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Abstract 

In mission critical systems, such as those developed 
by NASA, it is very important that the test engineers 
properly recognize the severity of each issue they 
identify during testing.  Proper severity assessment is 
essential for appropriate resource allocation and 
planning for fixing activities and additional testing.  
Severity assessment is strongly influenced by the 
experience of the test engineers and by the time they 
spend on each issue. 

The paper presents a new and automated method 
named SEVERIS (SEVERity ISsue assessment), which 
assists the test engineer in assigning severity levels to 
defect reports.  SEVERIS is based on standard text 
mining and machine learning techniques applied to 
existing sets of defect reports.  A case study on using 
SEVERIS with data from NASA’s Project and Issue 
Tracking System (PITS) is presented in the paper.  The 
case study results indicate that SEVERIS is a good 
predictor for issue severity levels, while it is easy to 
use and efficient. 

1. Introduction 
NASA’s software Independent Verification and 

Validation (IV&V) Program captures all of its findings 
in a database called the Project and Issue Tracking 
System (PITS).  The data in PITS has been collected 
for more than 10 years and includes issues on robotic 
satellite missions and human-rated systems.  
Nowadays, similar defect tracking systems, such as 
Bugzilla1, have become very popular, largely due to 
the spread of open source software development.  
These systems help to track bugs and changes in the 
code, to submit and review patches, to manage quality 
assurance, to support communication between 
developers, etc. 

As compared to newer systems, the problem with 
PITS is that there is a lack of consistency in how each 
                                                           
1 http://www.bugzilla.org/ 

of the projects collected issue data.  In most instances, 
the specific configuration of the information captured 
about an issue was tailored by the IV&V project to 
meet its needs.  This has created consistency problems 
when metrics data is pulled across projects.  While 
there was a set of required data fields, the majorities of 
those fields do not provide information in regards to 
the quality of the issue and are not very suitable for 
comparing projects. 

A common issue among defect tracking systems is 
that they are useful for storing day-to-day information 
and generating small-scale tactical reports (e.g., “list 
the bugs we found last Tuesday”), but difficult to use 
for high-end business strategic analysis (e.g., “in the 
past, what methods have proved most cost effective in 
finding bugs?”).  Another issue common to these 
systems is that most of the data is unstructured (i.e., 
free text).  Specific to PITS is that the database fields 
in PITS keep changing, yet the nature of the 
unstructured text remains constant.  In consequence, 
one logical choice in the analysis of defect reports is a 
combination of text mining and machine learning. 

In this paper we present a new approach for 
extracting general conclusions from PITS data based 
on text mining and machine learning methods, which 
are low cost, automatic, and rapid.  We designed and 
built a tool named SEVERIS (SEVERity ISsue 
assessment) to automatically review issue reports and 
alert when a proposed severity is anomalous.  The way 
SEVRIS is built provides the probabilities that the 
assessment is correct.  These probabilities can be used 
to guide decision making in this process.  Assigning 
the correct severity levels to issue reports is extremely 
important in the process employed at NASA, as it 
directly impacts resource allocation and planning of 
subsequent defect fixing activities. 

NASA uses a five-point scale to score issue 
severity.  The scale ranges one to five, worst to dullest, 
respectively.  A different scale is used for robotic and 
human-rated missions (see Table 1). 
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Table 1.  NASA’s severity scores 

Severities for robotic missions 
Severity 1: Prevent the accomplishment of an essential 
capability; or jeopardize safety, security, or other 
requirement designated critical. 
Severity 2: Adversely affect the accomplishment of an 
essential capability and no work-around solution is known; 
or adversely affect technical, cost or schedule risks to the 
project or life cycle support of the system, and no work-
around solution is known. 
Severity 3: Adversely affect the accomplishment of an 
essential capability but a work-around solution is known; or 
adversely affect technical, cost, or schedule risks to the 
project or life cycle support of the system, but a work-around 
solution is known. 
Severity 4: Results in user/operator inconvenience but does 
not affect a required operational or mission essential 
capability; or results in inconvenience for development or 
maintenance personnel, but does not affect the 
accomplishment of these responsibilities. 
Severity 5: Any other issues. 

