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Abstract 
 
Defect reports are generated from various testing and 
development activities in software engineering. Some-
times two reports are submitted that describe the same 
problem, leading to duplicate reports. These reports 
are mostly written in structured natural language, and 
as such, it is hard to compare two reports for similarity 
with formal methods. In order to identify duplicates, 
we investigate using Natural Language Processing 
(NLP) techniques to support the identification. A pro-
totype tool is developed and evaluated in a case study 
analyzing defect reports at Sony Ericsson Mobile Com-
munications. The evaluation shows that about 2/3 of 
the duplicates can possibly be found using the NLP 
techniques. Different variants of the techniques pro-
vide only minor result differences, indicating a robust 
technology. User testing shows that the overall attitude 
towards the technique is positive and that it has a 
growth potential.  
 

1. Introduction 

When a complex software product like a mobile 
phone is developed, it is natural and common that 
software defects slip into the product, leading to func-
tional failures, i.e. the phone does not have the ex-
pected behavior. These failures are found in testing or 
other development activities and reported in a defect 
management system [5][18]. If the development proc-
ess is highly parallel, or a product line architecture is 
used, where components are used in different products, 
the same defect may easily be reported multiple times, 
resulting in duplicate reports in the defect management 
system. These duplicates cost effort in identification 

and handling, hence support to speed up the duplicate 
detection process is appreciated. 

The defect reports are written in natural language, 
and the duplicate identification requires suitable infor-
mation retrieval methods. In this study, we investigate 
the use of Natural Language Processing (NLP) [17] 
techniques to help automate this process. NLP is previ-
ously used in requirements engineering [12][3][19], 
program comprehension [2] and in defect report man-
agement [15], although with a different angle.  

Basically, we take the words in the defect report in 
plain English, make some processing of the text and 
then use the statistics on the occurrences of the words 
to identify similar defect reports. We implemented a 
prototype tool and evaluated its effects on the internal 
defect reporting system of Sony Ericsson Mobile 
Communications which contained thousands of reports. 
Further, we interviewed some users of the prototype 
tool to get a qualitative view of the effects. The proto-
type tool identified about 40% of the marked duplicate 
defect reports, which can be seen as low figure. How-
ever, since only one type of duplicate reports are possi-
bly found by the technique, we estimate that the tech-
nique finds 2/3 of the possible duplicates. Also, in 
terms of working hours, reducing the effort to identify 
duplicate reports with 40% is still a substantial saving 
for a major software development company, which 
handles thousands of defect reports every year. 

The paper is outlined as follows. Section 2 intro-
duces the theory on defect reporting and on natural 
language processing. Section 3 presents the tailoring 
made of the NLP techniques to fit the duplicate detec-
tion purpose. In Section 4, we specify the case study 
conducted for evaluation of the technique, and Section 
5 presents the case study results. Finally Section 6 con-
cludes the paper and outlines further work. 
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2. Theory 

2.1 Defect Reporting 

Whenever a problem is found during development, 
testing or operation, it has to be notified to the one re-
sponsible for identification of the underlying fault and 
its correction. To help with this, Defect Management 
Systems (DMS) or “bug tracking” systems are used 
[5][18]. With this tool, the tester, or whoever discovers 
a problem, can submit a Defect Report (DR). 

A general workflow for how defect reports are han-
dled follows: 
• A failure or an issue is found and a report is cre-

ated in the defect management system. 
• The report is analyzed by an analyst to isolate the 

cause. 
• The report is assigned to a developer for correction 

by a change control board or similarly. 
• The developer finds the defect and corrects it. 
• The fix is tested by the developer or by a test de-

partment. 
• The report is closed. 

Defect report management is similar to task man-
agement in general, e.g. in a service organization. The 
report is a kind of “relay” in relay race, intended to 
solve a task. Different actors contribute to solving the 
task, and the information management system is the 
central node which dispatches subtasks to the actors. 

