban have shown that these
deficiencies can be resolved by considering pLSI
within the framework of latent Dirichlet allocation
(LDA) [8].

Latent Dirichlet allocation (LDA) is a
probabilistic and fully generative topic model that is
used to extract the latent, or hidden, topics present in a
collection of documents and to model each document
as a finite mixture over the set of topics [2][8]. Each
topic in this set is a probability distribution over the
set of terms that make up the vocabulary of the
document collection. In LDA, similarity between a
document di and a query Q is computed as the
conditional probability of the query given the
document:

Sim(Q,di) = P(Q | di) = P(qk | di)
qk ∈Q
∏

where qk is the kth word in the query. Thus, a
document is relevant to a query if it has a high
probability of generating the words in the query [33].

Like LSI and pLSI, LDA represents synonymy;
however, pLSI and LDA both differ from LSI in their
ability to better represent polysemy and to produce
immediately interpretable results. In the results
returned by LDA, the most likely terms in each
topic⎯the topics with the highest probability—can be
examined to determine the likely meaning of the topic.
Table 1 lists the set of terms and associated
probabilities that constitute a topic, Topic 0, which
was automatically generated by an LDA analysis of
Mozilla [25]. The set of terms comprises the ten terms
with the highest probability of belonging to Topic 0.
One can immediately interpret the results and
determine that Topic 0 is related to printing a page of
data. This is an improvement over LSI; though LSI
has been used to extract and label topics [15], it cannot
do so directly or in isolation.

LDA retains the advantages of pLSI over LSI and
also provides improvements over pLSI. However,

156156156156156

LDA is intractable for direct computation, so
approximation techniques are required [2][34]. Such
techniques include variational methods [2],
expectation propagation [24], and Gibbs sampling
[9][33], which is a Markov chain Monte Carlo method
for estimation.

2.3. Bug Localization

Techniques for automating bug localization differ
in how they gather information about the subject
software system and in how they analyze that
information. Static techniques gather information from
the source code directly or from a model of the code.

IR-based static techniques aim to identify the
elements of the software system that need to be
modified to correct a bug. Such techniques do not
attempt to identify every element of the software
system that must be fixed. Instead, they aim to identify
a starting point from which correction of the bug can
be undertaken. Many bug fixes do not relate directly to
the bug itself, but rather are the result of the impact of
the bug on the other elements of the software system.
These additional fixes are considered to be a concern
of impact analysis.

Because we are not looking for all elements of the
software system relevant to a bug, precision and
recall—measures commonly used to determine the
effectiveness of IR techniques [10]—are not as useful
when applied to bug localization. The most common
measure used to determine the accuracy of IR-based
static techniques is the rank of the first relevant source
element returned by the technique. This indicates the
number of elements that the programmer must
examine (if following the rankings) before reaching an
element that actually needs to be corrected.

3. Previous Work

LSI has been applied to a number of applications
of source code retrieval such as concept and feature
location [21][22][28][29] and clustering [15]. In

several of these studies, the LSI-based approaches are
compared to methods utilizing other static techniques
for source code retrieval, such as search on
dependency graphs and regular expression pattern
matching utilities, and show improvement over these
other techniques [21][22].

The earlier studies on LSI suggest that combining
multiple techniques for source code retrieval is likely
to perform better than any one technique alone
[21][22]. In fact, in most later studies, LSI was used in
conjunction with another method. For example, the
study in [15] uses traditional clustering techniques in
combination with LSI to derive what the authors refer
to as semantic clusters. In addition, the studies in
[28][29] find that LSI performs much better when
combined with a dynamic approach.

Several studies have examined the use of LSI for
bug localization [18][28]-[30]. The largest number of
bugs are examined in [29], which presents an approach
to the bug localization problem using LSI combined
with a dynamic technique called Scenario-based
Probabilistic Ranking (SPR). The authors present the
results of the combined approach as well as the results
of the techniques used separately. Because this paper’s
focus is static techniques for bug localization, we are
specifically interested in the LSI results.

In these studies, based on the bug description, the
user formulated a query for LSI search and two
execution scenarios for SPR, one which exercises the
bug and one which does not. Execution of the queries
resulted in a list of methods, ranked by similarity to
the query. The rank of the first truly relevant method,
a method actually fixed as a result of the bug, was
presented and used to measure effectiveness.

