
Detection of Duplicate Defect Reports Using Natural Language Processing

Per Runeson, Magnus Alexandersson and Oskar Nyholm
Software Engineering Research Group

Lund University,
Box 118, SE-221 00 Lund, Sweden

per.runeson@telecom.lth.se

Abstract

Defect reports are generated from various testing and
development activities in software engineering. Some-
times two reports are submitted that describe the same
problem, leading to duplicate reports. These reports
are mostly written in structured natural language, and
as such, it is hard to compare two reports for similarity
with formal methods. In order to identify duplicates,
we investigate using Natural Language Processing
(NLP) techniques to support the identification. A pro-
totype tool is developed and evaluated in a case study
analyzing defect reports at Sony Ericsson Mobile Com-
munications. The evaluation shows that about 2/3 of
the duplicates can possibly be found using the NLP
techniques. Different variants of the techniques pro-
vide only minor result differences, indicating a robust
technology. User testing shows that the overall attitude
towards the technique is positive and that it has a
growth potential.

1. Introduction

When a complex software product like a mobile
phone is developed, it is natural and common that
software defects slip into the product, leading to func-
tional failures, i.e. the phone does not have the ex-
pected behavior. These failures are found in testing or
other development activities and reported in a defect
management system [5][18]. If the development proc-
ess is highly parallel, or a product line architecture is
used, where components are used in different products,
the same defect may easily be reported multiple times,
resulting in duplicate reports in the defect management
system. These duplicates cost effort in identification

and handling, hence support to speed up the duplicate
detection process is appreciated.

The defect reports are written in natural language,
and the duplicate identification requires suitable infor-
mation retrieval methods. In this study, we investigate
the use of Natural Language Processing (NLP) [17]
techniques to help automate this process. NLP is previ-
ously used in requirements engineering [12][3][19],
program comprehension [2] and in defect report man-
agement [15], although with a different angle.

Basically, we take the words in the defect report in
plain English, make some processing of the text and
then use the statistics on the occurrences of the words
to identify similar defect reports. We implemented a
prototype tool and evaluated its effects on the internal
defect reporting system of Sony Ericsson Mobile
Communications which contained thousands of reports.
Further, we interviewed some users of the prototype
tool to get a qualitative view of the effects. The proto-
type tool identified about 40% of the marked duplicate
defect reports, which can be seen as low figure. How-
ever, since only one type of duplicate reports are possi-
bly found by the technique, we estimate that the tech-
nique finds 2/3 of the possible duplicates. Also, in
terms of working hours, reducing the effort to identify
duplicate reports with 40% is still a substantial saving
for a major software development company, which
handles thousands of defect reports every year.

The paper is outlined as follows. Section 2 intro-
duces the theory on defect reporting and on natural
language processing. Section 3 presents the tailoring
made of the NLP techniques to fit the duplicate detec-
tion purpose. In Section 4, we specify the case study
conducted for evaluation of the technique, and Section
5 presents the case study results. Finally Section 6 con-
cludes the paper and outlines further work.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

2. Theory

2.1 Defect Reporting

Whenever a problem is found during development,
testing or operation, it has to be notified to the one re-
sponsible for identification of the underlying fault and
its correction. To help with this, Defect Management
Systems (DMS) or “bug tracking” systems are used
[5][18]. With this tool, the tester, or whoever discovers
a problem, can submit a Defect Report (DR).

A general workflow for how defect reports are han-
dled follows:
• A failure or an issue is found and a report is cre-

ated in the defect management system.
• The report is analyzed by an analyst to isolate the

cause.
• The report is assigned to a developer for correction

by a change control board or similarly.
• The developer finds the defect and corrects it.
• The fix is tested by the developer or by a test de-

partment.
• The report is closed.

Defect report management is similar to task man-
agement in general, e.g. in a service organization. The
report is a kind of “relay” in relay race, intended to
solve a task. Different actors contribute to solving the
task, and the information management system is the
central node which dispatches subtasks to the actors.

A defect report must contain information about the
origin, the defect as such and software under test. The
scheme used in our context is similar to one, proposed
by Pol et al [16], see items Table 1. Our context uses
the DMS also for change requests, hence the types are
defect report and change request.