Severities for human-rated missions 
Severity 1: A failure which could result in the loss of the 
human rated system, the loss of flight or ground personnel, or 
a permanently disabling personnel injury 
Severity 1N: A failure which would otherwise be Severity 1 
but where an established mission procedure precludes any 
operational scenario in which the problem might occur, or the 
number of detectable failures necessary to result in the 
problem exceeds requirements. 
Severity 2: A failure which could result in loss of critical 
mission support capability 
Severity 2N: A failure which would otherwise be Severity 2 
but where an established mission procedure precludes any 
operational scenario in which the problem might occur or the 
number of detectable failures necessary to result in the 
problem exceeds requirements. 
Severity 3: A failure which is perceivable by an operator and 
is neither Severity 1 nor 2. 
Severity 4: A failure which is not perceivable by an operator 
and is neither Severity 1 nor 2, nor 3. 
Severity 5: A problem which is not a failure but needs to be 
corrected such as standards violations or maintenance issues 

 
SEVERIS is particularly useful in the following 

scenarios:  
� When a less-experienced test engineer has 

assigned the wrong severity levels. 
� When experienced test engineers are operating 

under urgent time pressure demands, they could 
use SEVERIS to automatically and quickly audit 
their conclusions. 

� For agents that can detect severity one and two-
level errors with high probability, SEVERIS could 
check for the rare, but extremely dangerous case, 
that an IV&V team has missed a high-severity 
problem. 

The paper presents a case study on using SEVERIS 
to assess the severity of reported issues from five 
NASA robotic missions.  One conclusion from this 
case study is that the unstructured text might be a 
better candidate for generating severity assessments 
than the structured data base fields. 

The main contribution of our work is that it 
successfully addresses an important problem, which 
has been largely ignored by the research community 
(i.e., automated defect severity assessment from very 
loosely structured text).  Much prior work has used 
standard data miners, to learn software defect 
recognizers from historical records of static code 
features [11].  Those data mining methods assume that 
the input data is highly structured, which is rarely the 
case.  In this research, we generate severity predictors 
from a data source that is so unstructured that it would 
defeat the previously explored data mining methods. 

The main finding of this work is the success and 
efficiency of the solution stemming from the simplicity 
of its components (i.e., the combination of standard 
text mining and rule learning methods), which also 
make it easy to use and adaptable to other data sets.  In 
addition, SEVERIS provides good estimates by 
analyzing only textual data extracted from defect 
reports.  This is an important issue, as the severity 
scores are assigned based on human judgment (see 
Table 1), which reflects how the test engineer 
interprets a domain independent scoring guideline in 
the context of each project. 

2. SEVERIS 
SEVERIS is based on the automated extraction and 

analysis of textual descriptions from issue reports in 
PITS.  Text mining techniques are used to extract the 
relevant features of each report, while machine 
learning techniques are used to assign these features 
with proper severity levels, based on the classifications 
of existing reports. 

While, in its current form is specifically tailored to 
work with PITS reports, with little modifications, 
SEVRIS can be used with other defect reporting 
systems, such as Bugzilla. 

Figure 1 depicts how SEVERIS interoperates with 
the human analyst or his supervisor.  SEVERIS checks 
the validity of the severity levels assigned to issues in 
the following way: 
� After seeing an issue in some artifact, a human 

analyst generates some text notes and assigns a 
severity level severityX. 

� SEVERIS learns a predictor for issue severity 
level from logs of {notes, severityX}.  A training 
module does the followings: 

1. Updates the SEVERIS beliefs and  
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2. Determines how much self confidence a 
supervisor might have in the SEVERIS’ 
conclusions. 

� Using the learned knowledge, SEVERIS reviews 
the analyst’s text and generates its own severityY 
level. 

� If SEVERIS’ proposed severityY differs from the 
severityX level of the human analyst, then a human 
supervisor can decide to review the human 
analyst’s severityX.  To help in that process, the 
supervisor can review the self confidence 
information to decide if they trust the SEVERIS’ 
recommendations. 

 

 
Figure 1.  The workflow of SEVERIS.  Gray nodes 

denote humans. 

One issue that made the design of SEVERIS 
challenging is that standard machine learners work 
well for instances that are nearly all fully described 
using dozens (or fewer) attributes.  On the other hand, 
text mining applications (e.g., analyzing PITS detect 
reports) must process thousands of unique words, and 
any particular paragraph may only mention a few of 
them.  Therefore, before we can apply machine 

learning to the results of text mining, we have to 
reduce the number of dimensions (i.e., attributes) in the 
problem.  To this end, we applied several methods for 
dimensionality reduction used in text mining, in the 
following order: tokenization, stop word removal, 
stemming, tf*idf, and InfoGain. 