Results using LSI alone were varied for the bugs
analyzed. These results are presented in Section 5.2
and 5.3 and compared to the approach presented in
this paper. The combined approach performed well for
bugs analyzed, with the first relevant method listed in
the top six results returned for each bug. The authors
conclude that LSI alone is not an effective method for
bug localization [29]. For both LSI and the combined
approach, so few bugs in each version of the software
system were examined—at most three in any one
version of the software systems—that it remains
unclear how the method would perform across all bugs
in a software system.

To our knowledge, LDA has not previously been
applied to the bug localization task. However, it has
been applied to source code retrieval in the context of
topic mining. Linstead et al. conducted an experiment
using LDA to mine concepts from source code [17].
The authors sought to demonstrate the effectiveness of
LDA in automatically extracting concepts, in the form
of topics, from source code. The study involved the

Table 1: Topic extracted from Mozilla

Topic 0
set
str

print
setup

prt
page

preview
engine

pm
footer

0.474086
0.267139
0.145522
0.017282
0.011658
0.009856
0.007720
0.005232
0.004879
0.003997

157157157157157

analysis of 1,555 Java projects from SourceForge and
Apache. Results indicated the LDA approach
produced functional and easily interpretable topics.
Maskeri et al. used LDA to automatically mine
business topics from the source code of the Apache
and Petstore software systems [23]. Their analysis was
performed at the file level of granularity, and topics
were labeled manually. Results indicated the approach
was able to successfully discover some, but not all, of
the domain topics of the system.

4. LDA-Based Approach to Bug
Localization

To perform LDA-based bug localization on a
given version of a software system, first an LDA
model of the source code is built. Then, the created
model is queried as often as necessary to localize bugs
existing in that version. The following sections
describe the tasks involved in creating and querying an
LDA model for a given software build.

4.1. Construct an LDA model

Two steps are necessary to construct an LDA
model of a software system: (1) build a document
collection from the source code, and (2) perform an
LDA analysis on the document collection. These steps
are detailed below and illustrated in Figure 1.

Step 1: Build a document collection from the
source code. Extract semantic information, such as
comments and identifiers, from each source code
element at the desired level of granularity (e.g.,
package, class, method). Preprocess the semantic
information as desired before writing it to the
document collection, e.g., perform stemming and
remove stop words. Store the preprocessed data
extracted from each source element as a separate
document in the document collection.

To automate Step 1, we created two NetBeans
plug-ins: One to analyze Java code and one to analyze
C++. Since the experiments in this paper are at the
method level of granularity, each document represents
one method of the source code. We chose to extract
string-literals in addition to comments and identifiers,
as they are found in error messages and likely to be
included in a bug description. Multi-word identifiers
are split into separate words based on common coding
practices, e.g., an identifier printFile would be split
into the terms print and file. In addition, stop words,
including programming language specific keywords,
are removed. Each remaining word is stemmed using a
Porter stemming algorithm [27] before being included
in the document collection.

Execution of either plug-in results in a single file
containing the entire document collection for the
source files being analyzed. The first line in the file
contains the number of documents in the collection
and each successive line contains a single document,
that is, the list of words extracted from a single
method. This format is consistent with the input
format required by the tool used in Step 2.

Step 2: Generate an LDA model. Perform an
LDA analysis, as described in Section 2.2, on the
document collection generated in Step 1. To perform
the LDA analysis in Step 2, we used an open-source
software tool for LDA analysis called GibbsLDA++
[7]. GibbsLDA++ uses Gibbs sampling to estimate
topics from the document collection as well as

Figure 1: LDA-based approach to bug

localization

158158158158158

estimate the word-topic and topic-document
probability distributions.

Input into the LDA tool consists of the document
collection file generated by Step 1 of the process.
Before an LDA analysis can be performed on the
document collection using the tool, the following
parameters must be set.

• The number of topics.
• The number of iterations for the Gibbs

sampling process.
• α, a hyperparameter of LDA, determines the

amount of smoothing applied to the topic
distributions per document [33].

• β, a hyperparameter of LDA, determines the
amount of smoothing applied to the word
distributions per topic [33].

The LDA analysis results in the following two
probability distributions which, along with the topics
themselves, comprise the LDA model.

