
	

An Approach to Automatically Assess Method Names
Reem	S.	Alsuhaibani†	

	Computer	Science	
	Kent	State	University	

	Kent	Ohio	USA	
	ralsuhai@kent.edu	

Christian	D.	Newman	
	Computer	Science	

	Rochester	Institute	of	
Technology	

	Rochester	New	York	USA	
cnewman@se.rit.edu	

Michael	J.	Decker		
	Computer	Science	

Bowling	Green	State	University	
	Bowling	Green	Ohio	USA	
	mdecke@bgsu.edu

Michael	L.	Collard	
	Computer	Science	

The	University	of	Akron	
	Akron	Ohio	USA	

	collard@uakron.edu		

Jonathan	I.	Maletic	
Computer	Science	

Kent	State	University		
Kent	Ohio	USA	

jmaletic@kent.edu	

	
	
	

ABSTRACT	
An	approach	is	presented	to	automatically	assess	the	quality	of	
method	 names	 by	 providing	 a	 score	 and	 feedback.	 The	
approach	 implements	 ten	 method	 naming	 standards	 to	
evaluate	 the	 names.	 The	 naming	 standards	 are	 taken	 from	
work	that	validated	the	standards	via	a	large	survey	of	software	
professionals.		Natural	language	processing	techniques	such	as	
part-of-speech	 tagging,	 identi?ier	 splitting,	 and	 dictionary	
lookup	are	required	to	implement	the	standards.		The	approach	
is	evaluated	by	?irst	manually	constructing	a	large	golden	set	of	
method	 names.	 	 Each	 method	 name	 is	 rated	 by	 several	
developers	and	labeled	as	conforming	to	each	standard	or	not.		
These	ratings	allow	for	comparing	the	results	of	the	approach	
against	 expert	 assessment.	 	 Additionally,	 the	 approach	 is	
applied	 to	 several	 systems	 and	 the	 results	 are	 manually	
inspected	for	accuracy.			

CCS	CONCEPTS	
•Software	 and	 its	 engineering	 •Software	 creation	 and	
management	•Software	post-development	issues	•Maintaining	
software	

KEYWORDS	
Program	 comprehension,	 Method	 names,	 Method	 naming	
standards,	Identi?ier	quality.	

ACM	Reference	format:	

1	 Introduction		
Method	 names	 are	 critical	 to	 understand	 the	 intent	 and	
behavior	 of	 a	 method	 [1].	 	 High-quality	 names	 play	 an	
important	role	in	increasing	productivity	[2][3][4][5].		Names	
are	 the	 primary	 source	 of	 information	 programmers	 use	 to	
acquire	 knowledge	 about	 source	 code	 [1].	 	 While	 there	 are	
many	 ways	 to	 improve	 the	 comprehension	 of	 software,	 a	
crucial	and	simple	means	is	to	improve	the	quality	of	method	
names.	Well-constructed	names	save	large	amounts	of	time	and	
costs	 during	 software	 maintenance	 tasks	 [6][7]	 which	 can	
consume	 +70%	 of	 the	 software	 lifecycle	 [8].	 	 High-quality	
identifiers	 can	also	 improve	 comprehension	 tasks	by	 around	
19%	when	no	abbreviations	or	letters	are	used	[9].	In	general,	
poor	names	impair	comprehension	and	make	software	harder	
to	maintain	[10][11][12][13].		

Recent	 work	 [14]	 investigating	 method	 naming	 practices	
surveyed	 over	 1100	 professional	 developers	 to	 gauge	 their	
views	 on	 various	 naming	 standards/conventions.	 	 The	work	
defines	ten	method	naming	standards	derived	from	published	
literature	on	the	topic	of	naming	along	with	naming	practices	
from	open-source	projects.		The	standards	address	issues	such	
as	the	length	of	the	name,	grammatical	structure,	and	the	use	of	
abbreviations/acronyms.	The	vast	majority	of	the	respondents	
to	 the	 survey	 [14]	 agree	 with	 and	 support	 these	 proposed	
standards	for	naming	methods.		

The	 goal	 of	 this	 research	 is	 to	 codify	 and	 realize	 these	 ten,	
verified,	 method-naming	 standards	 into	 an	 automated	
approach.	 	 The	 approach	 supports	 a	 quality	 assessment	 of	 a	
system’s	 method	 names,	 produces	 a	 score	 for	 each	 method	
name,	and	flags	names	that	violate	a	particular	standard	with	
feedback.	The	advantages	of	this	approach	are:	1)	It	is	easy	to	
apply	and	does	not	require	special	models	or	training,	2)	It	is	
based	 on	 real	 human-subject	 data	 (mainly	 professional	
developers),	meaning	 that	 the	 identifiers	 it	 flags	 as	 volitions	
have	 some	 problems	 that	 need	 to	 be	 addressed,	 3)	 The	

Permission	to	make	digital	or	hard	copies	of	part	or	all	of	this	work	for	personal	
or	classroom	use	is	granted	without	fee	provided	that	copies	are	not	made	or	
distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	
and	the	full	citation	on	the	first	page.	Copyrights	for	third-party	components	of	
this	work	must	be	honored.	For	all	other	uses,	contact	the	owner/author(s).	
ICPC	2022	Pittsburgh	PA,	USA	
©	2022	Copyright	held	by	the	owner/author(s).		
https://doi.??	

