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Abstract 

In bug localization, a developer uses information 
about a bug to locate the portion of the source code to 
modify to correct the bug. Developers expend 
considerable effort performing this task. Some recent 
static techniques for automatic bug localization have 
been built around modern information retrieval (IR) 
models such as latent semantic indexing (LSI); 
however, latent Dirichlet allocation (LDA), a modular 
and extensible IR model, has significant advantages 
over both LSI and probabilistic LSI (pLSI). In this 
paper we present an LDA-based static technique for 
automating bug localization. We describe the 
implementation of our technique and three case 
studies that measure its effectiveness. For two of the 
case studies we directly compare our results to those 
from similar studies performed using LSI. The results 
demonstrate our LDA-based technique performs at 
least as well as the LSI-based techniques for all bugs 
and performs better, often significantly so, than the 
LSI-based techniques for most bugs. 

1. Introduction 

Software aging, documentation deficiency, and 
developer mobility can make software difficult to 
understand. Because understanding is involved in fifty 
to ninety percent of the software maintenance effort 
[26], these factors can slow software maintenance and 
as a result increase maintenance costs. To help curb 
these costs, many recent research efforts have focused 
on (partially or fully) automating software 
maintenance tasks. 

Bug localization is a software maintenance task in 
which a developer uses information about a bug 
present in a software system to locate the portion of 
the source code that must be modified to correct the 
bug. Due to the size and complexity of modern 
software, effectively automating this task can reduce 
maintenance costs by reducing developer effort. 

Techniques for automating bug localization take 
as input information about a subject software system 
and produce as output a list of entities such as classes, 
methods, or statements. Static bug localization 
techniques gather information from the source code 
(or a model of the code), whereas dynamic techniques 
gather information from execution traces of the 
system. Static techniques have some advantages over 
dynamic techniques:  static techniques do not require a 
working subject software system; thus, they can be 
applied at any stage of the software development or 
maintenance processes. Also, unlike most dynamic 
techniques, static techniques do not require a test case 
that triggers the bug.  

Some recent static techniques for automating bug 
localization have been built around modern 
information retrieval (IR) models such as latent 
semantic indexing (LSI) [21][22][28] and its 
probabilistic extension pLSI [11]. In this paper we 
describe a static technique for automating bug 
localization that is based on another IR model, latent 
Dirichlet allocation (LDA), whose properties, which 
include modularity and extensibility, provide 
advantages over both LSI and pLSI. LDA has 
previously been applied to mining concepts from 
source code [17][23] but not to automating bug 
localization. We provide three case studies that 
examine whether the advantages of LDA extend to 
source code retrieval for bug localization. Our results 
demonstrate the promise of our LDA-based technique 
for automating bug localization. 

2. Background 

We begin this section by describing the 
application of information retrieval (IR) to source code 
(source code retrieval). We next compare and contrast 
three information retrieval models: latent semantic 
indexing (LSI), probabilistic latent semantic indexing 
(pLSI), and latent Dirichlet allocation (LDA). Finally, 
we discuss static techniques for bug localization. 
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2.1.  Source Code Retrieval 

Some recent source code retrieval techniques 
operate on models of the source code that are 
constructed from semantic information embedded in 
the code, including identifiers and comments, and 
serve as the “documents”' that are provided as input to 
an IR technique. An individual document is 
constructed from an element of the source code such 
as a package, file, class, or method. The element used 
to partition the documents determines the granularity 
of the results returned by the IR technique in response 
to a user query. The results are a ranked list of 
documents; the rank of a document is calculated as the 
similarity between the document and the user query. 

2.2.  Information Retrieval Models 

Latent semantic indexing (LSI) is the application 
of latent semantic analysis (LSA) to document 
indexing and retrieval [4] and is the focus of much 
recent work on source code retrieval [22][28][29]. LSI 
is based on the vector space model, an algebraic model 
that represents text documents as vectors of terms, and 
represents the relationships among the terms and 
documents in a collection as a term-document co-
occurrence matrix where a row in the matrix is a 
vector that corresponds to a term and gives the relation 
to each document and a column in the matrix is a 
vector that corresponds to a document and gives the 
relation to each term. LSI uses singular value 
decomposition (SVD) to reduce the co-occurrence 
matrix; this reduction shrinks the search space and 
eliminates noise in the document representation while 
retaining the semantic meanings of the actual 
documents. The reduced co-occurrence matrix 
encodes a concept space, and similarity between two 
documents in the concept space is shown by 
calculating the cosine of the angle between their 
vectors [3]. To compare a user query to the 
documents, the user query is transformed into a 
document in the concept space before comparing it to 
the other documents. 