• The word-topic probability distribution (ϕ).
• The topic-document distribution (θ).
The word-topic distribution contains, for every

word in the vocabulary of the document collection and
every topic in the model, the probability a given word
belongs to a given topic. Similarly, the topic-document
distribution contains, for every topic in the model and
every document in the collection, the probability that a
given topic belongs to a given document.

GibbsLDA++ also outputs a list of topics with the
top n words in the topic, i.e., the n words that have the
highest probability of belonging to that topic, where n
is a parameter that may be set for each analysis. At
this point, a static LDA model of the source code has
been constructed. This model can then be queried for
each bug discovered.

4.2. Query the LDA Model

Now the user may query the LDA model
previously generated. Terms in the query should be
preprocessed in the same manner as the source code,
e.g., stop words removed and stemming performed.
Each query results in a list of source code elements
ranked by similarity to the query (most similar
elements ranked highest). This step is not specific to
the task of bug localization; the user may query the
model for other purposes as well, e.g., to find
candidate software components for reuse or to find
components that likely need to be modified as a result
of a change request.

We formulated source code queries manually by
utilizing information about bugs we extracted from the
bug title and description entered into the software’s
bug repository by the person initially reporting the
bug. Details regarding the formation of queries for

each case study are discussed in the description for
each study.

We created a tool to calculate the similarity
between an issued query and each document in the
document collection. Our tool returns a list of results
to the user ranked by the similarity measure; these
represent the elements of the source code that likely
need modification to correct a given bug. The user
may query an existing LDA model as often as desired.

5. Case Studies in Bug Localization

To assess the viability of an LDA-based approach
to bug localization, we performed case studies on three
different software systems. The goal of the case
studies was to measure how well an LDA-based
system can predict the methods that likely need
modification to correct a given bug.

All three case studies use the approach outlined in
Section 4 to perform bug localization. For the case
studies, the number of topics used was K=100. In
addition, we used standard parameter values, α=0.05
(50/K) and β=0.01, that have been recommended in
the literature [34].

To determine the accuracy of the predictions for
each bug, the LDA query results were compared to
relevant elements for the bug, i.e., the actual elements
fixed by developers to correct the bug. These relevant
source code elements were determined by examining
the software patch for each bug posted in the
software’s bug repository.

5.1. Rhino Case Study

For the first case study, we analyzed 35 bugs in
version 1.5 release 5 (1.5R5) of the software system
Rhino [31], an open source implementation of
JavaScript written in Java. The analysis of Rhino
allows us to answer an important question. Given a
software system, will the LDA-based technique
perform well across all bugs in the system or only a
few? If the technique performs well for only a few
select bugs, it would not be a practical approach to
employ. However, this study indicates the LDA-based
approach returns a relevant method in the top ten for
77% of the bugs, in the top five for 63% of the bugs,
and as the top result for 23% of the bugs.

All bugs that met the following criteria were
extracted from Rhino’s bug repository.

• Bugs existed in source files of version 1.5R5
implementing the core and compiler
functionality of the software.

• Bugs required a method-level fix.

159159159159159

• Bugs were fixed in either version 1.5R5.1 (3
bugs) or v1.6R1 (32 bugs).

• Bugs were categorized as resolved or verified
and as fixed, so only valid bugs that in fact
had been fixed were returned.

Bugs at all levels of severity were included in the
case study, from enhancements to critical defects.

For this case study, the first query for each bug
was formed by manually extracting keywords from the
bug title. The first query proved sufficient for over
one-half (20/35) of the Rhino bugs. A second query
was formed for the remainder of the bugs by manually
adding to the query keywords from the summary of
the initial bug report. At the same time, variants of
words that seemed useful were added (e.g., add parse
in addition to parser) in addition to any common
abbreviations (e.g., eol for end-of-line). The second
query proved effective for eleven bugs. The final three
bugs required a further refinement of the query. For
the third query for these bugs, we added any additional
words related to the bug (e.g., adding day for daylight
savings time).

Table 2 lists the bug number and title from
Rhino’s bug repository for each bug examined along
with the query we formulated and ran against the LDA
model for the software.