ICPC 2022 - Preprint R. Alsuhaibani et al.

approach	is	explainable;	the	tool	explains	to	developers	what	is	
wrong	 with	 the	 identifier	 name	 so	 that	 they	 can	 make	 an	
informed	decision	about	which	problems	need	to	be	addressed.	

Both	researchers	and	practitioners	can	leverage	the	approach	
to	 assess	 the	 quality	 of	method	 names	 of	 their	 systems	 and	
understand	the	weakness	of	specific	names.		The	approach	can	
be	invaluable	during	code	reviews;	pointing	out	poorly	formed	
method	names	that	need	to	be	refactored.		We	also	envision	the	
integration	of	this	approach	into	the	IDE	to	notify	developers	of	
the	name	quality	while	developing	code.		It	can	also	be	applied	
to	 automatically	 check	 commits	 and	 pushes,	 and	 any	 new	
method	 names	 introduced	 in	 a	 commit	 can	 be	 automatically	
checked	and	flagged	as	necessary.		It	also	has	the	potential	to	
assist	 educators	 in	 drawing	 insights	 about	 students	 naming	
practices	to	better	support	their	naming	habits.	Lastly,	method	
names	evaluated	as	high-quality	can	be	selected	for	software	
text	analysis	and	machine	learning	tasks.		

The	 contributions	 of	 the	 work	 presented	 here	 are:	 1)	 The	
realization	 of	 a	 set	 of	 method	 naming	 standards	 into	 an	
automated	approach,	2)	An	evaluation	of	the	approach,	and	3)	
A	golden	set	of	good/bad	method	names	that	other	researchers	
can	utilize	for	investigations	on	method	naming.		The	realized	
approach	 can	 also	 be	 used	 to	 evaluate	 and	 assess	 whole	
systems,	thus	giving	researchers/practitioners	a	handle	on	the	
naming	quality	of	a	system	in	comparison	to	others.	

Our	approach	 is	not	specific	 to	programing	 language	method	
names	 but	 does	 focus	 on	 languages	 that	 support	 object-
oriented	development—C++,	 Java,	 C#,	 and	others.	 	 This	 is	 in	
contrast	to	other	approaches,	which	implement	standards	that	
are	language	(Java)	specific,	such	as	Nominal	[15],	Checkstyle	
[16],	 and	 Java	 Coding	 Standard	 Checker	 (JCSC)	 [17].	 	 In	
addition,	 the	approach,	and	method	naming	standards,	apply	
mainly	 to	 application	 code.	 	 Test	 suites	 and	 their	 associated	
methods	often	have	different	naming	practices	than	production	
code	and	likely	require	different	standards	[18][19][20]	[21].	

The	 paper	 is	 organized	 as	 follows.	 	 The	 following	 section	
provides	 related	 work.	 	 The	 method	 naming	 standards	 are	
described	 in	 section	 3.	 	 Then	 the	 approach	 is	 discussed	 in	
section	4.	Section	5	gives	an	overview	of	 the	assessment	and	
scoring.	Section	6	presents	how	we	conducted	the	evaluation.	
Results	and	discussion	are	available	in	sections	7	and	8.		

2	 Related	Work	
The	 quality	 of	 source-code	 identifiers	 contributes	 to	 the	
software	 quality,	 and	 software	 quality	 ensures	 software	
comprehension.	 When	 source-code	 identifiers	 are	 readable,	
they	 are	 usually	 of	 high	 quality.	 A	 great	 deal	 of	 research	
discusses	 identifiers	 and	 their	 impact	 on	 program	 and	
comprehension	[4][22][11][23][24][25]	and	how	they	play	an	
important	role	in	supporting	the	quality	of	code.	As	identifier	
naming	has	such	importance	in	software	research,	researchers	
are	still	conducting	research	to	find	ways	to	support	software	

developers’	comprehension	tasks.	Maalej	et	al.	[26]	run	a	study	
to	 learn	 more	 about	 how	 developers	 practice	 program	
comprehension	on	a	number	of	participants.	They	analyzed	the	
importance	 of	 particular	 types	 of	 knowledge	 for	
comprehension.	 One	 of	 their	 main	 findings	 is	 that	
standardization	and	the	consistent	use	of	naming	conventions	
allow	developers	to	become	familiar	with	an	application	more	
quickly,	and	thus	program	comprehension	activities	are	easier.	

