

Working Session: Using Eye-Tracking to Understand Program Comprehension

Yann-Gaël Guéhéneuc

Ptidej Team – DGIGL
École Polytechnique de

Montréal
Montreal, Quebec, Canada
guehene@iro.umontreal.ca

Huzefa Kagdi

Department of Computer
Science

Missouri University of
Science and Technology

Rolla, MO 65401
kagdih@mst.edu

Jonathan I. Maletic

Department of Computer
Science

Kent State University
Kent Ohio 44242

jmaletic@cs.kent.edu

Abstract

The working session focuses on the use of eye-
tracking technology to assess, understand, and evaluate
tools and techniques for program comprehension. An
introduction to the technology and tools of eye-tracking
will be presented. A discussion of how these tools
augment existing evaluation mechanism in the context of
program comprehension will follow. Research directions
and open problems will be a main topic.

1. Introduction

Eye-tracking technology (i.e., techniques and tools)

has been successfully used for decades in psychology,

neuropsychology, and cognitive science to study the

human cognitive processes while performing various

tasks such as reading, counting characters in an image,

and solving puzzles [2, 3]. It has also been widely used

to assess user interface and Web page designs.

However, not until very recently did eye-tracking

surface in the software engineering community to unveil

the developers’ cognitive processes while performing

program comprehension tasks, such as dealing with UML

diagrams or reading source code.

Eye-tracking was recently used to evaluate and assess

methods and tools in the context of program

comprehension. For example, to show the impact of

UML stereotypes [9], the (yet to be confirmed) lack of

impact of binary class relationships [4]. Eye-trackers can

also be used to assess visualization techniques, compare

coloring/fonts choices, reduce the developers’ efforts

when using new development environment, and so on.

Eye tracking tools collect eye movement data to

provide an insight into a subject's focus of attention,

making it possible to draw conclusions about the

underlying cognitive processes. These systems are based

on the physiology of human visual capabilities and

cognitive theories, like the theories on visual attention

and visual perception [3].

The arrival of eye-tracking in software engineering

can be attributed, in great part, to a number of recent

advancements in eye-tracking technology: high quality,

accurate, and user-friendly tools are available today.

Most importantly, they have the capability to collect a

subject’s eye gazes in a non-obtrusive manner, as

opposed to the clumsy head mounted devices. This

accurate data can then be used for understanding the

cognitive process involved in the processing of visual

data [1, 2, 5].

Eye-tracing offers a unique prospective by enabling

the measurement of various eye movements, which could

provide a much valuable insight into how and why

subjects arrive at a certain solution for a given task.

These measures add a new additional dimension in

assessing a tool’s claim of supporting software

comprehension tasks. These measures are different from

traditionally prescribed measures such as the

accuracy/level of the responses and time needed usually

collected in program comprehension studies [7, 8].

These measures are used directly or indirectly to draw

conclusions and/or meet other objectives of the

performed study. A wide majority of these traditional

measures are collected retrospectively. For example,

human subjects are asked to report their final answers on

the completion of a given task and their response time is

recorded. This type of approach is subjected to some

potential threats; e.g., a subject may forget to report (or

misreport) an observation after a lengthy task.

Alternatively, subjects could be asked to note their

observations while working towards their answers, albeit

at the potential risk of obtrusiveness and distraction.

The working session will focus on using eye-tracking

for understanding program comprehension. An

introduction to the technology and tools will be made

along with examples of current research. The main

objective of the session is to inform researchers of the

potential uses of eye-tracking technology to better

understand how people comprehend software.

978-1-4244-3997-3/09/$25.00 © 2009 IEEE ICPC 2009278

2. Eye-Tracking Technology

The fundamental design of eye-tracking equipment is

based on the physiology of the human visual capability

[3, 6]. These systems use cameras to track eye

movements. There are a number of vendors that supply

eye-tracker to capture eye movements and collect eye

gaze data (e.g., www.sr-research.com, www.tobii.se,

etc.). For example, in the equipment available from

Tobii, two cameras used to track the eye are built into a

flat-panel screen. No restraints such as wearing a

headband or goggles are placed on the human subjects.