The results returned by LSI can be difficult to 
interpret, because they are expressed using a numeric 
spatial representation. In addition, while LSI 
represents synonymy, terms with similar meaning, it 
does not do well when representing polysemy, terms 
with multiple meanings. To address these (and other) 
shortcomings of LSI, Hofmann introduced 
probabilistic latent semantic indexing (pLSI), a 
generative topic model with a strong foundation in 
statistics [11]. In pLSI each term in a document is 
modeled as a mixture over a set of multinomial 
random variables that can be interpreted as topics and 

each document is modeled as a probability distribution 
on a fixed set of topics [2]. Studies comparing LSI and 
pLSI have shown that pLSI has significant advantages 
over LSI [2][11]. 

While pLSI provides improvements over LSI, it 
also introduces new problems. The number of 
parameters in the pLSI model grows linearly with the 
number of documents in the collection; thus, pLSI is 
susceptible to overfitting [8]. In addition, pLSI is not 
able to predict appropriate topic distributions for new 
documents, because it is a generative model of the 
documents in the collection on which it was estimated 
and hence must choose from the topic distributions 
generated for those training documents. Thus, pLSI 
does not perform well when predicting new documents 
[2][34]. Girolami and Kaban have shown that these 
deficiencies can be resolved by considering pLSI 
within the framework of latent Dirichlet allocation 
(LDA) [8]. 

Latent Dirichlet allocation (LDA) is a 
probabilistic and fully generative topic model that is 
used to extract the latent, or hidden, topics present in a 
collection of documents and to model each document 
as a finite mixture over the set of topics [2][8]. Each 
topic in this set is a probability distribution over the 
set of terms that make up the vocabulary of the 
document collection. In LDA, similarity between a 
document di and a query Q is computed as the 
conditional probability of the query given the 
document: 

Sim(Q,di ) = P(Q | di ) = P(qk | di )
qk ∈Q
∏

 
where qk is the kth word in the query. Thus, a 
document is relevant to a query if it has a high 
probability of generating the words in the query [33]. 

Like LSI and pLSI, LDA represents synonymy; 
however, pLSI and LDA both differ from LSI in their 
ability to better represent polysemy and to produce 
immediately interpretable results. In the results 
returned by LDA, the most likely terms in each 
topic⎯the topics with the highest probability—can be 
examined to determine the likely meaning of the topic. 
Table 1 lists the set of terms and associated 
probabilities that constitute a topic, Topic 0, which 
was automatically generated by an LDA analysis of 
Mozilla [25]. The set of terms comprises the ten terms 
with the highest probability of belonging to Topic 0. 
One can immediately interpret the results and 
determine that Topic 0 is related to printing a page of 
data. This is an improvement over LSI; though LSI 
has been used to extract and label topics [15], it cannot 
do so directly or in isolation. 

LDA retains the advantages of pLSI over LSI and 
also provides improvements over pLSI. However, 
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LDA is intractable for direct computation, so 
approximation techniques are required [2][34]. Such 
techniques include variational methods [2], 
expectation propagation [24], and Gibbs sampling 
[9][33], which is a Markov chain Monte Carlo method 
for estimation. 

2.3.  Bug Localization 

Techniques for automating bug localization differ 
in how they gather information about the subject 
software system and in how they analyze that 
information. Static techniques gather information from 
the source code directly or from a model of the code.  

IR-based static techniques aim to identify the 
elements of the software system that need to be 
modified to correct a bug. Such techniques do not 
attempt to identify every element of the software 
system that must be fixed. Instead, they aim to identify 
a starting point from which correction of the bug can 
be undertaken. Many bug fixes do not relate directly to 
the bug itself, but rather are the result of the impact of 
the bug on the other elements of the software system. 
These additional fixes are considered to be a concern 
of impact analysis. 