Choosing	a	good	name	is	not	an	easy	task	for	developers,	and	
several	studies	try	to	assist	this	problem	by	providing	naming	
recommendations.	 A	 recent	 experimental	 study	 by	 Feitelson	
[27]	uses	a	naming	model	to	improve	the	quality	of	identifier	
names.	 In	 their	 study,	 the	model	 suggests	 considering	 three	
steps	for	naming;	Selecting	the	concepts	to	include	in	the	name,	
choosing	 the	 words	 to	 represent	 each	 concept,	 and	
constructing	a	name	using	these	words.	The	results	show	that	
the	study	subjects’	names	are	of	better	quality	after	considering	
the	model	recommendations.		Arnaoudova	et	al.	[13,	28]	define	
source-code	 Linguistic	 Antipatterns	 (LAs)	 and	 discuss	 poor	
practices	 in	naming	and	 choice	of	 identifiers.	They	 created	a	
catalog	of	17	types	of	LAs	related	to	naming	inconsistencies	and	
implemented	 a	 linguistic	 anti-pattern	 detector	 tool	 called	
LAPD.	 	 This	 is	 followed	 by	 a	 recent	 identifier	 appraisal	 tool	
called	 IDEAL	 [29],	 which	 implements	 the	 linguistic	 anti-
patterns	using	srcML.		

There	are	also	some	empirical	studies	that	investigated	naming	
guidelines	adherence.	While	not	specific	to	method	names,	Relf	
[30]	investigated	21	identifier	naming	style	guidelines	focusing	
on	typography	and	length	of	identifiers	on	some	examples	from	
Java	 and	 Ada	 systems.	 Relf	 [7]	 also	 runs	 an	 empirical	 study	
investigating	whether	programmers	improve	the	readability	of	
their	 source	 code	 if	 they	 have	 support	 from	 a	 source-code	
editor	that	offers	dynamic	feedback	on	their	identifier-naming	
practices.	He	focused	on	the	effects	of	 identifier-naming	style	
flaws	during	editing	and	investigated	whether	reducing	these	
identifier-naming	 style	 flaws	 improves	 source-code	
readability.	 The	 results	 show	 that	 there	 is	 a	 statistically	
significant	improvement	in	readability.	

Butler	et	al.	[31]	survey	the	forms	of	Java	reference	names	and	
then	use	the	study	outcome	to	investigate	naming-convention	
adherence	 in	 Java.	 This	 is	 followed	 by	 Nominal,	 a	 naming-
convention-checking	 library	 for	 Java	 that	 allows	 declarative	
specification	of	conventions	regarding	typography	and	the	use	
of	abbreviations	and	phrases	[15].	To	test	Nominal,	they	extract	
3.5	 million	 reference	 fields,	 formal	 arguments,	 and	 local	
variable	name	declarations	from	several	projects	to	determine	
their	adherence	to	the	Java	naming	conventions.	Their	results	
show	that	developers	 largely	 follow	naming	conventions,	but	
adherence	to	specific	conventions	varies.	

3	 The	Method	Naming	Standards	
We	base	our	assessment	approach	on	a	set	of	method	naming	
standards	from	a	large-scale	study	[14]	[32]	that	investigates	

An Approach to Automatically Assess Method Names WOODSTOCK’18, June, 2018, El Paso, Texas USA
	

developer	perceptions	of	method	name	quality.		We	developed	
the	approach	utilizing	all	the	published	standards	[14]	and	the	
associated	 artifact	 [32].	 	 Specifically,	 the	 study	 surveys	
developers	 to	 understand	 their	 perception	 of	 several	
characteristics	of	the	identifiers	used	for	method	names.		The	
work	defines	ten	method-naming	standards,	given	in	Table	1,	
derived	 from	 research	 literature	 and	 published	 coding	
standards.	 	 These	 standards	 are	 not	 specific	 to	 any	 given	
language	 or	 naming	 convention.	 	 Study	 results	 show	 that	
developers	are	in	wide	agreement	that	these	characteristics	are	
very	important	in	forming	high-quality	identifier	names.	 	Our	
approach	directly	leverages	this	work	and	implements	a	means	
to	analyze	method	names	to	determine	their	quality	based	on	
the	characteristics	articulated	in	that	work.		

Table	1.		Method	standards	used	in	the	approach.		See	[14]	
for	complete	details.	

#	 Standard	Name	 Rules	

1	 Naming	Style	 A	single	standard	naming	style	is	used.			

2	 Grammatical	
Structure	

If	there	are	multiple	words,	they	form	a	
grammatically	correct	sentence	structure.	

3	 Verb	Phrase	 It	is	a	verb	or	a	verb	phrase.	

4	 Dictionary	Terms	
Only	natural	language	dictionary	words	and/or	
familiar/domain-relevant	terms	are	used.	

5	 Full	Words	 Full	words	are	used	rather	than	a	single	letter.	

6	 Idioms	and	Slang	
It	does	not	contain	personal	expressions,	idioms,	

or	slang.	

7	 Abbreviations	
It	only	contains	known	or	standard	abbreviated	
terms.		All	abbreviations	are	well	known	or	part	

of	the	problem	domain.	

8	 Acronyms	
It	only	contains	standard	acronyms.		All	

acronyms	are	well	known	or	part	of	the	problem	
domain.	