A defect report must contain information about the 
origin, the defect as such and software under test. The 
scheme used in our context is similar to one, proposed 
by Pol et al [16], see items Table 1. Our context uses 
the DMS also for change requests, hence the types are 
defect report and change request. 

When we search for duplicate DRs, part of the prob-
lem lies in defining what counts as a duplicate DR. 
There are two types of duplicates; 1) those that de-
scribe the same failure and 2) those that describe two 
different failures with the same underlying fault. See 
Figure 1. These two kinds are inherently different in 
that the former type, which describes the same failure, 
generally uses the same vocabulary, while the latter 
type, which describes two failures stemming from the 
same fault, may use different vocabulary. The tech-
nique we use in this study is based on vocabularies, and 
hence, we address only defects of type 1. 

As an example, there might be two defect reports 
stating that when you push the back button on the 
phone, nothing happens. These would count as dupli-
cate reports describing the same failure. The reports 
will probably use similar vocabulary. 

 

Table 1. Information items in a defect report  
Item Explanation 
Header Concise description of the prob-

lem1 
Project name Which project the DR concerns 
Number An unique identification number 

for this DR 
Tester The name of the tester 
Date The date of submission 
Urgency How important it is that this is 

fixed 
Type Whether it is an defect report or a 

change request2 
Test object What software the test was per-

formed on 
Version What version of the software was 

used 
Test specifica-
tion 

Reference to the test case used 

Description A description as to what went 
wrong 

Appendices Attachments such as test logs etc. 
Remarks Comments 

 
 

 
Figure 1. The two different types of DRs. 

DR 1 and DR 2 describe the same failure 
which stems from Fault 1. DR 3 and DR 4 
describe two different failures which both 

in turn stem from Fault 2. 
 
Another example is one report stating that there is 

something wrong with the standby time of the phone, 
and another saying that the phone keeps loosing re-
ception. These two reports might have the same source, 

                                                           
1 This field is not in the scheme proposed by Pol et al. 
2 Pol et al’s scheme depicts type to software, specifications, docu-
mentation or technical infrastructure. 
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e.g. that the code that controls the antenna is faulty. If 
the problem with the antenna is solved, the standby and 
reception failures would both be solved. They are 
therefore also counted as duplicate reports, but do not 
use the same vocabulary since the failures, on the sur-
face, are very different. 

The first submitted DR on a specific fault is denoted 
the master report, and the subsequent reports on the 
same fault are called duplicate reports. 

Although much effort is spent on defect handling in 
software engineering, very little research is done on the 
tools for defect management. Recommendations on the 
introduction and use of DMS are recently published 
[5][18]. However, to the best of our knowledge, the 
only research published on the DR duplicates is the 
work by Podgurski et al [15], who cluster related de-
fects, using information from automatically reported 
software failures.  

2.2 Natural Language Processing 

The goal of information retrieval research is to de-
velop algorithms and models for retrieving information 
from document repositories. This information is mainly 
textual, expressed in Natural Language (NL) or struc-
tured NL. The classical information retrieval problem 
is called the ad-hoc retrieval problem. Here the user 
defines the information he is looking for with a query, 
and the system returns a list of documents. An exact 
match system demands that the documents in every 
detail satisfy some structured query expression. Man-
ning and Schütze [8] claim that for large and heteroge-
neous documents collections, this might lead to that the 
list of results might either be empty, or very large. Re-
cent work has therefore concentrated on ranking docu-
ments according to relevance to the query, i.e. finding 
the list of most similar documents.  

The processing stages in NLP are described below 
based on Manning and Schütze [8]. They comprise: 
• tokenization, 
• stemming, 
• stop words removal, 
• vector space representation, and 
• similarity calculation. 

2.2.1 Tokenization. Tokenization means turning a 
stream of characters into a stream of tokens. This is 
done by removing capitals, punctuation, brackets etc. 
Basically each token is a word, although the definition 
of a word is not straightforward. A word might be de-
fined as a string of alphanumeric characters surrounded 
by white space. But there are several alternatives on 

how to treat hyphens and apostrophes and other punc-
tuation marks. 