When we search for duplicate DRs, part of the prob-
lem lies in defining what counts as a duplicate DR.
There are two types of duplicates; 1) those that de-
scribe the same failure and 2) those that describe two
different failures with the same underlying fault. See
Figure 1. These two kinds are inherently different in
that the former type, which describes the same failure,
generally uses the same vocabulary, while the latter
type, which describes two failures stemming from the
same fault, may use different vocabulary. The tech-
nique we use in this study is based on vocabularies, and
hence, we address only defects of type 1.

As an example, there might be two defect reports
stating that when you push the back button on the
phone, nothing happens. These would count as dupli-
cate reports describing the same failure. The reports
will probably use similar vocabulary.

Table 1. Information items in a defect report
Item Explanation
Header Concise description of the prob-

lem1
Project name Which project the DR concerns
Number An unique identification number

for this DR
Tester The name of the tester
Date The date of submission
Urgency How important it is that this is

fixed
Type Whether it is an defect report or a

change request2
Test object What software the test was per-

formed on
Version What version of the software was

used
Test specifica-
tion

Reference to the test case used

Description A description as to what went
wrong

Appendices Attachments such as test logs etc.
Remarks Comments

Figure 1. The two different types of DRs.

DR 1 and DR 2 describe the same failure
which stems from Fault 1. DR 3 and DR 4
describe two different failures which both

in turn stem from Fault 2.

Another example is one report stating that there is

something wrong with the standby time of the phone,
and another saying that the phone keeps loosing re-
ception. These two reports might have the same source,

1 This field is not in the scheme proposed by Pol et al.
2 Pol et al’s scheme depicts type to software, specifications, docu-
mentation or technical infrastructure.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

e.g. that the code that controls the antenna is faulty. If
the problem with the antenna is solved, the standby and
reception failures would both be solved. They are
therefore also counted as duplicate reports, but do not
use the same vocabulary since the failures, on the sur-
face, are very different.

The first submitted DR on a specific fault is denoted
the master report, and the subsequent reports on the
same fault are called duplicate reports.

Although much effort is spent on defect handling in
software engineering, very little research is done on the
tools for defect management. Recommendations on the
introduction and use of DMS are recently published
[5][18]. However, to the best of our knowledge, the
only research published on the DR duplicates is the
work by Podgurski et al [15], who cluster related de-
fects, using information from automatically reported
software failures.

2.2 Natural Language Processing

The goal of information retrieval research is to de-
velop algorithms and models for retrieving information
from document repositories. This information is mainly
textual, expressed in Natural Language (NL) or struc-
tured NL. The classical information retrieval problem
is called the ad-hoc retrieval problem. Here the user
defines the information he is looking for with a query,
and the system returns a list of documents. An exact
match system demands that the documents in every
detail satisfy some structured query expression. Man-
ning and Schütze [8] claim that for large and heteroge-
neous documents collections, this might lead to that the
list of results might either be empty, or very large. Re-
cent work has therefore concentrated on ranking docu-
ments according to relevance to the query, i.e. finding
the list of most similar documents.

The processing stages in NLP are described below
based on Manning and Schütze [8]. They comprise:
• tokenization,
• stemming,
• stop words removal,
• vector space representation, and
• similarity calculation.

2.2.1 Tokenization. Tokenization means turning a
stream of characters into a stream of tokens. This is
done by removing capitals, punctuation, brackets etc.
Basically each token is a word, although the definition
of a word is not straightforward. A word might be de-
fined as a string of alphanumeric characters surrounded
by white space. But there are several alternatives on

how to treat hyphens and apostrophes and other punc-
tuation marks.

Most punctuation marks, like commas and semico-
lons, are easy to remove, as they clearly are not part of
any word. Periods however, are used to mark both end
of sentence and abbreviations such as etc. Apostrophes
sometimes cause confusion, for example, it is unclear
whether boy's is the possessive case or an abbreviation
for boy is or boy has.

Hyphens may either be split into several words or
kept together. Some words like e-mail are best kept as
one word, while others like so-called are more open for
debate. A different kind of hyphens is those inserted to
help indicate the correct grouping of words, for exam-
ple a text-based medium. It is common, like in this
case, to hyphenate compound pre-modifiers.

Different policies can be chosen regarding how to
split into words, and the choice depends on the type of
data to tokenize.