2.1. Tokenization 
A token is a block of text which is considered as a 

useful part of the unstructured text.  In most of the 
cases it is mapped to a word, but a token could be also 
represented by a paragraph, a sentence, a syllable or a 
phoneme.  Tokenization represents the process of 
converting a stream of characters into a sequence of 
tokens.  Tokenization is done by removing 
punctuation, brackets, capitals, etc.  Given the nature 
of the PITS reports, in SEVERIS we replace 
punctuation with blank spaces, we remove the non-
printable escape characters, and convert all words to 
lowercases.  Additional rules can be implemented if 
data from other bug reporting systems is used. 

2.2. Stop word removal 
Stop words are commonly used words that do not 

carry relevant information to a specific context.  A list 
of English stop words, i.e., prepositions, conjunctions, 
articles, common verbs, nouns, pronouns, adverbs and 
adjectives can be found at: 
www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words 

Figure 2 shows a sample of the stop list used in this 
study.  IV&V’s chief engineer, Ken Costello, reviewed 
this list and removed “counting words” such as “one”, 
“every”, etc., arguing that “reasoning about number of 
events could be an important requirement”.  SEVERIS 
supports the use of a keep list of words we want to 
retain (but, in this study, the keep list was empty). 

 

 
Figure 2. 24 of the 262 stop words used in the study 

 

2.3. Stemming 
Stemming is the process for reducing inflected (or 

sometimes derived) words to their stem, base or root 
form – generally a written word form.  For example, 
“run”, “runs”, “ran”, and “running”, are all forms of 
the same root, conventionally written as “run” and the 
role of a stemmer is to attribute all the derived forms to 
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the root of the lexeme.  The stem need not be identical 
to the morphological root of the word; it is usually 
sufficient that related words map to the same stem, 
even if this stem is not in itself a valid root.   

In SEVERIS we use an implementation of the 
Porter stemmer [12], introduced in 1980 by Martin 
Porter.  While not perfect, this stemmer is very widely 
used and became the defacto standard algorithm used 
for English stemming. 

2.4. Tf*idf 
Tf*idf is shorthand for “term frequency times 

inverse document frequency”.  The tf*idf weight 
defined for a word is often used in information 
retrieval and text mining.  This weight is a statistical 
measure used to evaluate how important a word is to a 
document in a collection or corpus.  The importance 
increases proportionally to the number of times a word 
appears in the document but is offset by the frequency 
of the word in the corpus.  The term frequency in the 
given document is simply the number of times a given 
term appears in that document.  This count is usually 
normalized to prevent a bias towards longer documents 
(which may have a higher term frequency regardless of 
the actual importance of that term in the document) to 
give a measure of the importance of the term within a 
particular document. 

The inverse document frequency is a measure of 
the general importance of the term (obtained by 
dividing the number of all documents by the number of 
documents containing the term, and then taking the 
logarithm of that quotient). 

If there be Words number of document and each 
word I appears Word[I] number of times inside a set of 
Documents and if Document[I] be the documents 
containing I, then: 

Tf*idf = Word[i]/Words*log(Documents/Document[i]) 

The standard way to use this measure is to cull all 
but the k top tf*idf ranked stopped, stemmed tokens.  
The case study presented later in the paper used k = 
100.  The idea is that these are the most important 
terms for each document, whereas the rest of them can 
be ignored in the analysis.  This is a simple form of 
noise reduction mechanism. 

2.5. InfoGain 
According to the InfoGain measure, the best words 

are those that most simplifies the target concept (in our 
case, the distribution of severities).  We use 
information theory to measure concept “simplicity” in 
the case of SEVERIS.  Statistical approaches could 
also be used to determine concept simplicity. 

Suppose a data set has 80% severity=5 issues and 
20% severity=1 issues.  Then that data set has a class 
distribution C0 with classes c(1) = severity5 and c(2) = 
severity1 with frequencies n(1) = 0.8 and n(2) = 0.2.  
The number of bits required to encode an arbitrary 
class distribution C0 is H(C0) defined as follows: 

 
If A is a set of attributes, then the number of bits 

required to encode a class after observing an attribute 
is: 

 
The highest ranked attribute Ai is the one with the 

largest information gain; i.e., the one that most reduces 
the encoding required for the data after using that 
attribute; i.e., 

InfoGain(Ai) = H(C) – H(C|Ai) 

where H(C) comes from Equation 1.  For example, 
in the case study, we used InfoGain to find the top N = 
{100, 50, 25, 12, 6, 3} most informative tokens.   

Once again, the assumption was that the most 
informative terms are enough to fully describe their 
corresponding documents from our application point of 
view.  SEVERIS uses InfoGain to re-order the top k 
words selected from each issue report based on tf*idf. 