Most punctuation marks, like commas and semico-
lons, are easy to remove, as they clearly are not part of 
any word. Periods however, are used to mark both end 
of sentence and abbreviations such as etc. Apostrophes 
sometimes cause confusion, for example, it is unclear 
whether boy's is the possessive case or an abbreviation 
for boy is or boy has.  

Hyphens may either be split into several words or 
kept together. Some words like e-mail are best kept as 
one word, while others like so-called are more open for 
debate. A different kind of hyphens is those inserted to 
help indicate the correct grouping of words, for exam-
ple a text-based medium. It is common, like in this 
case, to hyphenate compound pre-modifiers.  

Different policies can be chosen regarding how to 
split into words, and the choice depends on the type of 
data to tokenize.  

2.2.2 Stemming. Stemming aims at identifying the 
ground form of each word. Words may be written in 
different grammatical forms, but still carry the same 
information. During this phase affixes and other lexical 
components are removed from each token, and only the 
stem remains. For example, worked and working are 
both transformed into work. Verbs are also transformed 
to their ground form, e.g. was and being become be.  

2.2.3 Stop Words Removal. There are many com-
mon words, like the, that and when, that do not carry 
any specific information and hence are not likely to be 
of any help in the similarity analysis. These words oc-
cur in all texts with approximately the same frequency, 
and do not relate to the content of text. While they are 
semantically important, if not removed they could dis-
turb the similarity calculation. Most of them are prepo-
sitions, conjunctions or pronouns.  

Therefore a list containing those “stop words” can 
be applied to the text. All words matching the stop 
words list are removed. Exactly what words to include 
on the list depends on the type of data [8]. 

If the texts are based on a template, it might be 
beneficial to remove the words that make up the tem-
plate to reduce these words’ impact on the similarity 
measure.  

As an alternative to stop words removal, the terms 
may be weighted based on the inverse frequencies of 
the word in the total corpus [9]. The more frequent a 
word is, the less information it carries, and hence the 
less it should be weighted in the similarity calculation. 
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2.2.4 The Vector Space Model. The next step is to 
represent the words in a multi-dimensional vector space 
model. Each dimension of the space corresponds to a 
word. The position along each axis in this space de-
pends on the frequency of the word occurring in the 
text. The similarity between two texts is then measured 
in terms of distances in this vector space.  

The dimensions must not necessarily be linear, i.e. a 
simple word count. A word that occurs three times is 
probably more important to the content of the text than 
another word that only occurs once, but not three times 
as important. Therefore the term frequency needs to be 
dampened. A common approach is to use a weighted 
scale, as defined in equation (1): 
 
 weight = 1 + log(frequency) (1) 
 

This analysis may be extended to pairs or triples of 
words. This increases the computational complexity, 
but is shown successful in other applications [9]. 

2.2.5 Similarity Measures. The calculation of the 
similarity between two texts is done on the vector space 
model. The three most common measures are Cosine, 
Dice and Jaccard [8]. According to Salton, “The 
choice of a particular vector-similarity measure for a 
certain application is not prescribed by any theoretical 
considerations, and is left to the user.” [17]. 

 
Figure 2. Similarity between the two 

texts computer science computer and 
computer science using the Cosine meas-

ure and the vector space model. 
 
All three measures are normalized, in order to take 

into account the length of the vectors. A graphical rep-
resentation of a similarity measure calculation is shown 
in Figure 2. 

2.3 NLP in Software Engineering 

Software engineering is mostly based on natural lan-
guage information in different kinds of specifications 
and other documents. Hence, the field is a candidate for 
using NLP techniques. Published studies using NLP in 
software engineering are mainly in the requirements 
engineering and program comprehension subfields.  