Because we are not looking for all elements of the 
software system relevant to a bug, precision and 
recall—measures commonly used to determine the 
effectiveness of IR techniques [10]—are not as useful 
when applied to bug localization. The most common 
measure used to determine the accuracy of IR-based 
static techniques is the rank of the first relevant source 
element returned by the technique. This indicates the 
number of elements that the programmer must 
examine (if following the rankings) before reaching an 
element that actually needs to be corrected.  

3. Previous Work 

LSI has been applied to a number of applications 
of source code retrieval such as concept and feature 
location [21][22][28][29] and clustering [15]. In 

several of these studies, the LSI-based approaches are 
compared to methods utilizing other static techniques 
for source code retrieval, such as search on 
dependency graphs and regular expression pattern 
matching utilities, and show improvement over these 
other techniques [21][22]. 

The earlier studies on LSI suggest that combining 
multiple techniques for source code retrieval is likely 
to perform better than any one technique alone 
[21][22]. In fact, in most later studies, LSI was used in 
conjunction with another method. For example, the 
study in [15] uses traditional clustering techniques in 
combination with LSI to derive what the authors refer 
to as semantic clusters. In addition, the studies in 
[28][29] find that LSI performs much better when 
combined with a dynamic approach. 

Several studies have examined the use of LSI for 
bug localization [18][28]-[30]. The largest number of 
bugs are examined in [29], which presents an approach 
to the bug localization problem using LSI combined 
with a dynamic technique called Scenario-based 
Probabilistic Ranking (SPR). The authors present the 
results of the combined approach as well as the results 
of the techniques used separately. Because this paper’s 
focus is static techniques for bug localization, we are 
specifically interested in the LSI results. 

In these studies, based on the bug description, the 
user formulated a query for LSI search and two 
execution scenarios for SPR, one which exercises the 
bug and one which does not. Execution of the queries 
resulted in a list of methods, ranked by similarity to 
the query. The rank of the first truly relevant method, 
a method actually fixed as a result of the bug, was 
presented and used to measure effectiveness. 

Results using LSI alone were varied for the bugs 
analyzed. These results are presented in Section 5.2 
and 5.3 and compared to the approach presented in 
this paper. The combined approach performed well for 
bugs analyzed, with the first relevant method listed in 
the top six results returned for each bug. The authors 
conclude that LSI alone is not an effective method for 
bug localization [29]. For both LSI and the combined 
approach, so few bugs in each version of the software 
system were examined—at most three in any one 
version of the software systems—that it remains 
unclear how the method would perform across all bugs 
in a software system.  

To our knowledge, LDA has not previously been 
applied to the bug localization task. However, it has 
been applied to source code retrieval in the context of 
topic mining. Linstead et al. conducted an experiment 
using LDA to mine concepts from source code [17]. 
The authors sought to demonstrate the effectiveness of 
LDA in automatically extracting concepts, in the form 
of topics, from source code. The study involved the 

Table 1: Topic extracted from Mozilla 

Topic 0 
set 
str 

print 
setup 

prt 
page 

preview 
engine 

pm 
footer 

0.474086 
0.267139 
0.145522 
0.017282 
0.011658 
0.009856 
0.007720 
0.005232 
0.004879 
0.003997 
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analysis of 1,555 Java projects from SourceForge and 
Apache. Results indicated the LDA approach 
produced functional and easily interpretable topics. 
Maskeri et al. used LDA to automatically mine 
business topics from the source code of the Apache 
and Petstore software systems [23]. Their analysis was 
performed at the file level of granularity, and topics 
were labeled manually. Results indicated the approach 
was able to successfully discover some, but not all, of 
the domain topics of the system. 

4. LDA-Based Approach to Bug 
Localization 

To perform LDA-based bug localization on a 
given version of a software system, first an LDA 
model of the source code is built. Then, the created 
model is queried as often as necessary to localize bugs 
existing in that version. The following sections 
describe the tasks involved in creating and querying an 
LDA model for a given software build. 

4.1. Construct an LDA model 

Two steps are necessary to construct an LDA 
model of a software system: (1) build a document 
collection from the source code, and (2) perform an 
LDA analysis on the document collection. These steps 
are detailed below and illustrated in Figure 1. 