By using InfoGain to rank all the terms in the data 
set, a significant dimensionality reduction is achieved.  
Another popular approach to dimensionality reduction 
in text retrieval is based on Singular Value 
Decomposition (SVD) [17] of the tf*idf matrix (i.e., 
word x document matrix) and its most popular 
implementation is known as Latent Semantic Indexing 
(LSI) [9].  Since LSI is based on statistical 
dimensionality reduction, it requires large data set to 
have good results and SVD is computationally 
expensive.  This motivates our choice of using 
InfoGain over LSI, which is fairly popular in Software 
Engineering text retrieval tasks. 

2.6. Rule learning 
We used a data miner in SEVERIS to learn rules 

that predict for the severity attribute using the terms 
found above.  The learner used here was a JAVA 
version of Cohen’s RIPPER rule learner [7].  RIPPER 
is useful for generating very small rule sets. The 
generated rules are of the form if � then: 

 

349



 

RIPPER, is a covering algorithm that runs over the 
data in multiple passes.  Rule covering algorithms 
learns one rule at each pass for the majority class.  All 
the examples that satisfy the conditions are marked as 
covered and removed from the data set.  The algorithm 
then recurses on the remaining data.  The output of a 
rule covering algorithm is an ordered decision list of 
rules where rulej is only tested if all conditions in 
rulei<j fail. 

One way to visualize a covering algorithm is to 
imagine the data as a table on a piece of paper.  If there 
exists a clear pattern between the features and the 
class, define that pattern as a rule and cross out all the 
rows covered by that rule.  As covering recursively 
explores the remaining data, it keeps splitting the data 
into: 
� what is easiest to explain, and 
� any remaining ambiguity that requires a more 

detailed analysis. 
 

In the case of SEVERIS the rules inferred from the 
reports connect the most informative tokens (which 
form the condition) of each report with its severity 
level (which forms the conclusion) – see Fi . gure 4

An alternative approach would be to employ an 
unsupervised clustering mechanism and cluster the 
document space (i.e., the reports) into five groups 
corresponding to each severity level.  Such an 
approach is popular when used for topic discovery in 
large corpora, but its main problem relies on the use of 
textual similarity measures between documents as 
distance metrics for clustering.  Our approach 
eliminates the need to compute such measures between 
all possible pairs of documents. 

3. Case Study 
We conducted a case study on real NASA PITS 

data to evaluate SEVERIS.  The goal of the study was 
to see how well SEVERIS approximates the human 
evaluation captured by existing reports. 

PITS is an extensible issue tracking system and 
users are free to add fields as needed for their own 
applications.  From a generic standpoint, PITS allow 
for several different field types.  These include pre-
defined fields, free-form fields, attachments and 
context fields (dependencies).  Pre-defined fields are 
those that captured information supplied by the 
database itself or that has a limited list of input such as 
the severity ratings shown in Table 1.  

Free-form fields are usually used to capture 
information about the issue itself along with describing 
the potential impact of the issue and suggested issue 
resolution.  Other free-form fields include the title of 
the issue and a field for capturing a chronology of the 

resolution of the issue.  PITS also provides for the 
inclusion of attachments to the issue records.  This 
includes copies of emails, snippets of code or other text 
documents, or even application specific documents. 

Context fields become available depending upon 
the current state or condition of other fields.  For 
example, a nominal PITS records captures the test 
engineering task being performed when the defect was 
found.  These tasks are defined according to a NASA 
test engineering work breakdown structure that is 
broken down into 3 levels: Process, Task and Activity.  
There are two processes, which have a different set of 
tasks and each task generally has a different set of 
activities.  So for example, if the task being performed 
was “Validate Safety Requirements”, the user would 
first have to select “Validate” in the process field in 
order to make the task field active.  The task field 
would then only allow for the selection of tasks that 
fall under the “Validate” process, not tasks under the 
“Verification” process.  The user would then select 
“Validate Requirements” as the task followed by the 
selection of “Validate Safety Requirements” in the 
activity field. 

3.1. Objects of the case study 
SEVERIS was applied to {pitsA, pitsB, pitsC, 

pitsD, pitsE}, five anonymous PITS projects supplied 
by NASA's Independent Verification and Validation 
Facility (see Table 2).  The data is available at 
http://promisedata.org/.  All these systems were 
robotic.  Note that this data has no severity one issues 
(these are quite rare) and few severity five issues (these 
often not reported since they have such a low priority). 

Table 2.  The five data sets used in the case study.  
Each cell indicates the number of reports with each 

severity level in the corresponding data set. 