Natt och Dag et al [12][13] link two different kinds 
of requirements together, using NLP. Market require-
ments, which express customer wishes on future prod-
ucts, are linked to the company’s internal requirements 
in a compliance checking procedure. They have devel-
oped a prototype tool – ReqSimile3 –  to support the 
linking. The approach is empirically evaluated in in-
dustrial case studies [12][13]. Natt och Dag et al also 
used the tool to identify duplicate requirements, which 
application was evaluated in an experiment [14]. 

Hayes, Dekhtyar and Sundaram [3][4] use NLP to 
support tracking of requirements to designs. They have 
developed a requirements management tool, called 
RETRO, which supports the tracking. They report on 
evaluation of different NLP variants in their paper.  

Yadla, Hayes and Dekhtyar [19] have linked re-
quirements to defect reports in order to support the 
defect correction process. They investigate relevance 
feedback in the learning of NLP algorithms. This work 
is implemented as a part of the RETRO tool. The au-
thors mention in this paper identification of duplicate 
defect reports as a piece of future work. 

Lormans and van Deursen [6] used latent semantic 
indexing (LSI) to automatically reconstruct traceability 
links between requirements and design, and require-
ments and test cases respectively. They evaluated two 
alternative approaches empirically in three industrial 
case studies. 

Antionol et al [3] traced C++ source code onto 
manual pages and Java code to functional require-
ments. They use both a probabilistic information re-
trieval model and vector space models. 

Canfora and Cerulo [2] searched for source files 
through change request descriptions in open source 
code projects. They find change requests being good 
indicators for impact analysis on where to change the 
code. 

Maarek et al [9] supported searching in a software 
reuse library. They created an indexing scheme, using 
NLP techniques, to help programmers find reuse can-
didates in the code library. 

                                                           
3 http://reqsimile.sourceforge.net 
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3. NLP in Duplicate Detection 

In this section, we present how we tailor the NLP 
techniques to identify duplicate defect reports. We 
have developed a tool, based on the core functionality 
of the ReqSimile tool. This section presents the choices 
with respect to NLP techniques, and Section 4 presents 
the case study evaluation. 

3.1 Tokenization, Stemming and Stop 
Words 

The tokenization, stemming and stop words removal 
are made based on Minnen et al’s work [10]. Almost 
all periods are removed, except periods in floating 
point numbers and in references to standards, like ISO-
8859-1 [12]. All other punctuation marks are dis-
carded. This means that hyphenated words without 
digits are split into several tokens. All capital letters are 
transformed into lower-case.  

In the stemming, all affixes are removed, which is 
quite straightforward. 

The stop words list consists of words commonly 
used with stop lists, like articles and prepositions, plus 
words we found that occur frequently in the defect 
management system. Examples of these are attach and 
log, which are used in many DRs, but say nothing 
about the defect that is reported. See an example in 
Table 2.  

 
Table 2. Results of tokenization, stemming 

and stop words removal 
Original 
sentence 

Tokeniza-
tion 

Stemming Stop 
words 
removal 

Dump in 
file system 
when re-
cording 
audio (see 
attached 
log). 

dump in file 
system when 
recording 
audio see 
attached log 

dump file 
system 
when re-
cord audio 
see attach 
log 

dump file 
system 
record 
audio 

3.2 Synonyms and Spellchecking 

When dealing with large amounts of raw text sub-
mitted by many different persons, it is natural that dif-
ferences exist in which words are used to signify a 
given meaning. Based on this observation we decided 
to implement a simple thesaurus.  

In order to construct the thesaurus, we took the 
1.000 most frequently used words in the DMS, and 
studied what words were used interchangeably with the 

words in the list. We also asked employees at the com-
pany to give us a list of words, which were used inter-
changeably. 

It is worth noting that not only pure synonyms were 
considered, but also words that are used in the same 
context and mean almost the same. Examples of this 
are crash and dump; a crash means that the phone 
stopped responding while a dump means that it stopped 
responding but also a snapshot of the memory could be 
recovered. While these two might not actually be syno-
nyms, they are used interchangeably when writing DRs. 
Abbreviations such as bt for Bluetooth were also added 
to the thesaurus. 