Table 2: Rhino bugs analyzed (LDA query
words in bold)

Bug # Bug Title [Added Query Words]
58118 ECMA Compliance: daylight savings time wrong

prior to year 1 [day offset timezone]

238699 Context.compileFunction throws
InstantiationException

238823 Context.compileFunction throws NullPointer
exception

239068 Scope of constructor functions is not initialized

244014 Removal of code complexity limits in the
interpreter

244492 JavaScriptException to extend RuntimeException
and common exception base

245882 JavaImporter constructor

249471 String index out of range exception [parse
bound float global js native char]

252122 Double expansion of error message

253323 Assignment to variable ‘decompiler’ has no effect
in Parser [parse]

254778 Rhino treats label as separated statement

254915 Broken “this” for name() calls (CVS tip regression)
[object with]

255549 JVM-dependent resolution of ambiguity when
calling Java methods [argument constructor
overload]

Bug # Bug Title [Added Query Words]
255595 Factory class for Context creation [call default

enter java runtime thread]

256318 NOT_FOUND and
ScriptableObject.equivalentValues

256339 Stackless interpreter

256389 Proper CompilerEnvirons.isXmlAvailable()

256575 Mistreatment of end-of-line and semi/colon [eol]

256621 throw statement: eol should not be allowed

256836 Dynamic scope and nested functions

256865 Compatibility with gcj: changing
ByteCode.<constants> to be int

257128 Interpreter and tail call elimination [java js stack]

257423 Optimizer regression: this.name += expression
generates wrong code

258144 Add option to set Runtime Class in classes
generated by jsc [run main script]

258183 catch (e if condition) does not rethrow of original
exception

258207 Exception name should be DontDelete [delete
catch ecma obj object script]

258417 java.long.ArrayIndexOutOfBoundsException in
org.mozilla.javascript.regexp.NativeRegExp
[stack size state data]

258419 copy paste bug in
org.mozilla.javascript.regexp.NativeRegExp [RE
data back stack state track]

258958 Lookup of excluded objects in
ScriptableOutputStream doesn’t traverse
prototypes/parents

258959 ScriptableInputStream doesn’t use Context’s
application ClassLoader to resolve classes

261278 Strict mode

262447 NullPointerException in
ScriptableObject.getPropertyIds

263978 cannot run xalan example with Rhino 1.5 release
5 [line number negative execute error]

266418 Can not serialize regular expressions [regexp RE
compile char set]

274996 Exceptions with multiple interpreters on stack
may lead to ArrayIndexOutOfBoundsException
[java wrapped]

Of the methods fixed by developers as part of the

software patch for each bug, the ranks of those
methods that ranked highest in the list of methods
returned by our query are summarized in Figure 2.

It is interesting to note that a few of the bug titles
and descriptions mentioned at least one of the methods
that needed to be fixed by name, which sometimes did
and sometimes did not help the results. For example,
consider bug #238823, which mentions
Context.compile (as well as a few other methods) in
the bug description. Context.compile, which was the

160160160160160

highest ranking method, was ranked 4th in the results.
Bug #262447 has the title “NullPointerException in
ScriptableObject.getPropertyIds,” which is indeed the
method that was fixed; however, the method is ranked
11th in the results. This is consistent with the fact that
LDA attempts to capture the meaning of a document
beyond just a set of terms.

Other times, the bug title and/or description
mentions the name of a method that is ultimately not
changed due to the bug. For example, for bug
#238699, whose title is “Context.compileFunction
throws InstantiationException,” the LDA approach
correctly predicts Codegen.compile (ranked 1st), not
Context.compileFunction (ranked 27th), to be the
function needing modification.

Query formulation appears to play a role in the
quality of the results. For example, the title for bug
#261278 is “Strict mode.” Querying the LDA model
with simply the words “strict mode” results in
ScriptRuntime.setName being ranked 12th. However,
looking at the bug’s description, “It would be nice to
have a strict mode in Rhino that would at least throw
an exception for missing var declarations,” and
modifying the query to be “strict mode missing var
declarations” results in the same method being ranked
1st. Therefore, care must be taken to form the queries.

Other queries performed quite well despite very
few clues in the bug title and description about
methods that may need to be fixed. For example, bug
#258207 has a description of “According ECMAScript
standard, section 12.4, the exception name in the catch
object should have DontDelete property.” Running the
query “exception name dontdelete delete catch ecma
obj object script” results in
ScriptRuntime.newCatchScope being returned in 5th
position. Bug #256621’s title is “throw statement: eol
should not be allowed” and the query “throw
statement eol” results in the relevant method
Parser.statementHelper being ranked 1st.