 Sev. 1 Sev. 2 Sev. 3 Sev. 4 Sev. 5 
pitsA 0 311 356 208 26 
pitsB 0 23 523 382 59 
pitsC 0 0 132 180 7 
pitsD 0 1 167 13 1 
pitsE 0 24 517 243 41 

 
The data sets are quite rich, as they contain in 

average 775 reports with about 79,000 words.  Table 3 
shows the size of each data set in terms of number of 
reports and total word count.   

Table 3.  The size of the data sets in number of 
reports and word count 

 pitsA pitsB pitsC pitsD pitsE 
Reports 901 1,650 319 182 825 
Words 155,165 104,052 23,799 15,517 93,750 
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3.2. Evaluation 
It is a methodological error to assess the rules 

learned from a data miner using the data used in 
training.  Such a self-test can lead to an over-estimate 
of the value of that model. 

Cross-validation, on the other hand, assesses a 
learned model using data not used to generate it.  The 
data is divided into, say, 10 buckets.  Each bucket is set 
aside as a test set and a model is learned from the 
remaining data.  This learned model is then assessed 
using the test set.  Such cross-validation studies are the 
preferred evaluation method when the goal is to 
produce predictors intended to predict future events 
[13]. 

Mean results from a 10-way cross-validation can be 
assessed via a confusion matrix (see Table 4).  In Table 
4, some rule learner has generated predictions for 
classes {a, b, c, d}, which denote, for example, issues 
of severity {1, 2, 3, 4} (respectively).  As shown top 
left of this matrix, the rules correctly classified issue 
reports of severity=1 as severity=1 321 times (mean 
results in 10-way cross-validation).  However, some 
severity=1 issues were incorrectly classified as 
severity=2 and severity=3 in 12 and 21 cases 
(respectively). 

Table 4.  Sample 10-way classification results. 

Classified as tn fn fp tp 
a, severity=1 321 12 21 0 
b, severity=2 157 41 8 0 
c, severity=3 49 3 259 0 
d, severity=4 21 1 2 2 

 
Confusion matrices can be summarized as follows.  

Let {tn, fn, fp, tp} denote the true negatives, false 
negatives, false positives, and true positives 
(respectively).  When predicting for class “a”, then for 
Table 4: 
� tn - are all the examples where issues of 

severity=1 were classified as severity=1; i.e., 
tn=321. 

� fn - are all the examples where lower severity 
issues were classified as severity=1; i.e., 
fn=157+49+21; 

� fp - are all the examples where severity=1 issues 
were classified as something else; i.e., fp=21+12; 

� tp - are the remaining examples; i.e., 
tp=41+8+0+3+259+0+1+2+2. 

 
{tn, fn, fp, tp} can be combined in many ways.  

Two of the most common measures used in 
Information Retrieval (IR) and statistical classification 
are recall and precision.  We use these two measures 
here in a manner akin to the one in statistical 

classification.  The precision for a class is the number 
of true positives (i.e., the number of items correctly 
labeled as belonging to the class) divided by the total 
number of elements labeled as belonging to the class 
(i.e., the sum of true positives and false positives, 
which are items incorrectly labeled as belonging to the 
class).  Recall in this context is defined as the number 
of true positives divided by the total number of 
elements that actually belong to the class (i.e., the sum 
of true positives and false negatives, which are items 
that were not labeled as belonging to that class but 
should have been). 

In our example, recall (or rec) comments on how 
much of the target was found. 

rec = recall = tp/(fn+tp) 

Precision (or pre) comments on how many of the 
instances that triggered the detector actually containing 
the target concept. 

pre = precision = tp/(tp+fp) 

In a classification task, a precision score of 1.0 for 
a class C means that every item labeled as belonging to 
class C does indeed belong to class C (but says nothing 
about the number of items from class C that were not 
labeled correctly) whereas a recall of 1.0 means that 
every item from class C was labeled as belonging to 
class C (but says nothing about how many other items 
were incorrectly also labeled as belonging to class C). 

Often, there is an inverse relationship between 
precision and recall, where it is possible to increase 
one at the cost of reducing the other.  Depending on the 
application, recall may be favored over precision, or 
vice versa.  A classification system for deciding 
whether or not, say, a report has severity1, can achieve 
high precision by only classifying reports with the 
exact right words as severity1, but at the cost of low 
recall due to the number of false negatives from reports 
that did not quite match the specification. 