The thesaurus is applied after the stop words re-
moval. It checks all tokens if they are present in the 
thesaurus and substitutes them with their synonyms. 

We also made a simple spellchecker which works in 
the same way as the thesaurus, i.e. it recognizes mis-
spelled words and substitutes them with the correctly 
spelled ones instead.  

The basis of the spellchecker comes from a list of 
usually misspelled words4 and we used much of the 
same method as with the thesaurus. Spellchecking is 
performed at the same time as substitution of syno-
nyms. The result after synonym replacement and spell-
checking is shown in Table 3. 

 
Table 3. Results of synonym replacement 

and spellchecking 
Stop words removal Synonym replacement 
dump file system record 
audio 

dump file system record 
sound 

3.3 Similarity Measures 

To measure the similarity value between two DRs, 
we use the vector-space model along with the cosine 
measure. Other measures were tested (Jaccard, Dice), 
but did not improve the result and were hence dis-
carded. All term weights are dampened by equation (1). 

3.4 Information Elements 

A DR consists of many fields, together carrying a lot 
of information, see Table 1. Two of the fields are writ-
ten in natural language; the description field which 
thoroughly describes the problem, and the header 
which summarizes it. A decision has to be made of 
what fields shall represent the DR as a text. We started 
up with header and description combined, but also 
evaluated including project name and assigning a 

                                                           
4 http://www.wsu.edu/\~brians/errors/misspelled.html 

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00  © 2007



higher weight to the header in the similarity calcula-
tion. 

3.5 Time Frame 

One problem with the duplicate detection approach 
is that when searching for a duplicate to a specific mas-
ter DR and the set of possible candidates, i.e. the rest of 
the DRs, is very large; the duplicate must be very simi-
lar to the master to come up in the result list since there 
are so many DRs that are compared. One way of coun-
tering this is to narrow the search to fewer candidates. 
This also improves the calculation performance. 

We investigated narrowing the search, using only 
the DRs launched within a certain time frame. Figure 3 
shows a diagram over the time difference between 
when a duplicate and its respective master was submit-
ted.5 As can be seen in the figure, 53% of the dupli-
cates were submitted within 20 days after its corre-
sponding master. 90% are in the range between 20 days 
forward and 60 days back. 

This led to us implementing what we call a time 
frame, which can be specified by the user. If there are 
two years worth of DRs in the database, using a time 
frame of fifty days back and ten days forward, the 
number of candidates are reduced to 5%, leading to 
reduced calculation costs. The evaluation of the use of 
the time frame is presented below. 

 

 
Figure 3. Time difference between when 

a duplicate and its master were submitted 

3.6 Top List Size 

The NLP algorithm ranks the document by similarity. 
However, in order to be a useful tool, only a subset can 
be presented to the user. The top list size is defined as 
the number of possible candidates that are returned 

                                                           
5 A duplicate may be reported as being submitted before its master, 
since the assignment to master/duplicate is somewhat arbitrary. In 
the analysis, we always consider the oldest DR being the master. 

from a duplicate search. As the candidates are to fit 
into a window and be reviewed manually we use top 
list sizes of 5, 10 and 15 DRs in the evaluation. 

4. Case Study 

4.1 Environment 

Sony Ericsson Mobile Communications develops 
mobile multimedia devices for GSM and UMTS stan-
dards. It is a large company with a complex software 
development process. Some 20 unique products are 
launched every year. Sony Ericsson uses a Software 
Product Line approach when developing mobile 
phones. The notion is to have one single platform for a 
family of phones. They all share this single platform, 
and upon it, modules are added as needed. These mod-
ules could be seen as building blocks and the platform 
as the foundation. Depending on which building blocks 
are laid on the foundation, the resulting product will 
exhibit different characteristics. 