2.2.2 Stemming. Stemming aims at identifying the
ground form of each word. Words may be written in
different grammatical forms, but still carry the same
information. During this phase affixes and other lexical
components are removed from each token, and only the
stem remains. For example, worked and working are
both transformed into work. Verbs are also transformed
to their ground form, e.g. was and being become be.

2.2.3 Stop Words Removal. There are many com-
mon words, like the, that and when, that do not carry
any specific information and hence are not likely to be
of any help in the similarity analysis. These words oc-
cur in all texts with approximately the same frequency,
and do not relate to the content of text. While they are
semantically important, if not removed they could dis-
turb the similarity calculation. Most of them are prepo-
sitions, conjunctions or pronouns.

Therefore a list containing those “stop words” can
be applied to the text. All words matching the stop
words list are removed. Exactly what words to include
on the list depends on the type of data [8].

If the texts are based on a template, it might be
beneficial to remove the words that make up the tem-
plate to reduce these words’ impact on the similarity
measure.

As an alternative to stop words removal, the terms
may be weighted based on the inverse frequencies of
the word in the total corpus [9]. The more frequent a
word is, the less information it carries, and hence the
less it should be weighted in the similarity calculation.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

2.2.4 The Vector Space Model. The next step is to
represent the words in a multi-dimensional vector space
model. Each dimension of the space corresponds to a
word. The position along each axis in this space de-
pends on the frequency of the word occurring in the
text. The similarity between two texts is then measured
in terms of distances in this vector space.

The dimensions must not necessarily be linear, i.e. a
simple word count. A word that occurs three times is
probably more important to the content of the text than
another word that only occurs once, but not three times
as important. Therefore the term frequency needs to be
dampened. A common approach is to use a weighted
scale, as defined in equation (1):

 weight = 1 + log(frequency) (1)

This analysis may be extended to pairs or triples of
words. This increases the computational complexity,
but is shown successful in other applications [9].

2.2.5 Similarity Measures. The calculation of the
similarity between two texts is done on the vector space
model. The three most common measures are Cosine,
Dice and Jaccard [8]. According to Salton, “The
choice of a particular vector-similarity measure for a
certain application is not prescribed by any theoretical
considerations, and is left to the user.” [17].

Figure 2. Similarity between the two

texts computer science computer and
computer science using the Cosine meas-

ure and the vector space model.

All three measures are normalized, in order to take

into account the length of the vectors. A graphical rep-
resentation of a similarity measure calculation is shown
in Figure 2.

2.3 NLP in Software Engineering

Software engineering is mostly based on natural lan-
guage information in different kinds of specifications
and other documents. Hence, the field is a candidate for
using NLP techniques. Published studies using NLP in
software engineering are mainly in the requirements
engineering and program comprehension subfields.

Natt och Dag et al [12][13] link two different kinds
of requirements together, using NLP. Market require-
ments, which express customer wishes on future prod-
ucts, are linked to the company’s internal requirements
in a compliance checking procedure. They have devel-
oped a prototype tool – ReqSimile3 – to support the
linking. The approach is empirically evaluated in in-
dustrial case studies [12][13]. Natt och Dag et al also
used the tool to identify duplicate requirements, which
application was evaluated in an experiment [14].

Hayes, Dekhtyar and Sundaram [3][4] use NLP to
support tracking of requirements to designs. They have
developed a requirements management tool, called
RETRO, which supports the tracking. They report on
evaluation of different NLP variants in their paper.

Yadla, Hayes and Dekhtyar [19] have linked re-
quirements to defect reports in order to support the
defect correction process. They investigate relevance
feedback in the learning of NLP algorithms. This work
is implemented as a part of the RETRO tool. The au-
thors mention in this paper identification of duplicate
defect reports as a piece of future work.

Lormans and van Deursen [6] used latent semantic
indexing (LSI) to automatically reconstruct traceability
links between requirements and design, and require-
ments and test cases respectively. They evaluated two
alternative approaches empirically in three industrial
case studies.

Antionol et al [3] traced C++ source code onto
manual pages and Java code to functional require-
ments. They use both a probabilistic information re-
trieval model and vector space models.

Canfora and Cerulo [2] searched for source files
through change request descriptions in open source
code projects. They find change requests being good
indicators for impact analysis on where to change the
code.

Maarek et al [9] supported searching in a software
reuse library. They created an indexing scheme, using
NLP techniques, to help programmers find reuse can-
didates in the code library.