9	 Prefix/Suffix	

It	does	not	contain	a	prefix/suffix	that	is	a	term	
from	the	system.	This	standard	does	not	apply	to	

languages	such	as	C	that	do	not	have	
namespaces.	

10	 Length	 Maximum	number	of	words	is	no	greater	than	7.	

4	 The	Approach	
The	 current	 approach	 is	 implemented	 in	 Python.	 	 It	 takes	 a	
name	and	examines	 it	against	 the	method-naming	standards.		
We	automatically	extract	all	 the	method	names	 from	a	given	
system	using	srcML	(see	srcML.org)	 [33][34][35].	 	Currently,	
the	 approach	 works	 for	 all	 the	 programming	 languages	
supported	by	srcML,	 i.e.,	C++,	C#,	 Java.	Thus,	our	approach	is	
not	 restricted	 to	 a	 particular	 language	 naming	 conventions	
[36],	[37],	[31]	but	more	broadly	to	a	variety	of	languages.		We	
manually	 investigate	 all	 the	possible	 violation	 cases	 for	 each	
standard	and	implement	it	in	the	assessment	approach.		

4.1	 Naming	Style		
The	naming	style	standard	requires	developers	to	use	one	of	
the	common	lexical	naming	styles.	 	Our	assessment	approach	
supports	 underscore,	 camelCase,	 PascalCase,	 and	 kabob-case	
naming	styles.		It	recognizes	any	name	that	does	not	follow	one	

of	 these	 styles.	 Based	 on	 our	 observations,	 we	 classify	 the	
violations	into	four	cases:	

a) Mixed-Case	Violations:	Name	that	mixes	styles.	
b) Underscore	 style	 violation:	 Name	 starts	 with	 an	

underscore.			
c) Kabob-case	violation:	Name	starts	with	a	dash.		
d) No	naming	style	used:	example:	strbuffersize().	

4.2	 Grammatical	Structure	and	Verb	Phrase		
Part-of-speech	 tagging	 is	 essential	 to	 understanding	 the	
grammatical	 aspects	 behind	 a	 given	method	name.	 The	 verb	
phrase	 and	 grammatical	 structure	 standards	 are	 the	 two	
method	 naming	 standards	 that	 require	 checking	 the	 part-of-
speech	tag	sequence	of	each	method	name.	These	standards	are	
based	on	the	concept	of	grammar	patterns,	which	are	shown	to	
be	 a	 good	 way	 of	 analyzing	 the	 semantics	 and	 structure	 of	
identifiers,	including	method	names	[38].		The	reliance	on	part-
of-speech	 tagging	 makes	 the	 choice	 of	 an	 accurate	 part-of-
speech	 tagger	 important.	We	 integrate	 a	 recently	 developed	
and	currently	best	performing	source	code	PoS	 tagger	 called	
the	 SCANL	 ensemble	 tagger	 [39]	 to	 tag	 the	 words	 (after	
splitting)	 that	 make	 up	 a	 given	 method	 name.	 SCANL’s	
ensemble	 uses	 three	 state-of-the-art	 part-of-speech	 taggers:	
POSSE	[40],	SWUM	[41],	and	Stanford	[42],	and	the	final	tagset	
is	composed	of	the	most	common	PoS	tags	essential	to	assess	
an	identifier.	

Our	approach	first	investigates	if	the	method	name	contains	a	
verb	for	any	verb	phrase	violation.	And	then,	 it	 looks	for	any	
grammatical	 structure	 violations	 in	 the	 method’s	 name.	
Specifically	inspecting	to	see	grammatical	violations	such	as	if	
the	name	starts	with	an	English	modal	verb	(e.g.,	can,	should)	
followed	by	another	verb.	For	example,	canFind().	 	Also,	 if	
the	name	is	invalid	from	a	linguistics	standpoint.	For	example,	
when	 the	method	name	begins/ends	with	a	preposition,	 e.g.,	
sizeTo(), MoveTo().		

4.3	 Dictionary	Terms	
To	 deal	 with	 the	 dictionary	 term	 standard,	 we	 leverage	
WordNet[43],	a	large	lexical	database	of	English	words.		In	the	
approach,	we	use	WordNet	as	the	base	dictionary	for	checking	
words	that	appear	in	each	method	name.	To	check	the	words	
that	compose	the	method	name,	we	must	first	split	the	name.	

For	splitting,	we	use	Spiral	[44].	Spiral	is	a	Python	module	that	
provides	 several	 different	 functions	 for	 splitting	 identifiers	
found	in	source	code.	In	the	approach,	we	use	the	Spiral	Ronin	
splitting	algorithm	as	it	has	several	advanced	splitting	features.	
It	 uses	 a	 variety	 of	 heuristic	 rules,	 English	 dictionaries,	 and	
tables	 of	 token	 frequencies	 obtained	 from	 source-code	
repositories.	 	 Ronin	 is	 shown	 [12]	 to	 have	 a	 high	 splitting	
accuracy	 compared	 to	 other	 state-of-the-art	 splitting	
techniques	[45].	Splitting	method	names	is	important	to	assess	
a	method	name	composing	words.	Thus,	 the	approach’s	 final	
assessment	accuracy	results	highly	depend	on	this	phase.		