While this is an efficient way to develop new phone 
models, it is also a good source of duplicate DRs. 
Whenever code is reused in new products and different 
releases, great care has to be taken to fix defects in the 
right version of the code; otherwise the failure will still 
be present in the latest version or, in the version that 
actually exhibited the failure. 

Handling of these defect reports are managed 
through a DMS. The database comprises thousands of 
defect reports from previous and current development 
projects. Some 10% of the DRs are marked as dupli-
cates. Comparing a new report to already existing re-
ports, in hope of finding a duplicate, is a tedious and 
error prone process.  The current search engine in the 
DMS is a basic string matcher to which you can pass 
additional arguments such as time interval and DR id 
interval. 

4.2 Methodology 

In order to evaluate the NLP technique for DR du-
plicate identification, we used two approaches. Firstly, 
batch runs were conducted of the duplicate detection 
procedures against the database and secondly, user 
tests by testers and analysts were conducted, followed 
by interviews. 

We evaluated different parameters in the NLP tech-
nique, changing one factor at a time [11]. This simple 
experimental design is assumed to be sufficient at this 
stage, since we have not seen any indications on major 
interactions between the factors. The evaluated variants 
are: 
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• Similarity measures: Which of them works best for 
duplicate DR detection? 

• Stop words list: What impact has the number of 
words in the list, and is it useful at all? 

• Time frame: How old DRs should be included in 
the search? 

• Synonyms and spellchecking: Does a basic ap-
proach increase the recall rate? 

• Fields: What fields should be passed on to the pre-
processor? Is it a good idea to include the project 
on which the report is submitted? Since the header 
describes the problem quite concise, should it be 
weighted more than the regular description?  

All the variants were tested on three different top 
list sizes. 

4.3 Evaluation Measures 

The two most important evaluation measures in in-
formation retrieval systems are recall and precision [8]. 
Generally speaking, recall is the percentage of relevant 
items selected out of all the relevant items in the re-
pository, while precision is the percentage of relevant 
items out of those items selected by the query.  

These metrics do not really fit into how duplicate 
detection works. Consider a search for a duplicate 
where the size of the top list is set to 10. What you are 
looking for is one DR, namely the corresponding mas-
ter DR. A successful search would thus yield a preci-
sion of 10% since one item out of ten was relevant. 
Recall would then be a binary value, 100% or 0%; ei-
ther it is found or not. 

Natt och Dag et al. instead uses recall rate to meas-
ure how efficient their requirements similarity tool 
works [12]. Recall rate is here defined as the percent-
age of duplicates for which the master is found for a 
given top list size. This answers the question of What 
percentage of the duplicates is found that today are 
marked as duplicates in the DMS?  

This evaluation measure is conservative, since we 
have used only the DRs marked as duplicates as basis 
for the batch runs. The recall rate might very well actu-
ally be higher for two reasons; 1) all duplicates are 
probably not identified and marked as such in the data-
base, and 2) the NLP technique is relevant for identify-
ing only duplicates with common failure behaviour, as 
discussed in Section 2.1. 

5. Evaluation Results 

5.1 Batch Runs 

The batch runs were conducted as follows. We se-
lected the DRs in the DMS that were marked as dupli-
cates and each corresponding master report. For each 
duplicate DR, a similarity search was performed and 
the position of the duplicate DR in the top list was ob-
served. From this data, the recall rates were calculated 
for different top list sizes. The same set of DR data is 
used for all the tests. The size of the data set is counted 
in thousands, although exact figures cannot be reported 
for confidentiality reasons. 

To evaluate the different NLP factors, we set up a 
number of test cases. The baseline setup of parameters 
is to use the cosine measure, search 50 days back, use 
the small stop words list, use synonym replacement, 
use spellchecking and include product name.  

 The results are presented as recall rates for different 
sized lists. Note that the left column is the same for all 
tests.  
 

Table 4. Recall rate for different similarity 
measures   

Top list size Cosine Dice Jaccard 
5 0.3127 0.3024 0.3024  
10 0.3822 0.3749 0.3749  
15 0.4240 0.4153 0.4153 

 
As seen in Table 4, Dice and Jaccard give the same 

result. This is always the case; their ranking is the 
same, even if they provide different similarity values. 
The cosine coefficient shows a slightly better result, 
and continues to be our main choice.  
 