Step 1: Build a document collection from the 
source code. Extract semantic information, such as 
comments and identifiers, from each source code 
element at the desired level of granularity (e.g., 
package, class, method). Preprocess the semantic 
information as desired before writing it to the 
document collection, e.g., perform stemming and 
remove stop words. Store the preprocessed data 
extracted from each source element as a separate 
document in the document collection. 

To automate Step 1, we created two NetBeans 
plug-ins: One to analyze Java code and one to analyze 
C++. Since the experiments in this paper are at the 
method level of granularity, each document represents 
one method of the source code. We chose to extract 
string-literals in addition to comments and identifiers, 
as they are found in error messages and likely to be 
included in a bug description. Multi-word identifiers 
are split into separate words based on common coding 
practices, e.g., an identifier printFile would be split 
into the terms print and file. In addition, stop words, 
including programming language specific keywords, 
are removed. Each remaining word is stemmed using a 
Porter stemming algorithm [27] before being included 
in the document collection. 

Execution of either plug-in results in a single file 
containing the entire document collection for the 
source files being analyzed. The first line in the file 
contains the number of documents in the collection 
and each successive line contains a single document, 
that is, the list of words extracted from a single 
method. This format is consistent with the input 
format required by the tool used in Step 2. 

Step 2: Generate an LDA model. Perform an 
LDA analysis, as described in Section 2.2, on the 
document collection generated in Step 1. To perform 
the LDA analysis in Step 2, we used an open-source 
software tool for LDA analysis called GibbsLDA++ 
[7]. GibbsLDA++ uses Gibbs sampling to estimate 
topics from the document collection as well as 

 
Figure 1: LDA-based approach to bug 

localization 
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estimate the word-topic and topic-document 
probability distributions.  

Input into the LDA tool consists of the document 
collection file generated by Step 1 of the process. 
Before an LDA analysis can be performed on the 
document collection using the tool, the following 
parameters must be set. 

• The number of topics. 
• The number of iterations for the Gibbs 

sampling process.  
• α, a hyperparameter of LDA, determines the 

amount of smoothing applied to the topic 
distributions per document [33]. 

• β, a hyperparameter of LDA, determines the 
amount of smoothing applied to the word 
distributions per topic [33].  

The LDA analysis results in the following two 
probability distributions which, along with the topics 
themselves, comprise the LDA model. 

• The word-topic probability distribution (ϕ).  
• The topic-document distribution (θ).  
The word-topic distribution contains, for every 

word in the vocabulary of the document collection and 
every topic in the model, the probability a given word 
belongs to a given topic. Similarly, the topic-document 
distribution contains, for every topic in the model and 
every document in the collection, the probability that a 
given topic belongs to a given document. 

GibbsLDA++ also outputs a list of topics with the 
top n words in the topic, i.e., the n words that have the 
highest probability of belonging to that topic, where n 
is a parameter that may be set for each analysis. At 
this point, a static LDA model of the source code has 
been constructed. This model can then be queried for 
each bug discovered. 

4.2. Query the LDA Model 

Now the user may query the LDA model 
previously generated. Terms in the query should be 
preprocessed in the same manner as the source code, 
e.g., stop words removed and stemming performed. 
Each query results in a list of source code elements 
ranked by similarity to the query (most similar 
elements ranked highest). This step is not specific to 
the task of bug localization; the user may query the 
model for other purposes as well, e.g., to find 
candidate software components for reuse or to find 
components that likely need to be modified as a result 
of a change request. 

We formulated source code queries manually by 
utilizing information about bugs we extracted from the 
bug title and description entered into the software’s 
bug repository by the person initially reporting the 
bug. Details regarding the formation of queries for 

each case study are discussed in the description for 
each study. 

We created a tool to calculate the similarity 
between an issued query and each document in the 
document collection. Our tool returns a list of results 
to the user ranked by the similarity measure; these 
represent the elements of the source code that likely 
need modification to correct a given bug. The user 
may query an existing LDA model as often as desired. 

5. Case Studies in Bug Localization 

To assess the viability of an LDA-based approach 
to bug localization, we performed case studies on three 
different software systems. The goal of the case 
studies was to measure how well an LDA-based 
system can predict the methods that likely need 
modification to correct a given bug.  