Usually, precision and recall scores are not 
discussed in isolation.  Instead, either values for one 
measure are compared for a fixed level at the other 
measure (e.g., precision at a recall level of 0.75) or 
both are combined into a single measure, such as the F-
measure, which is the weighted harmonic mean of 
precision and recall.  It has the property that if either 
precision or recall is low, then the f-measure is 
decreased.  We use in this case study the F1 measure, 
with recall and precision are evenly weighted: 

f-measure = 2*pre*rec/(pre+rec) 

The larger these values, the better the model.  Table 
5 shows the precision, recall, and f-measure values for 
the data in Table 4. 
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Table 5.  Precision, recall, and f-measures for the 
data in Table 4. 

severity precision recall f-measure 
1 0.91 0.59 0.71 
2 0.20 0.72 0.31 
3 0.83 0.89 0.86 
4 0.08 1.00 0.14 

3.3. Results and discussion 
After stemming and stopping, the top 100 terms, 

based on tf*idf, were selected for each of the five data 
sets.  The top 25 terms are shown in Figure 3, ranked 
by InfoGain.. 

 

 
Figure 3.  The top 25 terms in each data set, sorted 

by InfoGain 

We have shown these lists to domain experts but, to 
date, we have not found any particular domain insights 
from these words.  For example, one would expect that 
words related to the “softwar” stem would be 
ubiquitous through these reports.  Yet the term appears 
in top 100 for each data set, even on the top position 
for data set PITSC.  We expected that the top ranked 
terms would provide a good (i.e., human readable and 
comprehensible) conceptual approximation for each 
data set.  While this was not achieved at data set level, 
as shown below, these terms can be used very 
effectively for the task of predicting issue severity. 

The issue reports for each data set were then 
rewritten as frequency counts for those top 100 tokens 
(with the severity value for each record written to the 
end of line).  This rewriting is similar to the vector 
space model (VSM) representation of documents in IR 
[15].  Each report becomes a vector with 100 values 

corresponding to the tf*idf scores of each terms that 
appears in the report.  Even so, the resulting data sets 
are quite sparse; 10% of the cells have a frequency 
count of one, and frequency counts higher than 10 
occur in only 1/100% of cells, or less.  Obviously, 
choosing less than 100 terms would yield a less sparse 
data set, but the approximation would be less precise.  
An acceptable level of approximation can be 
determined and adjusted in each case depending on 
how rich the data set is. 

Table 6.  Confusion matrices with precision, recall, 
and f-measures scores for the data sets pitsA, 

pitsB, and pitsC, using the top 100 and the top 3 
terms respectively for learning. 

pitsA using top 100 terms for learning 
 tn fn fp tp rec pre f 

sev=3 321 12 21 0 0.91 0.59 0.71 
sev=4 157 41 8 0 0.20 0.72 0.31 
sev=2 49 3 259 0 0.83 0.89 0.86 
Sev=5 21 1 2 2 0.08 1.00 0.14 

pitsA using top 3 terms for learning 
 tn fn fp tp rec pre f 

sev=3 314 13 27 0 0.89 0.55 0.68 
sev=4 158 25 24 0 0.12 0.52 0.20 
sev=2 69 10 232 0 0.75 0.82 0.78 
sev=5 25 0 1 0 0.00   

pitsB using top 100 terms for learning 
 tn fn fp tp rec pre f 

sev=4 120 254 0 4 0.32 0.63 0.42 
sev=3 69 445 0 7 0.85 0.62 0.72 
sev=5 0 11 47 0 0.81 1.00 0.90 
sev=2 2 9 0 11 0.50 0.50 0.50 

pitsB using top 3 terms for learning 
 tn fn fp tp rec pre f 

sev=4 60 317 0 0 0.16 0.64 0.25 
sev=3 20 501 0 0 0.96 0.57 0.71 
sev=5 3 55 0 0 0.00   
sev=2 11 11 0 0 0.00   

pitsC using top 100 terms for learning 
 tn fn fp tp rec pre f 

sev=4 162 14 4 n/a 0.90 0.95 0.92 
sev=3 7 123 0 n/a 0.95 0.89 0.92 
sev=5 2 1 4 n/a 0.57 0.50 0.53 

pitsC using top 3 terms for learning 
 tn fn fp tp rec pre f 

sev=4 169 11 0 n/a 0.94 0.80 0.86 
sev=3 37 93 0 n/a 0.72 0.89 0.79 
sev=5 6 1 0 n/a 0.00   

 
Table 6 and Table 7 show the confusion matrices 

when learning from the top 100 tokens and top 3 
tokens of each data set.  In each case a set of rules was 
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learned by SEVERIS from 90% of the data and tested 
on the remaining 10% to compute mean precision, 
mean recall, and the mean f-measures.  For each data 
set, we repeated tested the rules 10 times, rotating the 
10% testing part of the data. 