Table 5. Recall rate for different time frame  
Top list 
size 

50-0 60-0 100-0 500-0 

5 0.3127 0.3114 0.2990 0.2485 

10 0.3822 0.3831 0.3719 0.3084 

15 0.4240 0.4219 0.4149 0.3434 

 
There is a very small difference between using an 

interval of 50 days and 60 days, see Table 5. Expand-
ing the interval to 100 days does decrease the recall 
rate some, but the difference is not significant. Further 
expansion to 500 days can not be recommended, due to 
the heavy decrease in recall rate. 
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Table 6. Recall rate for different stop words 
lists. The small stop words list con-
tains 60 words, and the big list con-

tains 439 words.  
Top list 
size 

Small Big None 

5 0.3127 0.3055  0.2811 
10 0.3822 0.3719 0.3451 
15 0.4240 0.4101 0.3834 

 
The small stop words list, with 60 words, gives the 

best result, see �. While the difference in result is not 
that big between the two stop words lists, it can be seen 
that without any stop words, the result becomes signifi-
cantly worse.  
 

Table 7. Recall rate using synonyms 
Top list 
size 

With synonyms 
and spellchecking 

Without syno-
nyms and spell-
checking 

5 0.3127 0.3068  
10 0.3822 0.3813 
15 0.4240 0.4233 

  
By using synonym replacement and spellchecking, 

the result is improved very little, see Table 7. It is im-
possible to judge whether this indicates that synonym 
replacement and spellchecking is not necessary or that 
the basic approach we have used is not efficient 
enough. 
 

Table 8. Recall rate using project field 
Top list 
size 

Using project 
field 

Not using pro-
ject field 

5 0.3127 0.3016  
10 0.3822 0.3731 
15 0.4240 0.4097  

  
As expected, including the project name increased 

the recall rate some, see Table 8. It turns out that 
weighting the header, so that it is included twice in the 
search, also increases the recall rate somewhat, see 
Table 9.   
 
Table 9. Recall rate using double header  
Top list 
size 

Not using 
double header 

Using double 
header 

5 0.3127 0.3172  
10 0.3822 0.3867 
15 0.4240 0.4238 
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Figure 4. Graph showing the recall rates 

for different sizes of the top list. 
 
As can be seen in the result tables above, the best 

result we get is finding approximately 39% for a top 
list size of 10 and 42% for a top list size of 15. As out-
lined in Figure 1, not all duplicates actually describe 
the same defect, and are therefore not possible to detect 
with the NLP approach. Another problem is DRs that 
are irrelevant for the search, but still get a high similar-
ity value.  Thus they push relevant DRs from the result 
list. There are several reasons why they might get a 
high similarity value: 
• Unnecessary tagging. Some users write informa-

tion in the header and description areas that could 
be found in other fields of the DR. For example, 
defect severity. 

• Users write all their DRs in a similar way and 
probably copy texts sometimes. Therefore, when 
searching for duplicates to a DR of theirs, other 
DRs written by the same user will fill up the list. 

• Several different problems can be described using 
the same vocabulary. 

� further indicates that not all duplicate DRs can be 
found using the NLP approach. The asymptotic recall 
rate for large top list sizes is not 1, but rather between 
0.5 and 0.6, indicating that an estimated maximum of 
60% of the duplicates can at best be found by the tech-
nique. As can be seen in the graph, the curve is steep in 
the beginning but flattens as the top list size grows lar-
ger. In effect, this means that those duplicate DRs that 
use similar words will be found. Those that are not 
similar will, regardless of top list size, never be found. 
Hence our results indicate a recall rate of about 2/3 of 
the possibly detectable duplicates. 
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5.2 Interviews 

To evaluate the usefulness and other qualitative as-
pects of the duplicated detection, we interviewed one 
tester that used the prototype tool and a team of ana-
lyst. 