Overall, the LDA-based approach performed quite
well. As illustrated in Figure 2, for 77% (27/35) of the
bugs analyzed the first relevant method was returned
in the top ten results and for 63% (22/35) of the bugs
the first relevant method was returned in the top five
results. These results show the use of LDA in bug
localization to be a very promising approach.

Table 3: Eclipse bugs analyzed (LDA/LSI
query words in bold)

Software
Version

Bug
No.

Bug Title [Added query
words]

2.1.3 5138 Double-click-drag to select
multiple words doesn’t work [mouse
up down release text offset
document position]

2.0.0 31779 UnifiedTree should ensure
file/folder exists [node system
location]

3.0.2 74149 The search words after ‘”’ will be
ignored [query quoted token].

5.2. Eclipse Case Study

The second case study involves the application of
our LDA-based technique to the Eclipse software
system, an open source IDE written in Java [5]. The
analysis of Eclipse allows us to evaluate the accuracy
of our approach when used in a large software system.
This same system was analyzed in [29] so it allows a
direct comparison of LDA to LSI for bug localization.

We ran the same queries as in [29] on the Eclipse
LDA model, and the accuracy of the LDA predictions
equaled or exceeded that of the LSI predictions. For
each bug examined, Table 3 lists the software version
in which the bug occurred, the bug number and bug
title taken from the Eclipse bug repository, and the
query used in both our LDA analysis and the earlier
LSI analysis from [29]. Table 4 presents the results of
the LDA query—the name of the first relevant method
returned by the query and its LDA rank—along with
the LSI results for comparison. Note that the
TextDoubleClickStrategyConnector.mouseUp method
is referred to as TextViewer.mouseUp in [29], but the
method belongs to an inner class of TextViewer called
TextDoubleClickStrategyConnector and we have used
the inner class name.

These results show the LDA-based approach
performed the same as LSI for bug #31779 and
outperformed LSI for the other two. This case study
suggests LDA performs at least as well as LSI for bug
localization and indicates the LDA-based technique
scales well to larger software systems. The Mozilla
case study below further validates these findings,
showing an even greater improvement over LSI.

Rank 1st
23%

Rank 2-5
40%

Rank 6-10
14%

Rank > 10
23%

Figure 2: Rank of first relevant method

returned for Rhino bugs

161161161161161

5.3. Mozilla Case Study

For our third case study, we applied the LDA-
based bug localization technique to five bugs in
Mozilla, an open source internet application suite
written in C++. Mozilla, like Eclipse, is a large
software system; thus it provides an additional test
point for determining the performance of LDA for bug
localization in larger systems. This same system was
also analyzed in [29] so it allows another comparison
of LDA to LSI for bug localization.

For the LDA technique, we first ran the same
queries as the LSI study. Bug #209430 resulted in a
vast improvement over LSI using the same query, as
shown in Table 6. For the other bugs, a second query
was formed by adding keywords from the bug title and
summary for each bug as well as removing any words
that did not seem relevant. This second query was
effective for two of the bugs. We issued a third query
for the remaining two bugs by adding any additional
words related to the bugs. For example, for bug
#216154, the bug title and summary discusses a
problem with clicking an anchor, so the word link
seemed an obvious keyword to use in addition to the
words anchor and target from the bug title.

For each bug, Table 5 lists the version of the
software in which the bug existed, the bug title and
number taken from the Mozilla bug repository, the
LDA query used in this study, and the LSI query used
in [29]. (Note the bug titles are not the same in the LSI
paper, which listed an excerpt from the longer bug
description rather than the bug title.)

For bug #225243, the study in [29] indicates this
bug existed in version 1.6 of the software. However,
examination of the Mozilla 1.6 code revealed the
software was patched prior to the release of 1.6, and
the bug actually existed in version 1.6 Alpha (1.6a), a
release candidate of 1.6. This paper uses the proper
version of the software (1.6a) for that bug.

The LDA results are presented in Table 6, with
the LSI Rank included for comparison. The LDA rank
of the first relevant method returned by the LDA query
for each bug is in the top five for three of the bugs and
in the top ten for all of the bugs, which is a significant
improvement over LSI.