3 http://reqsimile.sourceforge.net

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

3. NLP in Duplicate Detection

In this section, we present how we tailor the NLP
techniques to identify duplicate defect reports. We
have developed a tool, based on the core functionality
of the ReqSimile tool. This section presents the choices
with respect to NLP techniques, and Section 4 presents
the case study evaluation.

3.1 Tokenization, Stemming and Stop
Words

The tokenization, stemming and stop words removal
are made based on Minnen et al’s work [10]. Almost
all periods are removed, except periods in floating
point numbers and in references to standards, like ISO-
8859-1 [12]. All other punctuation marks are dis-
carded. This means that hyphenated words without
digits are split into several tokens. All capital letters are
transformed into lower-case.

In the stemming, all affixes are removed, which is
quite straightforward.

The stop words list consists of words commonly
used with stop lists, like articles and prepositions, plus
words we found that occur frequently in the defect
management system. Examples of these are attach and
log, which are used in many DRs, but say nothing
about the defect that is reported. See an example in
Table 2.

Table 2. Results of tokenization, stemming

and stop words removal
Original
sentence

Tokeniza-
tion

Stemming Stop
words
removal

Dump in
file system
when re-
cording
audio (see
attached
log).

dump in file
system when
recording
audio see
attached log

dump file
system
when re-
cord audio
see attach
log

dump file
system
record
audio

3.2 Synonyms and Spellchecking

When dealing with large amounts of raw text sub-
mitted by many different persons, it is natural that dif-
ferences exist in which words are used to signify a
given meaning. Based on this observation we decided
to implement a simple thesaurus.

In order to construct the thesaurus, we took the
1.000 most frequently used words in the DMS, and
studied what words were used interchangeably with the

words in the list. We also asked employees at the com-
pany to give us a list of words, which were used inter-
changeably.

It is worth noting that not only pure synonyms were
considered, but also words that are used in the same
context and mean almost the same. Examples of this
are crash and dump; a crash means that the phone
stopped responding while a dump means that it stopped
responding but also a snapshot of the memory could be
recovered. While these two might not actually be syno-
nyms, they are used interchangeably when writing DRs.
Abbreviations such as bt for Bluetooth were also added
to the thesaurus.

The thesaurus is applied after the stop words re-
moval. It checks all tokens if they are present in the
thesaurus and substitutes them with their synonyms.

We also made a simple spellchecker which works in
the same way as the thesaurus, i.e. it recognizes mis-
spelled words and substitutes them with the correctly
spelled ones instead.

The basis of the spellchecker comes from a list of
usually misspelled words4 and we used much of the
same method as with the thesaurus. Spellchecking is
performed at the same time as substitution of syno-
nyms. The result after synonym replacement and spell-
checking is shown in Table 3.

Table 3. Results of synonym replacement

and spellchecking
Stop words removal Synonym replacement
dump file system record
audio

dump file system record
sound

3.3 Similarity Measures

To measure the similarity value between two DRs,
we use the vector-space model along with the cosine
measure. Other measures were tested (Jaccard, Dice),
but did not improve the result and were hence dis-
carded. All term weights are dampened by equation (1).

3.4 Information Elements

A DR consists of many fields, together carrying a lot
of information, see Table 1. Two of the fields are writ-
ten in natural language; the description field which
thoroughly describes the problem, and the header
which summarizes it. A decision has to be made of
what fields shall represent the DR as a text. We started
up with header and description combined, but also
evaluated including project name and assigning a

4 http://www.wsu.edu/\~brians/errors/misspelled.html

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

higher weight to the header in the similarity calcula-
tion.

3.5 Time Frame

One problem with the duplicate detection approach
is that when searching for a duplicate to a specific mas-
ter DR and the set of possible candidates, i.e. the rest of
the DRs, is very large; the duplicate must be very simi-
lar to the master to come up in the result list since there
are so many DRs that are compared. One way of coun-
tering this is to narrow the search to fewer candidates.
This also improves the calculation performance.

We investigated narrowing the search, using only
the DRs launched within a certain time frame. Figure 3
shows a diagram over the time difference between
when a duplicate and its respective master was submit-
ted.5 As can be seen in the figure, 53% of the dupli-
cates were submitted within 20 days after its corre-
sponding master. 90% are in the range between 20 days
forward and 60 days back.