ICPC 2022 - Preprint R. Alsuhaibani et al.

Three	standards	relate	to	the	use	of	correct	dictionary	terms	
(i.e.,	dictionary	terms,	abbreviations,	and	acronyms).		WordNet	
supports	our	approach	in	recognizing	unknown	or	unfamiliar	
abbreviations	 and	 acronyms	 as	 non-dictionary	 terms.	 	 We	
developed	a	way	to	add	terms	to	deal	with	domain-dependent	
abbreviations	 and	 acronyms	 not	 in	 WordNet.	 	 Examples	 of	
these	words	include	SQL,	UTF8,	unicode,	runtime,	sharepoint,	
iterator,	 and	namespace.	We	also	consider	expanding	known	
abbreviations	into	dictionary	terms	for	part	of	speech	tagging	
purposes.		

4.4		 Full	Words	
The	 full	words	 standard	 only	 concerns	using	 single	 letters	 in	
method	 names	 and	 numbers	 instead	 of	 the	word	 form	 (e.g.,	
int2float()	 versus	 intTofloat()).	 	 Our	 approach	
assesses	method	names	 for	 any	occurrences	 of	 single	 letters	
(i.e.,	A-Z,	a-z,	0-1).	Using	single-letter	names	also	violates	the	
full	words	standard.	Developers	are	expected	not	to	use	single	
letters	 to	name	methods	per	 this	standard.	Examples	 include	
using	j,i,	and	k	to	name	a	method.		

4.5	 PreNix	and	SufNix	
Prefixes	are	words	used	at	 the	beginning	of	 a	method	name,	
while	suffixes	are	used	at	the	end.	These	words	can	be	a	term	
from	the	system,	such	as	scintilla_init()	that	appears	in	
Notepad++	project,	where	scintilla is	a	name	of	an	open-
source	 library	 that	 provides	 editing	 component	 function	 for	
this	project.	 For	each	project	 in	our	evaluation,	we	manually	
inspect	 for	any	prefix	or	suffix	and	create	a	 list	of	 them.	The	
approach	then	 inspects	 if	a	given	method	name	starts	with	a	
particular	prefix	or	ends	with	a	particular	suffix	according	to	
the	list.	This	standard	does	not	apply	to	systems	written	using	
a	 language	 that	 does	 not	 have	 a	 construct	 to	 support	
namespaces,	such	as	C.		

4.6	 Length	
The	number	of	words	 in	 a	method	name	plays	 an	 important	
role	in	communicating	the	intent	of	a	method.	 	The	results	of	
the	Alsuhaibani	 et	 al.	 [14]	 survey	 of	 professional	 developers	
found	that	the	length	of	a	method	name	should	be	no	more	than	
7	 words.	 	 As	 such,	 in	 the	 approach	 here,	 we	 set	 7	 as	 the	
maximum	number	of	words	a	method	can	have	after	splitting.		
The	 assessment	 approach	 examines	 a	 given	method's	 length	
and	 assesses	 it	 against	 this	 value.	 	 If	 there	 are	more	 than	 7	
words,	it	is	a	violation	of	the	length	standard.			

4.7	 Idioms	and	Slang	
Sometimes	idioms	or	slang	are	used	by	developers	for	adding	
entertainment	or	 cuteness	 to	 source-code	 identifiers	 [46].	 	A	
list	of	common	English	idioms	and	slang	that	developers	tend	
to	use	is	created.		We	collected	terms	from	the	work	of	Martin	
[46]	 along	 with	 other	 common	 American	 slang	 words	 and	
phrases.		The	approach	inspects	method	names	against	idioms	

such	as	ASAP,	cool,	clunky,	LOL,	FYI,	OMG,	etc.		This	list	can	be	
expanded	as	new	instances	are	encountered.			

5	 Assessment	and	Scoring	
The	assessment	includes	a	quality	score	based	on	adherence	to	
the	standards	and	feedback	or	comments	reporting	the	flaws	
found	in	a	name.		The	score	is	the	total	number	of	standards	the	
method	name	upholds	(i.e.,	between	10	and	0).		A	score	of	10	
means	the	method	name	follows	all	the	standards	and	is	high-
quality	in	the	aspects	that	the	approach	can	measure.		For	seven	
of	 the	 standards,	 we	 deduct	 one	 point	 if	 the	 method	 name	
violates	 any	 of	 the	 standard’s	 violating	 conditions.	 	 The	
exception	 is	 the	dictionary	 terms,	abbreviation,	and	acronym	
standards,	 which	 all	 use	 the	 same	 dictionary	 and	 analysis.		
Differentiating	between	abbreviations	and	acronyms	used	in	a	
name	is	a	challenge	we	encountered,	as	those	standards	are	all	
related,	so	we	give	a	3-point	deduction	for	any	violation	related	
to	any	of	them.	We	believe	that	we	gave	a	proper	score	for	each	
rule,	 so	 reasonable	 names	 will	 not	 get	 very	 low	 scores.	 For	
example,	 method	 names	 such	 as	
“relationalExpressionNoIn()”	will	not	get	a	poor	score	
because	 it	 is	only	violating	 the	verb	phrase	and	grammatical	
structure	standards.	It	will	still	get	a	reasonable	score	of	8.	
Method	Name:	relationalExpressionNoIn()	
Score:	8	
Feedback:	Check	the	grammatical	structure	of	the	method	name;	the	name	
starts	or	ends	with	preposition/Add	a	verb	to	the	method	name.	
	