All three case studies use the approach outlined in 
Section 4 to perform bug localization. For the case 
studies, the number of topics used was K=100. In 
addition, we used standard parameter values, α=0.05 
(50/K) and β=0.01, that have been recommended in 
the literature [34].  

To determine the accuracy of the predictions for 
each bug, the LDA query results were compared to 
relevant elements for the bug, i.e., the actual elements 
fixed by developers to correct the bug. These relevant 
source code elements were determined by examining 
the software patch for each bug posted in the 
software’s bug repository. 

5.1. Rhino Case Study 

For the first case study, we analyzed 35 bugs in 
version 1.5 release 5 (1.5R5) of the software system 
Rhino [31], an open source implementation of 
JavaScript written in Java. The analysis of Rhino 
allows us to answer an important question. Given a 
software system, will the LDA-based technique 
perform well across all bugs in the system or only a 
few? If the technique performs well for only a few 
select bugs, it would not be a practical approach to 
employ. However, this study indicates the LDA-based 
approach returns a relevant method in the top ten for 
77% of the bugs, in the top five for 63% of the bugs, 
and as the top result for 23% of the bugs.  

All bugs that met the following criteria were 
extracted from Rhino’s bug repository. 

• Bugs existed in source files of version 1.5R5 
implementing the core and compiler 
functionality of the software. 

• Bugs required a method-level fix. 
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• Bugs were fixed in either version 1.5R5.1 (3 
bugs) or v1.6R1 (32 bugs). 

• Bugs were categorized as resolved or verified 
and as fixed, so only valid bugs that in fact 
had been fixed were returned. 

Bugs at all levels of severity were included in the 
case study, from enhancements to critical defects. 

For this case study, the first query for each bug 
was formed by manually extracting keywords from the 
bug title. The first query proved sufficient for over 
one-half (20/35) of the Rhino bugs. A second query 
was formed for the remainder of the bugs by manually 
adding to the query keywords from the summary of 
the initial bug report. At the same time, variants of 
words that seemed useful were added (e.g., add parse 
in addition to parser) in addition to any common 
abbreviations (e.g., eol for end-of-line). The second 
query proved effective for eleven bugs. The final three 
bugs required a further refinement of the query. For 
the third query for these bugs, we added any additional 
words related to the bug (e.g., adding day for daylight 
savings time). 

Table 2 lists the bug number and title from 
Rhino’s bug repository for each bug examined along 
with the query we formulated and ran against the LDA 
model for the software. 

Table 2: Rhino bugs analyzed (LDA query 
words in bold) 

Bug # Bug Title [Added Query Words] 
58118 ECMA Compliance: daylight savings time wrong 

prior to year 1 [day offset timezone] 

238699 Context.compileFunction throws 
InstantiationException 

238823 Context.compileFunction throws NullPointer 
exception 

239068 Scope of constructor functions is not initialized

244014 Removal of code complexity limits in the 
interpreter 

244492 JavaScriptException to extend RuntimeException 
and common exception base 

245882 JavaImporter constructor 

249471 String index out of range exception [parse 
bound float global js native char] 

252122 Double expansion of error message 

253323 Assignment to variable ‘decompiler’ has no effect 
in Parser [parse] 

254778 Rhino treats label as separated statement

254915 Broken “this” for name() calls (CVS tip regression) 
[object with] 

255549 JVM-dependent resolution of ambiguity when 
calling Java methods [argument constructor 
overload] 

Bug # Bug Title [Added Query Words] 
255595 Factory class for Context creation [call default 

enter java runtime thread] 

256318 NOT_FOUND and 
ScriptableObject.equivalentValues 

256339 Stackless interpreter 

256389 Proper CompilerEnvirons.isXmlAvailable()

256575 Mistreatment of end-of-line and semi/colon [eol] 

256621 throw statement: eol should not be allowed

256836 Dynamic scope and nested functions

256865 Compatibility with gcj: changing 
ByteCode.<constants> to be int 

257128 Interpreter and tail call elimination [java js stack]

257423 Optimizer regression: this.name += expression 
generates wrong code 

258144 Add option to set Runtime Class in classes 
generated by jsc [run main script] 

258183 catch (e if condition) does not rethrow of original 
exception 

258207 Exception name should be DontDelete [delete 
catch ecma obj object script] 

258417 java.long.ArrayIndexOutOfBoundsException in 
org.mozilla.javascript.regexp.NativeRegExp 
[stack size state data] 