This led to us implementing what we call a time
frame, which can be specified by the user. If there are
two years worth of DRs in the database, using a time
frame of fifty days back and ten days forward, the
number of candidates are reduced to 5%, leading to
reduced calculation costs. The evaluation of the use of
the time frame is presented below.

Figure 3. Time difference between when

a duplicate and its master were submitted

3.6 Top List Size

The NLP algorithm ranks the document by similarity.
However, in order to be a useful tool, only a subset can
be presented to the user. The top list size is defined as
the number of possible candidates that are returned

5 A duplicate may be reported as being submitted before its master,
since the assignment to master/duplicate is somewhat arbitrary. In
the analysis, we always consider the oldest DR being the master.

from a duplicate search. As the candidates are to fit
into a window and be reviewed manually we use top
list sizes of 5, 10 and 15 DRs in the evaluation.

4. Case Study

4.1 Environment

Sony Ericsson Mobile Communications develops
mobile multimedia devices for GSM and UMTS stan-
dards. It is a large company with a complex software
development process. Some 20 unique products are
launched every year. Sony Ericsson uses a Software
Product Line approach when developing mobile
phones. The notion is to have one single platform for a
family of phones. They all share this single platform,
and upon it, modules are added as needed. These mod-
ules could be seen as building blocks and the platform
as the foundation. Depending on which building blocks
are laid on the foundation, the resulting product will
exhibit different characteristics.

While this is an efficient way to develop new phone
models, it is also a good source of duplicate DRs.
Whenever code is reused in new products and different
releases, great care has to be taken to fix defects in the
right version of the code; otherwise the failure will still
be present in the latest version or, in the version that
actually exhibited the failure.

Handling of these defect reports are managed
through a DMS. The database comprises thousands of
defect reports from previous and current development
projects. Some 10% of the DRs are marked as dupli-
cates. Comparing a new report to already existing re-
ports, in hope of finding a duplicate, is a tedious and
error prone process. The current search engine in the
DMS is a basic string matcher to which you can pass
additional arguments such as time interval and DR id
interval.

4.2 Methodology

In order to evaluate the NLP technique for DR du-
plicate identification, we used two approaches. Firstly,
batch runs were conducted of the duplicate detection
procedures against the database and secondly, user
tests by testers and analysts were conducted, followed
by interviews.

We evaluated different parameters in the NLP tech-
nique, changing one factor at a time [11]. This simple
experimental design is assumed to be sufficient at this
stage, since we have not seen any indications on major
interactions between the factors. The evaluated variants
are:

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

• Similarity measures: Which of them works best for
duplicate DR detection?

• Stop words list: What impact has the number of
words in the list, and is it useful at all?

• Time frame: How old DRs should be included in
the search?

• Synonyms and spellchecking: Does a basic ap-
proach increase the recall rate?

• Fields: What fields should be passed on to the pre-
processor? Is it a good idea to include the project
on which the report is submitted? Since the header
describes the problem quite concise, should it be
weighted more than the regular description?

All the variants were tested on three different top
list sizes.

4.3 Evaluation Measures

The two most important evaluation measures in in-
formation retrieval systems are recall and precision [8].
Generally speaking, recall is the percentage of relevant
items selected out of all the relevant items in the re-
pository, while precision is the percentage of relevant
items out of those items selected by the query.

These metrics do not really fit into how duplicate
detection works. Consider a search for a duplicate
where the size of the top list is set to 10. What you are
looking for is one DR, namely the corresponding mas-
ter DR. A successful search would thus yield a preci-
sion of 10% since one item out of ten was relevant.
Recall would then be a binary value, 100% or 0%; ei-
ther it is found or not.

Natt och Dag et al. instead uses recall rate to meas-
ure how efficient their requirements similarity tool
works [12]. Recall rate is here defined as the percent-
age of duplicates for which the master is found for a
given top list size. This answers the question of What
percentage of the duplicates is found that today are
marked as duplicates in the DMS?

This evaluation measure is conservative, since we
have used only the DRs marked as duplicates as basis
for the batch runs. The recall rate might very well actu-
ally be higher for two reasons; 1) all duplicates are
probably not identified and marked as such in the data-
base, and 2) the NLP technique is relevant for identify-
ing only duplicates with common failure behaviour, as
discussed in Section 2.1.