The	 score	 is	 primarily	 designed	 to	 highlight	 the	 number	 of	
violations	exemplified	by	a	given	method	name	to	help	guide	
developers’	attention	to	potentially	low-quality	method	names.	
It	 is	 not	 designed	 to	 directly	 measure	 whether	 the	 method	
name	is	comprehensible,	or	incomprehensible.	Thus,	some	low	
scoring	 identifiers	 will	 be	 comprehensible,	 but	 still	 have	
problems	 that,	 if	 solved,	may	 increase	 its	 comprehensibility.	
The	 score	 also	 assumes	 that	 the	 standards	 are	 all	 equally	
weighted.		This,	of	course,	may	not	be	the	case.		However,	there	
have	 been	 no	 studies	 to	 determine	 if	 variable	 weighting	 is	
appropriate.		We	leave	this	for	future	work.		

6	 Evaluation	
As	 stated	 previously,	 the	 approach	 uses	 the	 Spiral	 identifier	
splitter,	the	WordNet	Dictionary,	and	a	source	code	specialized	
part-of-speech	 tagger.	 	 Common	 source	 code	
abbreviations/acronyms	are	manually	added	to	the	dictionary;	
so,	the	approach	recognizes	them	as	dictionary	words.		Also,	in	
our	 approach,	 the	 known	 abbreviations	 contain	 the	
corresponding	expansions	of	their	full	form	so	that	the	utilized	
tagger	can	provide	the	most	accurate	part-of-speech	tag	for	our	
approach	assessment.			

In	the	study,	we	use	two	different	methods	for	the	evaluation.		
First,	 we	 construct	 a	 golden	 set	 of	 method	 names	 that	 are	
labeled	as	adhering	to	each	standard	or	not.		We	use	this	golden	
set	to	develop	and	evaluate	the	effectiveness	of	our	automated	
assessment	 approach.	 To	 show	 the	 generalizability	 and	

An Approach to Automatically Assess Method Names WOODSTOCK’18, June, 2018, El Paso, Texas USA
	

effectiveness	 of	 the	 approach,	 we	 select	 three	 additional	
systems	 from	 different	 domains	 and	 languages,	 and	 we	
manually	 evaluate	 the	 approach	 on	 all	 10	 rules	 with	 a	
statistically	significant	sample	of	method	identifiers	from	each	
of	the	systems..	

6.1	 Development	of	a	Golden	Set	
We	 create	 a	 golden	 set	 as	 a	 baseline	 for	 the	 evaluation	 to	
develop	 and	 preliminarily	 evaluate	 the	 approach's	 accuracy.		
The	 authors	 performed	 an	 intensive	manual	 evaluation	 of	 a	
random	 subset	 of	 method	 names	 in	 the	 context	 of	 the	 ten	
method	naming	standards.		To	create	the	golden	set,	we	choose	
a	random	project	with	the	following	criterion:	1)	it	should	be	a	
widely	 used	 and	 popular	 open-source	 project;	 that	 has	 been	
available	 for	multiple	 years	 (+10)	with	 active	 and	 continued	
support;	2)	contains	a	large	number	of	lines	of	code	(i.e.,	not	a	
small	system);	3)	has	a	stable	version	of	the	system	posted	in	a	
repository;	 3)	 has	 been	 recently	 updated	 (i.e.,	 still	 being	
supported).		We	chose	the	free	source	code	editor	for	Microsoft	
Windows,	Notepad++.	 	 It	was	 initially	 released	17	years	ago,	
and	it	is	available	in	90	languages.		

Golden	Set	Sample	Size:	The	Notepad++	project	contains	a	total	
of	 6,733	 method	 names.	 A	 total	 of	 354	 method	 names	 is	
selected	 using	 the	 confidence	 interval	 sample	 size	 (i.e.,	 the	
confidence	level	is	95%	and	the	confidence	interval	is	5%)	for	
the	 golden	 set.	 A	 significant	 amount	 of	 effort	 and	 time	 was	
required	 to	 evaluate	 each	 method	 for	 adherence	 to	 the	
standard	(i.e.,	354	per	standard	with	ten	standards	means	the	
total	checking	effort	is	3540	applications	of	each	standard).	