258419 copy paste bug in 
org.mozilla.javascript.regexp.NativeRegExp [RE 
data back stack state track] 

258958 Lookup of excluded objects in 
ScriptableOutputStream doesn’t traverse 
prototypes/parents 

258959 ScriptableInputStream doesn’t use Context’s 
application ClassLoader to resolve classes 

261278 Strict mode

262447 NullPointerException in 
ScriptableObject.getPropertyIds 

263978 cannot run xalan example with Rhino 1.5 release 
5 [line number negative execute error] 

266418 Can not serialize regular expressions [regexp RE 
compile char set] 

274996 Exceptions with multiple interpreters on stack 
may lead to ArrayIndexOutOfBoundsException 
[java wrapped] 

 
Of the methods fixed by developers as part of the 

software patch for each bug, the ranks of those 
methods that ranked highest in the list of methods 
returned by our query are summarized in Figure 2. 

It is interesting to note that a few of the bug titles 
and descriptions mentioned at least one of the methods 
that needed to be fixed by name, which sometimes did 
and sometimes did not help the results. For example, 
consider bug #238823, which mentions 
Context.compile (as well as a few other methods) in 
the bug description. Context.compile, which was the 
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highest ranking method, was ranked 4th in the results. 
Bug #262447 has the title “NullPointerException in 
ScriptableObject.getPropertyIds,” which is indeed the 
method that was fixed; however, the method is ranked 
11th in the results. This is consistent with the fact that 
LDA attempts to capture the meaning of a document 
beyond just a set of terms.  

Other times, the bug title and/or description 
mentions the name of a method that is ultimately not 
changed due to the bug. For example, for bug 
#238699, whose title is “Context.compileFunction 
throws InstantiationException,” the LDA approach 
correctly predicts Codegen.compile (ranked 1st), not 
Context.compileFunction (ranked 27th), to be the 
function needing modification. 

Query formulation appears to play a role in the 
quality of the results. For example, the title for bug 
#261278 is “Strict mode.” Querying the LDA model 
with simply the words “strict mode” results in 
ScriptRuntime.setName being ranked 12th. However, 
looking at the bug’s description, “It would be nice to 
have a strict mode in Rhino that would at least throw 
an exception for missing var declarations,” and 
modifying the query to be “strict mode missing var 
declarations” results in the same method being ranked 
1st. Therefore, care must be taken to form the queries. 

Other queries performed quite well despite very 
few clues in the bug title and description about 
methods that may need to be fixed. For example, bug 
#258207 has a description of “According ECMAScript 
standard, section 12.4, the exception name in the catch 
object should have DontDelete property.” Running the 
query “exception name dontdelete delete catch ecma 
obj object script” results in 
ScriptRuntime.newCatchScope being returned in 5th 
position. Bug #256621’s title is “throw statement: eol 
should not be allowed” and the query “throw 
statement eol” results in the relevant method 
Parser.statementHelper being ranked 1st. 

Overall, the LDA-based approach performed quite 
well. As illustrated in Figure 2, for 77% (27/35) of the 
bugs analyzed the first relevant method was returned 
in the top ten results and for 63% (22/35) of the bugs 
the first relevant method was returned in the top five 
results. These results show the use of LDA in bug 
localization to be a very promising approach. 

Table 3: Eclipse bugs analyzed (LDA/LSI 
query words in bold) 

Software 
Version 

Bug 
No. 

Bug Title [Added query 
words] 

2.1.3 5138 Double-click-drag to select 
multiple words doesn’t work [mouse 
up down release text offset 
document position] 

2.0.0 31779 UnifiedTree should ensure 
file/folder exists [node system 
location] 

3.0.2 74149 The search words after ‘”’ will be 
ignored [query quoted token].