Table 7.  Confusion matrices with precision, recall, 
and f-measures scores for the data sets pitsD and 

pitsE, using the top 100 and the top 3 terms 
respectively for learning. 

pitsD using top 100 terms for learning 
 tn fn fp tp rec pre f 

sev=2 0 0 0 0 0   
sev=4 0 10 2 0 0.83 0.91 0.87 
sev=3 0 1 163 0 0.99 0.98 0.99 
sev=5 0 0 1 0 0.00   

pitsD using top 3 terms for learning 
 tn fn fp tp rec pre f 

sev=2 0 0 1 0 0.00   
sev=4 0 10 2 0 0.83 0.91 0.87 
sev=3 0 1 163 0 0.99 0.98 0.98 
sev=5 0 0 1 0 0.00   

pitsE using top 100 terms for learning 
 tn fn fp tp rec pre f 

sev=2 1 20 0 0 0.05 0.25 0.08 
sev=3 3 490 3 20 0.95 0.70 0.80 
sev=5 0 26 9 6 0.22 0.69 0.33 
sev=4 0 167 1 74 0.31 0.74 0.43 

pitsE using top 3 terms for learning 
 tn fn fp tp rec pre f 

sev=2 0 21 0 0 0.00   
sev=3 0 515 0 1 1.00 0.65 0.79 
sev=5 0 34 0 7 0.00   
sev=4 0 222 0 20 0.08 0.71 0.15 
 
We chose 100 terms as this number of attributes is 

larger than most of the data sets used to certify the 
standard data miners (most of the data sets in the UCI 
repository of machine learning data has less than 100 
attributes [3]). 

As an experiment, we tried halving the attribute set 
size. To our surprise, there was little difference in the 
halved results as in the whole.  This process was 

repeated until the number of attributes was equal to 
three.  As shown below, even with this very small 
attribute set, the performance of SEVERIS did not 
decrease significantly. 

Figure 4

Figure 4

 shows the rules learned for dataset PITSA 
considering the top 100 terms.  Note that the rules of 

 use only a subset of the 100 terms in the data 
set.  That is, for data set PITSA, there are a handful of 
terms that are most relevant to predict issue severity.  
Similar results hold for the other data sets.  That is, 
even when learning from all 100 tokens, most of the 
rules use a few dozens terms or less. 

The rules are not easy to understand as the terms 
are stemmed.  For example, in those rules “sr” is a 
stemmed version of “srs”, which stands for “systems 
requirements specification”, a common abbreviation 
used in the PITS reports. 

Even though few tokens were used, in many cases, 
the f-measures are quite large (see Table 6 and Table 
7).  The best results are: 
� pitsA, for issues of severity=2, f = 78-86%; 
� pitsA, for issues of severity=3, f = 68-71%; 
� pitsB, for issues of severity=3, f = 71-71%; 
� pitsC, for issues of severity=3, f = 79-92%; 
� pitsC, for issues of severity=4, f = 86-92%; 
� pitsD, for issues of severity=3, f = 98-98%; 
� pitsD, for issues of severity=4, f = 91-91%; 
� pitsE, for issues of severity=3, f = 65-70%; 
� pitsE, for issues of severity=3, f = 71-75%; 

 
These results are better than they might first appear.  
The first f-measure (in f = X-Y%) corresponds to 
learning with three tokens and the second one 
corresponds to learning with 100 tokens.  Note how 
using just a vanishingly small number of tokens (i.e., 
three) performed nearly as well as using a much larger 
number of tokens.  Also, recall that these are all results 
from a 10-way cross-validation, which usually over-
estimates model error [13].  That is, the real 
performance values are higher than the values shown 
above.  The f-measure is used in SEVERIS as 
confidence level in the prediction for new issues. 

For other severities, the results are not as positive.  

 
Figure 4.  Rules learned from the data set PITSA considering the top 100 terms. 
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Recalling Table 2, none of our data sets had severity=1 
errors so the absence of severity=1 results in the above 
list is not a concern.  However, not all datasets resulted 
in good predictors for severity=2 errors.  In all cases 
where this was observed, the data set had very few 
examples of such issues: 
� pitsB only has 22 records of severity=2; 
� pitsC has zero records of severity=2; 
� pitsD only has 1 record of severity=2; 
� pitsE only has 21 record of severity=2; 
 

Part of our proposed future work is to investigate 
what is the (data specific) minimum number of 
classified reports needed to learn in order to predict 
with higher confidence. 