6. Threats to Validity

There are several issues that could affect the
validity of our results. Like other semantic-based
techniques, the LDA approach used depends in part on
the quality of the semantic information present in the
source code. In addition, the LDA approach is likely
sensitive to the quality of the information present in
the bug titles and descriptions, which depends on the
ability of the bug submitter to accurately describe the
problem. If the bug description does not truly reflect
the situation, then it may be difficult to accurately
summarize the bug in a query. However, the study in
[13] examined 200,000 bug titles and found that “95%
of noun phrases referred to visible software entities,
physical devices or user actions.” This suggests that
information in bug titles and summaries truly is useful

Table 5: Mozilla bugs analyzed with corresponding LDA/LSI queries

Software
Version

Bug
No.

Bug Title LDA Query LSI Query [29]

1.6 182192 Remove quotes (“) from
collected addresses

collect collected sender
recipient email name names
address book addressbook

collect collected sender recipient
email name names address
addresses addressbook

1.5.1 209430 Ctrl+Delete and
Ctrl+Backspace delete words
in the wrong direction

delete deleted word action delete deleted word action

1.5.1 216154 Anchors in e-mails are broken
(Clicking Anchor doesn’t go to
target in e-mail)

mailbox uri url pop msgurl
service anchor target link

mailbox uri url msg pop3 msgurl
service

1.6a 225243 [ps] Page appears reversed
(mirrored) when printed

print page post script
postscript image

print page orientation portrait
landscape postscript postscriptobj

1.5.1 231474 attachments mix contents attach mailattachcount
msgattach parsemailmsgst

attachment encoding content mime

Table 4: Comparison of LDA to LSI over Eclipse

Bug
No.

First Relevant Method Returned by LDA
and LSI [29] along with its LDA/LSI ranks

5138 TextDoubleClickStrategyConnector.mouseUp
 LDA Rank: 2
JavaStringDoubleClickSelector.doubleClicked
 LSI Rank: 7

31779 UnifiedTree.createChildNodeFromFileSystem
 LDARank: 2
 LSI Rank: 2

74149 QueryBuilder.tokenizeUserQuery
 LDA Rank: 1
 LSI Rank: 5

162162162162162

in localizing bugs.
The quality and usefulness of the queries may

vary with the skill of the debugger; this could impact
the accuracy of the results. A less experienced
debugger may have more trouble formulating a query
that would lead to good results. However, in many of
the bugs analyzed in the completed case studies, good
results were obtained with the first query issued, using
terms taken directly from the bug titles and
descriptions, suggesting very little knowledge is
required to formulate useful queries.

We did not have available an LSI-based bug
localization tool; therefore, we compared our results to
the published results of previous researchers [29].
These published results represented the largest LSI
study for bug localization previously performed;
therefore, our comparison over Mozilla and Eclipse
was the largest possible that allowed us to compare
our technique to LSI results. The fact that our LDA-
based technique performed as well as LSI for one bug
and better than LSI for all other bugs analyzed in those
systems shows our technique to be very promising. In
our other study over Rhino, we showed how our LDA
approach was able to scale to a much larger number of
bugs.

7. Conclusions and Future Work

The case studies presented in this paper show
LDA can successfully be applied to source code
retrieval for the purpose of bug localization.
Furthermore, the results suggest an LDA-based
approach is more effective than approaches using LSI
alone for this task. Our case studies examined the
same bugs in Mozilla and Eclipse as [29]. The LSI
analysis resulted in only three out of the eight total
bugs analyzed (37.5%) with the first relevant method
ranked in the top ten results returned. For the LDA

approach, the user query resulted in all eight (100%)
of the bugs ranked in the top ten. Ultimately, the
results of the case studies we presented demonstrate
that our LDA-based technique performs at least as
well as the LSI-based techniques in one case (for one
bug) and performs better, often significantly so, than
the LSI-based technique in all other cases.

In addition, previous studies of LSI-based bug
localization have analyzed at most three bugs in any
one version of a software system. Our analysis of
Rhino allowed us to see how our LDA approach
performed on 35 bugs in a single version of Rhino,
which was all bugs in that version that met the given
criteria. While it is unknown how LSI performs across
all bugs (or even a majority of the bugs) in a software
system, our Rhino study shows the LDA-based
approach returns a relevant method in the top ten for
77% of the bugs analyzed.

In future studies, we plan to examine more bugs
in larger software systems, such as Eclipse and
Mozilla, to determine how the approach works across
a large number of bugs in those systems. We plan as
well to investigate the bugs for which the LDA
technique did not perform well in order to improve the
technique in those cases.