5.2. Eclipse Case Study 

The second case study involves the application of 
our LDA-based technique to the Eclipse software 
system, an open source IDE written in Java [5]. The 
analysis of Eclipse allows us to evaluate the accuracy 
of our approach when used in a large software system. 
This same system was analyzed in [29] so it allows a 
direct comparison of LDA to LSI for bug localization. 

We ran the same queries as in [29] on the Eclipse 
LDA model, and the accuracy of the LDA predictions 
equaled or exceeded that of the LSI predictions. For 
each bug examined, Table 3 lists the software version 
in which the bug occurred, the bug number and bug 
title taken from the Eclipse bug repository, and the 
query used in both our LDA analysis and the earlier 
LSI analysis from [29]. Table 4 presents the results of 
the LDA query—the name of the first relevant method 
returned by the query and its LDA rank—along with 
the LSI results for comparison. Note that the 
TextDoubleClickStrategyConnector.mouseUp method 
is referred to as TextViewer.mouseUp in [29], but the 
method belongs to an inner class of TextViewer called 
TextDoubleClickStrategyConnector and we have used 
the inner class name. 

These results show the LDA-based approach 
performed the same as LSI for bug #31779 and 
outperformed LSI for the other two. This case study 
suggests LDA performs at least as well as LSI for bug 
localization and indicates the LDA-based technique 
scales well to larger software systems. The Mozilla 
case study below further validates these findings, 
showing an even greater improvement over LSI. 

Rank 1st
23%

Rank 2-5
40%

Rank 6-10
14%

Rank > 10
23%

 
Figure 2: Rank of first relevant method 

returned for Rhino bugs 
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5.3.  Mozilla Case Study 

For our third case study, we applied the LDA-
based bug localization technique to five bugs in 
Mozilla, an open source internet application suite 
written in C++. Mozilla, like Eclipse, is a large 
software system; thus it provides an additional test 
point for determining the performance of LDA for bug 
localization in larger systems. This same system was 
also analyzed in [29] so it allows another comparison 
of LDA to LSI for bug localization. 

For the LDA technique, we first ran the same 
queries as the LSI study. Bug #209430 resulted in a 
vast improvement over LSI using the same query, as 
shown in Table 6. For the other bugs, a second query 
was formed by adding keywords from the bug title and 
summary for each bug as well as removing any words 
that did not seem relevant. This second query was 
effective for two of the bugs. We issued a third query 
for the remaining two bugs by adding any additional 
words related to the bugs. For example, for bug 
#216154, the bug title and summary discusses a 
problem with clicking an anchor, so the word link 
seemed an obvious keyword to use in addition to the 
words anchor and target from the bug title.  

For each bug, Table 5 lists the version of the 
software in which the bug existed, the bug title and 
number taken from the Mozilla bug repository, the 
LDA query used in this study, and the LSI query used 
in [29]. (Note the bug titles are not the same in the LSI 
paper, which listed an excerpt from the longer bug 
description rather than the bug title.) 

For bug #225243, the study in [29] indicates this 
bug existed in version 1.6 of the software. However, 
examination of the Mozilla 1.6 code revealed the 
software was patched prior to the release of 1.6, and 
the bug actually existed in version 1.6 Alpha (1.6a), a 
release candidate of 1.6. This paper uses the proper 
version of the software (1.6a) for that bug. 

The LDA results are presented in Table 6, with 
the LSI Rank included for comparison. The LDA rank 
of the first relevant method returned by the LDA query 
for each bug is in the top five for three of the bugs and 
in the top ten for all of the bugs, which is a significant 
improvement over LSI. 

6. Threats to Validity 

There are several issues that could affect the 
validity of our results. Like other semantic-based 
techniques, the LDA approach used depends in part on 
the quality of the semantic information present in the 
source code. In addition, the LDA approach is likely 
sensitive to the quality of the information present in 
the bug titles and descriptions, which depends on the 
ability of the bug submitter to accurately describe the 
problem. If the bug description does not truly reflect 
the situation, then it may be difficult to accurately 
summarize the bug in a query. However, the study in 
[13] examined 200,000 bug titles and found that “95% 
of noun phrases referred to visible software entities, 
physical devices or user actions.” This suggests that 
information in bug titles and summaries truly is useful 

Table 5: Mozilla bugs analyzed with corresponding LDA/LSI queries 

Software 
Version 

Bug 
No. 