5. Evaluation Results

5.1 Batch Runs

The batch runs were conducted as follows. We se-
lected the DRs in the DMS that were marked as dupli-
cates and each corresponding master report. For each
duplicate DR, a similarity search was performed and
the position of the duplicate DR in the top list was ob-
served. From this data, the recall rates were calculated
for different top list sizes. The same set of DR data is
used for all the tests. The size of the data set is counted
in thousands, although exact figures cannot be reported
for confidentiality reasons.

To evaluate the different NLP factors, we set up a
number of test cases. The baseline setup of parameters
is to use the cosine measure, search 50 days back, use
the small stop words list, use synonym replacement,
use spellchecking and include product name.

 The results are presented as recall rates for different
sized lists. Note that the left column is the same for all
tests.

Table 4. Recall rate for different similarity
measures

Top list size Cosine Dice Jaccard
5 0.3127 0.3024 0.3024
10 0.3822 0.3749 0.3749
15 0.4240 0.4153 0.4153

As seen in Table 4, Dice and Jaccard give the same

result. This is always the case; their ranking is the
same, even if they provide different similarity values.
The cosine coefficient shows a slightly better result,
and continues to be our main choice.

Table 5. Recall rate for different time frame
Top list
size

50-0 60-0 100-0 500-0

5 0.3127 0.3114 0.2990 0.2485

10 0.3822 0.3831 0.3719 0.3084

15 0.4240 0.4219 0.4149 0.3434

There is a very small difference between using an

interval of 50 days and 60 days, see Table 5. Expand-
ing the interval to 100 days does decrease the recall
rate some, but the difference is not significant. Further
expansion to 500 days can not be recommended, due to
the heavy decrease in recall rate.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Table 6. Recall rate for different stop words
lists. The small stop words list con-
tains 60 words, and the big list con-

tains 439 words.
Top list
size

Small Big None

5 0.3127 0.3055 0.2811
10 0.3822 0.3719 0.3451
15 0.4240 0.4101 0.3834

The small stop words list, with 60 words, gives the

best result, see �. While the difference in result is not
that big between the two stop words lists, it can be seen
that without any stop words, the result becomes signifi-
cantly worse.

Table 7. Recall rate using synonyms
Top list
size

With synonyms
and spellchecking

Without syno-
nyms and spell-
checking

5 0.3127 0.3068
10 0.3822 0.3813
15 0.4240 0.4233

By using synonym replacement and spellchecking,

the result is improved very little, see Table 7. It is im-
possible to judge whether this indicates that synonym
replacement and spellchecking is not necessary or that
the basic approach we have used is not efficient
enough.

Table 8. Recall rate using project field
Top list
size

Using project
field

Not using pro-
ject field

5 0.3127 0.3016
10 0.3822 0.3731
15 0.4240 0.4097

As expected, including the project name increased

the recall rate some, see Table 8. It turns out that
weighting the header, so that it is included twice in the
search, also increases the recall rate somewhat, see
Table 9.

Table 9. Recall rate using double header
Top list
size

Not using
double header

Using double
header

5 0.3127 0.3172
10 0.3822 0.3867
15 0.4240 0.4238

0

0,1

0,2

0,3

0,4

0,5

0,6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Top List Size

R
ec

al
l R

at
e

Figure 4. Graph showing the recall rates

for different sizes of the top list.

As can be seen in the result tables above, the best

result we get is finding approximately 39% for a top
list size of 10 and 42% for a top list size of 15. As out-
lined in Figure 1, not all duplicates actually describe
the same defect, and are therefore not possible to detect
with the NLP approach. Another problem is DRs that
are irrelevant for the search, but still get a high similar-
ity value. Thus they push relevant DRs from the result
list. There are several reasons why they might get a
high similarity value:
• Unnecessary tagging. Some users write informa-

tion in the header and description areas that could
be found in other fields of the DR. For example,
defect severity.

• Users write all their DRs in a similar way and
probably copy texts sometimes. Therefore, when
searching for duplicates to a DR of theirs, other
DRs written by the same user will fill up the list.

• Several different problems can be described using
the same vocabulary.