8. References

[1] G. Antoniol and Y.G. Guéhéneuc, “Feature
Identification: A Novel Approach and a Case Study”, In
Proc. 21st IEEE Int. Conf. on Software Maintenance,
Budapest, Hungary, September 2005, pp. 357-366.

[2] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet
Allocation”, Journal of Machine Learning Research, vol. 3,
MIT Press, Cambridge, MA, USA, March 2003, pp. 993-
1022.

[3] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K.
Landauer and R. Harshman, “Indexing by Latent Semantic
Analysis,” Journal of the American Society of Information
Science, 1990, 41: 391-407.

[4] S.T. Dumais, “LSA and Information Retrieval: Getting
Back to Basics,” Handbook of Latent Semantic Analysis, T.
Landauer, D. McNamara, S. Dennis, W. Kintsch (eds),
Lawrence Erlbaum Associates, 2007, pp. 293-321.

[5] The Eclipse Home Page, http://www.eclipse.org.

[6] C. Gall (Stein), S. Lukins, L. Etzkorn, S. Gholston, P.
Farrington, D. Utley, J. Fortune, and S. Virani, “Semantic
Software Metrics Computed from Natural Language Design
Specifications,” IET Software, 28(10), February 2008, pp.
17-26.

[7] GibbsLDA++. http://gibbslda.sourceforge.net/.

[8] M. Girolami, and A. Kabán, “On an Equivalence
between PLSI and LDA”, In Proc. 22nd Annu. ACM SIGIR

Table 6: Comparison of LDA to LSI over Mozilla

Bug
No.

First Relevant Method Returned by
LDA and LSI [29] with LDA/LSI Ranks

182192 nsAbAddressCollector::CollectAddress
 LDA Rank: 3
 LSI Rank: 37

209430 nsPlaintextEditor::DeleteSelection
 LDA Rank: 9
 LSI Rank: 49

216154 nsMailboxService::NewURI
 LDA Rank: 4
 LSI Rank: 76

225243 nsMailboxService::NewURI
 LDA Rank: 9
 LSI Rank: 24

231474 Root::MimeObject_parse_begin
 LDA Rank: 4
 LSI Rank: 18

163163163163163

Int. Conf. on Research and Development in Information
Retrieval, Toronto, Ontario, Canada, July 2003, pp. 433-434.

[9] T.L. Griffiths and M. Steyvers, “Finding Scientific
Topics”, In Proc. Nat. Academy of Sciences, 101(1), April
2004, pp. 5228-5235.

[10] D.A. Grossman and O. Frieder. Information Retrieval:
Algorithms and Heuristics. Springer, 2004.

[11] T. Hofmann, “Probabilistic Latent Semantic Indexing”,
In Proc. 22nd Annu. ACM SIGIR Int. Conf. on Research and
Development in Information Retrieval, Berkeley, CA, USA,
August 1999, pp. 50-57.

[12] ISO/IEC 14764:2006, “Information Technology –
Software and Systems Engineering - Software Engineering –
Software Life Cycle Processes – Maintenance,” International
Organization for Standardization, Geneva, Switzerland,
2006.

[13] A.J. Ko, B.A. Myers and D.H. Chau, “A Linguistic
Analysis of How People Describe Software Problems,” In
Proc. of IEEE Conf. on Visual Language and Human-
Centric Computing (VL/HCC), 2006, pp. 127-134

[14] A. Kuhn, S. Ducasse and T. Gîrba, “Enriching Reverse
Engineering with Semantic Clustering”, In Proc. 12th
Working Conf. on Reverse Engineering, Pittsburg, PA,
November 2005, pp. 133-142.

[15] A. Kuhn, S. Ducasse, and T. Gîrba, “Semantic
Clustering: Identifying Topics in Source Code”, Information
Software and Technology, 49(3), Butterworth-Heinemann,
Newton, MA, USA, March 2007, pp. 230-243.

[16] D.J. Lawrie, H. Field, and D. Brinkley, “Leveraged
Quality Assessment using Information Retrieval
Techniques”, In Proc. 14th IEEE Int. Conf. on Program
Comprehension, Athens, Greece, June 2006, pp. 149-158.