Bug Title LDA Query LSI Query [29] 

1.6 182192 Remove quotes (“) from 
collected addresses 

collect collected sender 
recipient email name names 
address book addressbook

collect collected sender recipient 
email name names address 
addresses addressbook

1.5.1 209430 Ctrl+Delete and 
Ctrl+Backspace delete words 
in the wrong direction 

delete deleted word action delete deleted word action 

1.5.1 216154 Anchors in e-mails are broken 
(Clicking Anchor doesn’t go to 
target in e-mail) 

mailbox uri url pop msgurl 
service anchor target link 

mailbox uri url msg pop3 msgurl 
service 

1.6a 225243 [ps] Page appears reversed 
(mirrored) when printed

print page post script 
postscript image

print page orientation portrait 
landscape postscript postscriptobj

1.5.1 231474 attachments mix contents attach mailattachcount 
msgattach parsemailmsgst

attachment encoding content mime 

 

Table 4: Comparison of LDA to LSI over Eclipse 

Bug 
No. 

First Relevant Method Returned by LDA 
and LSI [29] along with its LDA/LSI ranks 

5138 TextDoubleClickStrategyConnector.mouseUp  
 LDA Rank: 2 
JavaStringDoubleClickSelector.doubleClicked  
 LSI Rank:  7 

31779 UnifiedTree.createChildNodeFromFileSystem  
 LDARank:  2 
 LSI Rank:  2 

74149 QueryBuilder.tokenizeUserQuery  
 LDA Rank: 1 
 LSI Rank:  5 
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in localizing bugs. 
The quality and usefulness of the queries may 

vary with the skill of the debugger; this could impact 
the accuracy of the results. A less experienced 
debugger may have more trouble formulating a query 
that would lead to good results. However, in many of 
the bugs analyzed in the completed case studies, good 
results were obtained with the first query issued, using 
terms taken directly from the bug titles and 
descriptions, suggesting very little knowledge is 
required to formulate useful queries.  

We did not have available an LSI-based bug 
localization tool; therefore, we compared our results to 
the published results of previous researchers [29]. 
These published results represented the largest LSI 
study for bug localization previously performed; 
therefore, our comparison over Mozilla and Eclipse 
was the largest possible that allowed us to compare 
our technique to LSI results. The fact that our LDA-
based technique performed as well as LSI for one bug 
and better than LSI for all other bugs analyzed in those 
systems shows our technique to be very promising. In 
our other study over Rhino, we showed how our LDA 
approach was able to scale to a much larger number of 
bugs. 

7. Conclusions and Future Work 

The case studies presented in this paper show 
LDA can successfully be applied to source code 
retrieval for the purpose of bug localization. 
Furthermore, the results suggest an LDA-based 
approach is more effective than approaches using LSI 
alone for this task. Our case studies examined the 
same bugs in Mozilla and Eclipse as [29]. The LSI 
analysis resulted in only three out of the eight total 
bugs analyzed (37.5%) with the first relevant method 
ranked in the top ten results returned. For the LDA 

approach, the user query resulted in all eight (100%) 
of the bugs ranked in the top ten. Ultimately, the 
results of the case studies we presented demonstrate 
that our LDA-based technique performs at least as 
well as the LSI-based techniques in one case (for one 
bug) and performs better, often significantly so, than 
the LSI-based technique in all other cases. 

In addition, previous studies of LSI-based bug 
localization have analyzed at most three bugs in any 
one version of a software system. Our analysis of 
Rhino allowed us to see how our LDA approach 
performed on 35 bugs in a single version of Rhino, 
which was all bugs in that version that met the given 
criteria. While it is unknown how LSI performs across 
all bugs (or even a majority of the bugs) in a software 
system, our Rhino study shows the LDA-based 
approach returns a relevant method in the top ten for 
77% of the bugs analyzed.  

In future studies, we plan to examine more bugs 
in larger software systems, such as Eclipse and 
Mozilla, to determine how the approach works across 
a large number of bugs in those systems. We plan as 
well to investigate the bugs for which the LDA 
technique did not perform well in order to improve the 
technique in those cases.  
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