� further indicates that not all duplicate DRs can be
found using the NLP approach. The asymptotic recall
rate for large top list sizes is not 1, but rather between
0.5 and 0.6, indicating that an estimated maximum of
60% of the duplicates can at best be found by the tech-
nique. As can be seen in the graph, the curve is steep in
the beginning but flattens as the top list size grows lar-
ger. In effect, this means that those duplicate DRs that
use similar words will be found. Those that are not
similar will, regardless of top list size, never be found.
Hence our results indicate a recall rate of about 2/3 of
the possibly detectable duplicates.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

5.2 Interviews

To evaluate the usefulness and other qualitative as-
pects of the duplicated detection, we interviewed one
tester that used the prototype tool and a team of ana-
lyst.

5.2.1 Interview with tester
The tester found the prototype tool being was help-

ful in his day-to-day work in finding duplicates. He
thought that “any approach to making it easier to find
duplicates was good”.

The tester had mostly used the tool to search dupli-
cate DRs based on typing in a few keywords, which is
not the best suited task for the NLP technique. He
thought that it would be hard to get testers to use the
tool in its intended way, i.e. enter a full DR and then
search for duplicates. When you have decided to write
a DR, you have already done all the research necessary
to submit a DR, and then you will do so.

The biggest future improvement would be to inte-
grate the tool into the DMS. Other improvements that
could be made is more ways of limiting the search such
as; being able to search only from one organizational
group’s DRs and to search only from DRs concerning
one specific project.

5.2.2 Interview with analysts
The analysts had actually not used the prototype tool

as such. Instead, one of them had taken out the core
functionality from the tool and incorporated it into a
tool that he used when analyzing DRs. In his tool, he
had added a button that whenever he analyzed a DR, he
could push this button and get a top list containing the
most likely duplicates. He had then given this modified
tool to his colleague who also had started using it.

The analyst found that the technique worked very
well for them. One thing in particular that they thought
worked very well was to search for duplicates to
somewhat “unclear” DRs, i.e. DRs that are not easy to
understand what they actually mean. One of the ana-
lysts said that it saved time due to when she was to
search for duplicates the ordinary way, she had to sit
down and really understand the DR, then she had to
think up words that she thought described the DR and
search with those words. Using their modified tool she
could just push a button. If she found a duplicate she
was done, otherwise she of course had to do it the ordi-
nary way.

As one of them said, even if I do not find a duplicate
with this approach, it takes so little time to push the
button and skim through the result list so the extra ef-
fort does not matter.

5.3 Costs and Gains

Finding 40% of the marked duplicate DRs may be
seen as a very low figure. Still, if the technique helps
eliminating 4% of all DRs (assuming 10% duplicates as
in our case) this is an enormous saving for a major
software developer. For confidentiality reasons, we
cannot report the total number of DRs and hence the
exact savings.

However, Sony Ericsson estimated that 30 minutes
were spent on average to analyze a DR that is submit-
ted. Using the NLP technique, a duplicate would be
found in 30 seconds. For this case, 20 hours of analy-
sis time would be saved per 1000 DRs, since on aver-
age 40 duplicates can be found by using the NLP-based
tool.

6. Conclusions and Further Work

The aim of this work is to evaluate the feasibility of
using Natural Language Processing techniques to help
automate detection of duplicate defect reports.

We evaluated the identification capabilities on a
large defect management system and concluded that
about 40% of the marked duplicates could be found.
This figure is rather stable for different variants of
similarity measures, stop words lists, spellchecking and
weighting scheme. The major difference is the length
of the top list – the chance is of course higher that the
duplicate is in a top list of 15 than one of 5. Relating to
the estimated maximum recall rate, about 2/3 of the
duplicates are found.

 The users found the technique helpful in their work,
although they had to change their way of searching
compared to traditional key word search. One finding
from the interviews is that the duplicate detection
rather is a task for defect report analysts, rather than for
testers. Even though only 40% of the duplicates are
found, this approach can provide a substantial saving
for major development organizations.

Further work includes integration of the support into
the DMS and the defect handling processes of Sony
Ericsson. Regarding the technology as such, more al-
ternatives remain to be evaluated, such as using a cor-
pus based weighting factor and pairs or triples of words
[9]. Comparing the approach to general search engine
techniques or plagiarism checkers would give relevant
reference points for the study. Replications on other
data sets would also be interesting to study.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

7. Acknowledgements

The authors are grateful to Mr. Stefan Qelthin of
Sony Ericsson for providing access and guidance to the
DMS and relevant personnel. Thanks to Dr. Johan Natt
och Dag for willingly answering questions on the
ReqSimile tool. Thanks to the anonymous reviewers for
constructive comments, especially on further work and
to Dr. Björn Regnell for additional review. The work is
partly funded by the Swedish Research Council under
grant 622-2004-552 for a senior researcher position in
software engineering.