[17] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P.
Baldi, “Mining Concepts From Code with Probabilistic
Topic Models”, In Proc. 22nd IEEE/ACM Int. Conf. on
Automated Software Engineering, Atlanta, Georgia, USA,
November 2007, pp. 461-464.

[18] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich,
“Feature Location via Information Retrieval Based Filtering
of a Single Scenario Execution Trace”, In Proc. 22nd
IEEE/ACM Int. Conf. on Automated Software Engineering,
Atlanta, Georgia, November 2007, pp. 234-243.

[19] J.I. Maletic and A. Marcus, “Supporting Program
Comprehension using Semantic and Structural Information”,
In Proc. 23rd Int. Conf. on Software Engineering, Toronto,
Ontario, Canada, May 2001, pp. 103-112.

[20] A. Marcus, A. De Lucia, J.H. Hayes, D. Poshyvanyk,
“Working Session: Information Retrieval Based Approaches
in Software Evolution”, In Proc. 22nd IEEE Int. Conf. on
Software Maintenance, Philadelphia, PA, USA, September
2006, pp. 197-209.

[21] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A.
Sergeyev, “Static Techniques for Concept Location in
Object-Oriented Code”, In Proc. 13th Int. Workshop on

Program Comprehension, St. Louis, MO, USA, 2005, pp.
33-42.

[22] A. Marcus, A. Sergeyev, V. Rajlich, J.I. Maletic, “An
Information Retrieval Approach to Concept Location in
Source Code”, In Proc. 11th Working Conference on
Reverse Engineering, Delft, The Netherlands, November
2004, pp. 214-223.

[23] G. Maskeri, S. Sarkar, and K. Heafield. “Mining
Business Topics in Source Code using Latent Dirichlet
Allocation,” In Proc. 1st India Software Engineering
Conference, Hyderabad, India, February 2008, pp. 113-120.

[24] T.P. Minka and J. Lafferty, “Expectation-Propagation
for the Generative Aspect Model”, In Proc. 18th Conf. on
Uncertainty in Artificial Intelligence, Edmonton, Alberta,
Canada, April 2002, pp. 352-359.

[25] The Mozilla Home Page, https://www.mozilla.org.

[26] H.A. Müller, J.H. Jahnke, D.B. Smith, M.-A. Storey,
S.R. Tilley, and K. Wong, “Reverse Engineering: A
Roadmap,” In Proc. of Future of Software Engineering,
Limerick, Ireland, June 2000, pp. 47-60.

[27] The Porter Stemming Algorithm,
http://tartarus.org/~martin/PorterStemmer/.

[28] D. Poshyvanyk, Y.G. Guéhéneuc, A. Marcus, G.
Antoniol, and V. Rajlich, “Combining Probabilistic Ranking
and Latent Semantic Indexing for Feature Location”, In
Proc. 14th IEEE Int. Conf. on Program Comprehension,
Athens, Greece, June 2006, pp. 137-148.

[29] D. Poshyvanyk, Y.G. Guéhéneuc, A. Marcus, G.
Antoniol, and V. Rajlich, “Feature Location Using
Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval”, IEEE Trans. Softw.
Eng., 33(6), June 2007, pp. 420-432.

[30] D. Poshyvanyk and A. Marcus, “Combining Formal
Concept Analysis with Information Retrieval for Concept
Location in Source Code”, In Proc. 15th IEEE Int. Conf. on
Program Comprehension, Banff, Alberta, Canada, June
2007, pp. 37-48.

[31] Rhino. http://www.mozilla.org/rhino/.

[32] D. Rousidis and C. Tjortjis, “Clustering Data Retrieved
from Java Source Code to Support Software Maintenance: A
Case Study”, In Proc. 9th European Conf. on Software
Maintenance and Reengineering, Manchester, UK, March
2005, pp. 276-279.

[33] M. Steyvers and T. Griffiths, “Probabilistic Topic
Models”, Handbook of Latent Semantic Analysis, T.
Landauer, D. McNamara, S. Dennis, W. Kintsch (eds),
Lawrence Erlbaum Associates, 2007.

[34] X. Wei and B. Croft, “LDA-Based Document Models
for Ad-hoc Retrieval”, In Proc. 29th Annu. Int. ACM SIGIR
Conf. on Research & Development on Information Retrieval,
Seattle, WA, USA, 2006, pp. 178-185.

164164164164164