Golden	 Set	 Evaluation:	 Each	 of	 the	 authors	 was	 assigned	 a	
spreadsheet	 that	 contains	 the	 354	 method	 names,	 with	
columns	 representing	 the	 ten	 method	 naming	 standards:	
naming	 style,	 grammatical	 structure,	 verb	 phrase,	 dictionary	
terms,	 full	words,	 idioms	and	slang,	abbreviations,	acronyms,	
prefix/suffix,	 and	 length.	 	 In	 addition,	 a	 column	 contains	 the	
source-code	file	path	of	the	method	name--	for	the	evaluator’s	
reference	(e.g.,	to	learn	more	about	the	method	behavior).	Each	
evaluator	 is	 asked	 to	 check	 each	 name	 for	 adherence	 to	 the	
standard,	and	for	each	method	name,	the	evaluator	marks	any	
violated	standards.	For	example,	if	a	name	does	not	contain	a	
verb,	 the	 evaluator	 marks	 the	 verb	 phrase	 standard	 as	 a	
violation	 for	 that	name.	Each	method	name	can	have	zero	or	
more	violations.	For	example,	 suppose	a	name	violates	 three	
method	naming	standards,	where	it	has	9	words,	uses	unknown	
abbreviations,	and	does	not	adhere	to	a	naming	style.	 In	that	
case,	 the	 evaluator	 marks	 all	 three	 related	 standards	 as	
violations.	 All	 evaluators	 used	 Table	 1	 for	 the	 naming	 rules	
applicable	to	each	method.	

During	 creating	 the	 golden	 set,	 evaluators	 were	 sometimes	
unsure	 about	 the	 correct	 assessment	 due	 to	 poor	 method	
naming	 practice.	 Thus,	 after	 completing	 the	 assignment,	 we	
organized	 group	 meetings	 to	 further	 discuss	 the	 evaluation	
results	 for	 each	name	and	each	 standard	 that	 the	 evaluators	

were	 not	 all	 in	 agreement.	 This	 procedure	 required	 five	
separate	 intensive	 meetings	 (i.e.,	 approximately	 three	 hours	
per	each	of	the	first	four	standards	and	an	hour	for	the	other	
standards).	This	procedure	resulted	in	clear	insight	into	when	
agreements	 and	 disagreements	 mainly	 occur	 per	 name	 and	
rationales	for	each	disagreement.	There	were	also	cases	where	
we	had	no	agreement	or	had	an	agreement	only	after	lengthy	
discussion.		There	was	much	discussion	on	the	topic	of	what	is	
considered	a	dictionary	term.	 	This	 is	a	crucial	component	of	
the	evaluation	and	leads	to	a	better	understanding	of	how	to	
consistently	apply	this	standard.		

As	an	example,	we	consider	well-known	abbreviations	such	as	
“info”	in	writeSourceInfo()	as	satisfying	the	dictionary	
terms	standard.		In	contrast,	the	unknown	abbreviation	“Nsis”	
in	 classifyWordNsis()	 violates	 the	 dictionary	 terms	
standard	 as	 a	 developer	 may	 not	 be	 sure	 about	 the	 correct	
expansion	of	this	term.		However,	if	this	abbreviation	is	part	of	
the	system’s	domain,	then	it	is	not	a	violation	for	that	specific	
system.		We	support	this	through	extensions	to	the	dictionary.	
We	also	consider	misspelled	words	as	non-dictionary	words.	
For	 example,	 “attribute”	 is	 incorrectly	 spelled	 in	
getChildElementByAttribut()	 and	 violates	 the	
dictionary	 terms	 standard.	 (We	 will	 make	 the	 golden	 set	
publicly	available	upon	the	paper	acceptance)		

Table	 2	 Summary	 of	 the	 systems	 used	 in	 the	 manual	
inspection	evaluation	

System	 Release	 Language	 KLOC	 Total	
Methods	 Sample	

Notepad++	 7.9.0	 C++/C	 400K	 6733	 354	
Terminal	
Image	Viewer	 1.1.0	 C++	 50K	 901	 270	

Bio	Java	 5.4.0	 Java	 902K	 10737	 363	
Flash	Develop	 5.3.3	 C#	 488K	 16702	 376	

	

Table	3	The	 two	different	evaluation	perspectives	of	 the	
confusion	matrix	 when	 considering	 each	 as	 the	 positive	
class.	 	 The	 approach	 compared	 to	 the	 manually	
determined	results.	