8. References

[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.,
and Merlo, E., “Recovering Traceability Links between Code
and Documentation”, IEEE Transactions on Software Engi-
neering, 28(10):970-983, 2002.

[2] Canfora, G. and Cerulo, L., “Impact Analysis by Mining
Software and Change Request Repositories”, Proceedings
11th International Software Metrics Symposium, pp 29-29.
2005.

[3] Hayes, J. H., Dekhtyar, A., Sundaram, S. K., “Improv-
ing After-the-fact Tracing and Mapping: Supporting Soft-
ware Quality Predictions”, IEEE Software, 22(6):30-37,
2005.

[4] Hayes, J. H., Dekhtyar, A., Sundaram, S. K., “Advanc-
ing Candidate Link Generation for Requirements Tracing:
The Study of Methods”, IEEE Transactions on Software
Engineering 32(1):4-19, 2006.

[5] Johnson, J. N. and Dubois, P. F., “Issue Tracking”,
Computing in Science and Engineering, pp. 71-77, Novem-
ber/December, 2003.

[6] Lormans, M. and van Deursen, A., “Can LSI help Re-
constructing Requirements Traceability in Design and
Test?”, Proceedings of the Conference on Software Mainte-
nance and Reengineering, pp. 47-56, 2006.

[7] Macias, B. and Pulman, S. G., “Natural Language
Processing for Requirements Specification”, In Safety Criti-
cal Systems, pp. 57-89, Chapman and Hall, 1993.

[8] Manning, C. D. and Schütze, H., Foundations of Statis-
tical Natural Language Processing. Cambridge, USA: MIT
Press, 1999.

[9] Maarek, Y. S., Berry, D. M. and Kaiser, G. E., “An
Information Retrieval Approach for Automatically Construct-
ing Software Libraries”, IEEE Transactions on Software
Engineering, 17(8):800-812, 1991.

[10] Minnen, G., Carroll, J. and Pearce, D. “Robust, Applied
Morphological Generation”, Proceedings of the First Inter-
national Natural Language Generation Conference, Mitzpe
Ramon, Israel, pp. 201-208, 2000.

[11] Montgomery, D., C., Design and Analysis of Experi-
ments, 5th Edition, John Wiley and Sons, 2000.

[12] Natt och Dag, J., Gervasi, V., Brinkkemper, S. and
Regnell, B. “Speeding up Requirements Management in a
Product Software Company: Linking Customer Wishes to
Product Requirements through Linguistic Engineering.” Pro-
ceedings of the 12th International Requirements Engineering
Conference, pp. 283-294, 2004.

[13] Natt och Dag, J., Gervasi, V., Brinkkemper, S. and
Regnell, B., “A Linguistic-Engineering Approach to Large-
Scale Requirements Management” IEEE Software, 22(1):32-
39, 2005.

[14] Natt och Dag, J., Thelin, T. and Regnell, B., “An ex-
periment on linguistic tool support for consolidation of re-
quirements from multiple sources in market-driven product
development”, Empirical Software Engineering 11(2):303-
329, 2006.

[15] Podgurski, A., Leon, D., Francis, P., Masri, W. and
Minch M., “Automated Support for Classifying Software
Failure Reports”, Proceedings of the 25th International Con-
ference on Software Engineering, pp. 465-475, 2003.

[16] Pol, M., Teunissen, R. and van Veenendaal, E., Soft-
ware Testing A Guide to the TMap Approach. Harlow, Eng-
land: Pearson Education, 2002.

[17] Salton, G., Automatic text processing: the transforma-
tion, analysis, and retrieval of information by computer,
Reading, MA: Addison Wesley, 1989.

[18] Serrano, M. and Ciordia, I., “Bugzilla, ITracker, and
Other Bug Trackers”, IEEE Software, 22(2):11-13, 2005.

[19] Yadla S., Hayes, J. H. and Dekhtyar, A., “Tracing re-
quirements to defect reports: an application of information
retrieval techniques”, A NASA Journal, Information Systems
Software Engineering 1:116-124, 2005.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