3.4. Threats to validity 
Like any empirical data mining work, our 

conclusions are biased according to what data was used 
to generate them.  Issues of sampling bias threaten any 
data mining experiment; i.e., what matters there may 
not be true here.  For example, the sample used here 
comes from NASA, which works in a unique market 
niche.  Nevertheless, we argue that results from NASA 
are relevant to the general software engineering 
industry.  NASA makes extensive use of contractors 
who are contractually obliged (ISO-9O01) to 
demonstrate their understanding and usage of current 
industrial best practices.  These contractors service 
many other industries; for example, Rockwell-Collins 
builds systems for many government and commercial 
organizations.  For these reasons, other noted 
researchers such as Basili, Zelkowitz, et al. [2] have 
argued that conclusions from NASA data are relevant 
to the general software.  We plan to run similar future 
experiments on open source date from Bugzilla 
repositories to reduce this bias. 

We must also point out the fact that the learning 
rules can not be generalized across data sets, as each 
rule is only relevant to the data it was learnt from.  Not 
having data with issues of severity=1 influenced the 
results, but we argue that adding additional categories 
to the learning algorithm would not change the results 
or the way SEVERIS works. 

4. Related Work 
Given the nature of defect descriptions in most bug 

tracking systems (i.e., textual), other researchers 
applied text mining techniques to analyze bug 
descriptions in support of various tasks. 

One of the addressed problems is the detection of 
duplicate bug reports.  In the most recent work, Wang 
et al. [18] use an Information Retrieval (IR) technique, 

vector space model (VSM) [16], to index the titles and 
descriptions of bug reports in Bugzilla.  Textual 
similarities are computed between the bug descriptions, 
based on the VSM representation.  Additional 
information is considered from the execution steps to 
reproduce the bug, described in the reports.  Earlier 
work on the same problem was done by Runeson et al. 
[14], who proposed the recall rate as evaluation for 
their approach, also used in [18]. 

Closer to our work, in as much as some prediction 
is being made based on observed rules, are the 
approaches that use the textual similarity between bug 
descriptions to assign bugs to developers [1, 4, 8, 10].  
These approaches work by indexing the bug titles and 
their descriptions (extracted from Bugzilla) and 
computing textual similarities between them, using 
some IR method.  Based on these similarities and 
learning who fixed earlier bugs, these systems 
recommend the best developer to fix a newly reported 
bug.  The main differences between the approaches are 
in their choice of IR method and in the machine 
learning algorithm they use, such as: support vector 
machines, Naïve Bayes and C4.5 are used in [1]; 
Probabilistic IR, VSM, support vector machines, 
classification and regression trees, and k-nearest 
neighbor are used in [10]; Naïve Bayes is used in [8]. 

A probabilistic IR model is used in [5, 6] to predict 
source code files that will change in response to a new 
bug, based on textual similarities between its 
description and other similar bug reports, which were 
previously fixed. 

In a similar fashion, Lucene (http://lucene.apache.org) 
a VSM based IR tool, is used in [19] to predict the time 
and effort required for fixing a bug. 

None of these efforts are specifically targeted at the 
assessment of the severity level of the bug descriptions.  
However, what makes this earlier work relevant to ours 
is that researchers recognized the importance of finding 
textual similarities between bug reports and correlating 
them with additional bug related issues.  Our work on 
SEVERIS is based on the same principles, yet it uses 
different text mining and machine learning techniques, 
while addressing a new problem. 

5. Conclusions and Future Work 
Over the years, the Project Issue Tracking System 

has been extensively and repeatedly modified.  Prior 
attempts at generating generalized conclusions from 
PITS have required significant levels of manual, hence 
error-prone, processing. 

Here, we show that conclusions can be reached 
from PITS without heroic effort.  Using text mining 
and machine learning methods, we have shown that it 
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is possible to automatically generate predictors for 
severity levels from the free text entered into PITS. 

Better yet, our rules are self-certifying.  Our data 
mining generation methods builds the rules and prints 
performance statistics (the confusion matrix with the f-
measure).  For data sets with more than 30 examples of 
high severity issues, SEVERIS always found good 
issue predictors (with high f-measures).  Further, 
SEVERIS does so using surprisingly little domain 
knowledge. In all cases where large f-measures were 
seen using the top 100 terms, similar f-measures were 
seen when using as few as 3 terms. It is a very exciting 
result since it speaks to the usability of this work. 

Future work will be aimed at performing 
experiments on other defect data (from open source 
domain) and at assessing what is the optimum number 
of term to be used in learning and the minimum 
number of data points in each category. 
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