5.2.1 Interview with tester 
The tester found the prototype tool being was help-

ful in his day-to-day work in finding duplicates. He 
thought that “any approach to making it easier to find 
duplicates was good”.  

The tester had mostly used the tool to search dupli-
cate DRs based on typing in a few keywords, which is 
not the best suited task for the NLP technique. He 
thought that it would be hard to get testers to use the 
tool in its intended way, i.e. enter a full DR and then 
search for duplicates. When you have decided to write 
a DR, you have already done all the research necessary 
to submit a DR, and then you will do so. 

The biggest future improvement would be to inte-
grate the tool into the DMS. Other improvements that 
could be made is more ways of limiting the search such 
as; being able to search only from one organizational 
group’s DRs and to search only from DRs concerning 
one specific project. 

5.2.2 Interview with analysts 
The analysts had actually not used the prototype tool 

as such. Instead, one of them had taken out the core 
functionality from the tool and incorporated it into a 
tool that he used when analyzing DRs. In his tool, he 
had added a button that whenever he analyzed a DR, he 
could push this button and get a top list containing the 
most likely duplicates. He had then given this modified 
tool to his colleague who also had started using it. 

The analyst found that the technique worked very 
well for them. One thing in particular that they thought 
worked very well was to search for duplicates to 
somewhat “unclear” DRs, i.e. DRs that are not easy to 
understand what they actually mean. One of the ana-
lysts said that it saved time due to when she was to 
search for duplicates the ordinary way, she had to sit 
down and really understand the DR, then she had to 
think up words that she thought described the DR and 
search with those words. Using their modified tool she 
could just push a button. If she found a duplicate she 
was done, otherwise she of course had to do it the ordi-
nary way. 

As one of them said, even if I do not find a duplicate 
with this approach, it takes so little time to push the 
button and skim through the result list so the extra ef-
fort does not matter. 

5.3 Costs and Gains 

Finding 40% of the marked duplicate DRs may be 
seen as a very low figure. Still, if the technique helps 
eliminating 4% of all DRs (assuming 10% duplicates as 
in our case) this is an enormous saving for a major 
software developer. For confidentiality reasons, we 
cannot report the total number of DRs and hence the 
exact savings.  

However, Sony Ericsson estimated that 30 minutes 
were spent on average to analyze a DR that is submit-
ted. Using the NLP technique, a duplicate would be 
found in 30 seconds.  For this case, 20 hours of analy-
sis time would be saved per 1000 DRs, since on aver-
age 40 duplicates can be found by using the NLP-based 
tool.  

6. Conclusions and Further Work 

The aim of this work is to evaluate the feasibility of 
using Natural Language Processing techniques to help 
automate detection of duplicate defect reports.  

We evaluated the identification capabilities on a 
large defect management system and concluded that 
about 40% of the marked duplicates could be found. 
This figure is rather stable for different variants of 
similarity measures, stop words lists, spellchecking and 
weighting scheme. The major difference is the length 
of the top list – the chance is of course higher that the 
duplicate is in a top list of 15 than one of 5. Relating to 
the estimated maximum recall rate, about 2/3 of the 
duplicates are found. 

 The users found the technique helpful in their work, 
although they had to change their way of searching 
compared to traditional key word search. One finding 
from the interviews is that the duplicate detection 
rather is a task for defect report analysts, rather than for 
testers. Even though only 40% of the duplicates are 
found, this approach can provide a substantial saving 
for major development organizations. 

Further work includes integration of the support into 
the DMS and the defect handling processes of Sony 
Ericsson. Regarding the technology as such, more al-
ternatives remain to be evaluated, such as using a cor-
pus based weighting factor and pairs or triples of words 
[9]. Comparing the approach to general search engine 
techniques or plagiarism checkers would give relevant 
reference points for the study. Replications on other 
data sets would also be interesting to study. 
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