Figure 1. ScanPath of a user on a UML Class
Diagram. Fixations are represented by the circles
and saccades by the lines connecting the circles.

Moreover, this new equipment is very accurate and

boasts error rates of less than 0.5 degrees and sampling

rates of around 100Hz. Software that records the XY

screen coordinates of eye gazes and supports analysis of

eye movements is also provided along with the eye-

tracker system. An audio/video recording is also made of

each study session.

The underlying basis is to capture various types of eye

movements that occur while humans physically gaze at

an object of interest. Among these, fixations and

saccades are the two most widely used eye movements in

these types of studies. Fixation is the stabilization of

eyes on an object of interest for a period of time.

Saccades are quick movements of the eyes from one

location to the next (i.e., refixates). Scanpath is a

directed path formed by saccades between fixations.

The general consensus in the eye tracking research

community is that the processing of visualized

information occurs during fixations, whereas, no such

processing occurs during saccades [6]. Humans use

saccades to locate interesting parts in a visual scene to

form a mental model.

Figure 1 shows the recording of eye positions

superimposed on a UML class diagram. The numbered

circles represent fixation and lines between them

represent saccades. The size of a fixation (i.e., area of a

circle) is proportional to its time duration. The

numbering of circles represents the ordering of fixations.

For example, in Figure 1, the fixation labeled with the

number 35 on the class NTuple happened before the

fixation labeled 36 on the class NTupleController. That

is, the class NTuple was looked at before the class

NTupleController. The scanpath in this case is directed

to the left and downwards. A big circle on the class

PyNTuple shows that a large amount of fixation time was

spent on this class. The eye-tracker captures fixations

and saccades in the form of XY coordinates of the visual

screen (in this case a UML class diagram) so that we can

determine what was being looked at in a visual

presentation.

3. References

[1] Bednarik, R. and Tukiainen, M., "An Eye-Tracking

Methodology for Characterizing Program Comprehension

Processes", in Proc. Symposium on Eye tracking research &
applications (ETRA), San Diego, 2006, pp. 125-132.

[2] Bojko, A., "Eye Tracking in User Experience Testing: How

to Make the Most of It. ", in Proceedings 14th Annual
Conference of the Usability Professionals Association (UPA),
Montréal, Canada, 2005, pp.

[3] Duchowski, A. T., Eye Tracking Methodology: Theory and
Practice, London, Springer-Verlag, 2003.

[4] Guehénéuc, Y.-G., "Taupe: Towards Understanding

Program Comprehension", in Proceedings The Conference of
the Center for Advanced Studies on Collaborative Research
(CASCON'06), Toronto, Canada, Oct. 16-19 2006, pp. 1-13.

[5] Iqbal, S. T., Adamczyk, P. D., Zheng, X. S., and Bailey, B.

P., "Towards an index of opportunity: understanding changes in

mental workload during task execution", in Proceedings
SIGCHI conference on Human factors in computing systems,

Portland, Oregon, USA, 2005, pp. 311-320.

[6] Jacob, R. J. K., "What you look at is what you get: eye

movement-based interaction techniques", in Proceedings
SIGCHI conference on Human factors in computing systems:
Empowering people, Seattle, Washington, 1990, pp. 11-18.

[7] Purchase, H., C., Colpoys, L., McGill, M., Carrington, D.,

and Britton, C., "UML class diagram syntax: an empirical study

of comprehension", in Proceedings 2001 Asia-Pacific
symposium on Information visualisation - Volume 9, Sydney,

Australia, 2001, pp. 113-120.

[8] Ricca, F., Penta, M. D., Torchiano, M., Tonella, P., and

Ceccato, M., "The Role of Experience and Ability in

Comprehension Tasks Supported by UML Stereotypes", in

Proceedings 29th International Conference on Software
Engineering (ICSE'01), 2007, pp. 375-384.

[9] Yusuf, S., Kagdi, H., and Maletic, J. I., "Assessing the

Comprehension of UML Diagrams via Eye Tracking", in Proc.
15th IEEE Int. Conference on Program Comprehension
(ICPC'07), Banff Canada, June 26-29 2007, pp. 113-122.

279

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Huzefa Kagdi
	Also by Jonathan I. Maletic