	 Violation	Positive No	Violation	Positive
	 Approach Manual Approach Manual

True	Positive	(TP) Violation Violation Non-
Violation

Non-
Violation

True	Negative	(TN) Non-
Violation

Non-
Violation Violation Violation

False	Positive	(FP) Violation	 Non-
Violation

Non-
Violation Violation

False	Negative	(FN) Non-
Violation Violation Violation Non-

Violation

6.2	 Assessing	Open-Source	Systems		
To	ensure	generalizability,	applicability,	and	validation,	we	run	
the	approach	on	three	different	systems	and	manually	validate	
a	set	of	samples	per	system.		Table	2	provides	details	about	the	
systems	used	for	this	part	of	the	evaluation	(Notepad++	is	also	
included	for	comparison).	Note	that	we	used	systems	written	
in	three	different	languages,	namely	C++,	C#,	and	Java.		For	each	
of	 the	 three	 systems,	 we	 manually	 analyzed	 a	 random	

ICPC 2022 - Preprint R. Alsuhaibani et al.

statistically	significant	sample	(i.e.,	a	confidence	level	of	95%	
and	 a	 confidence	 interval	 of	 5%).	 	 In	 total,	 we	 manually	
validated	1,363	method	names,	 from	four	systems	(including	
the	 golden	 set),	 for	 adherence	 to	 the	 ten	 method	 naming	
standards.	

7	 Results	
This	section	provides	the	details	of	the	results.	There	are	two	
different	 perspectives	 one	 can	 take	 when	 examining	 the	
results.	First,	we	can	consider	a	standard	violation	the	positive	
class	 (true	 positive).	 We	 term	 this	 the	 violation	 positive	
perspective.	Ideally,	all	standard	violations	should	be	identified	
by	 the	 approach	 with	 no	 standard	 non-violating	 cases	
identified	as	violating	(false	positive)	and	no	standard	violating	
cases	 identified	 as	 non-violating	 (false	 negative).	 This	
perspective	captures	this	ideal.	However,	this	perspective	does	
not	 completely	 evaluate	 how	 well	 the	 approach	 assesses	
standard	 non-violating	 cases	 (e.g.,	 identifying	 high-quality	
names	for	text	analysis,	machine	learning,	etc.)	For	this,	we	can	
consider	 a	 standard	 no	 violation	 as	 the	 positive	 class	 (true	
positive).	We	term	this	the	no	violation	positive	perspective.	In	
this	 view,	 identifying	 a	 standard	 non-violating	 case	 as	 a	
violation	 is	 a	 false	 negative,	 while	 identifying	 a	 standard	
violating	 case	 as	 a	 non-violation	 is	 a	 false	 positive.	 Both	
perspectives	 are	 important	 as	 they	 show	 how	 well	 the	
approach	wholly	performs	on	no	violation	cases	and	violation	
cases.		Table	3	shows	these	two	perspectives	of	how	to	evaluate	
the	approach.		The	first	row	shows	the	true	positives.		These	are	
the	method	names	which	both	 the	approach	and	 the	manual	
inspection	identify	as	having	a	violation	in	the	first	perspective.		
While	 in	 the	 second	perspective,	 both	 agree	 that	 there	 is	 no	
violation.		

We	present	the	results	of	applying	the	approach	on	Notepad++	
and	comparing	to	the	golden	set	in	Section	7.1.		The	results	of	
the	subsequent	manual	evaluation	applying	all	ten	standards	to	
three	additional	systems	is	given	in	Section	7.2-7.4.	For		all	four	
systems,	 as	 the	 precision,	 recall,	 and	 F1	 score	 are	 different	
depending	 on	 each	 perspective,	 and	 because	 of	 space	
restrictions,	we	present	the	average	precision,	average	recall,	
and	average	F1	score	of	the	two	perspectives	according	to	[47]	
(aka	macro	precision,	recall,	and	F1	score).	The	true	positive,	
true	negative,	false	positive,	and	false	negative	values	for	each	
are	 also	 reported	 so	 that	 each	 perspective’s	 metrics	 can	 be	
calculated	individually.	

7.1	 Notepad++(354	sampled	methods)		
To	 evaluate	 the	 correctness	 of	 the	 approach’s	 results,	 we	
compare	it	to	the	golden	set.	For	example,	for	the	method	name	
setItemIconStatus(),	the	approach	assigns	this	method	a	
score	of	10	with	no	standard	violations	reported.		To	validate	
this,	 we	 compare	 this	 result	 to	 our	 golden	 set	 to	 see	 if	 the	
approach	produces	the	same	result.	In	this	case,	our	golden	set	
also	 shows	 that	 this	 name	 has	 no	 violations.	 	 Thus,	 our	

approach	 correctly	 scored	 the	 name.	 This	 applies	 to	 all	 the	
methods	names	we	have	for	evaluation	(see	Error!	Not	a	valid	
bookmark	self-reference.).	The	naming	style	standard,	from	the	
no	 violation	 viewpoint,	 has	 338	 true-positives,	meaning	 that	
the	approach	can	correctly	identify	method	names	that	do	not	
have	any	naming	style	violations,	per	the	golden-set	evaluation.	
For	 the	 grammatical	 structure	 standard,	 and	 from	 violation	
viewpoint,	the	approach	detects	13	violating	methods	out	of	32	
violating	 cases.	 	 For	 the	 verb	 phrase	 standard,	 the	 approach	
identifies	252	names	as	adhering	to	the	verb	phrase	standard,	
per	 the	 golden	 set,	 and	 51	 as	 non-adhering.	 However,	 the	
approach	is	not	able	to	detect	29	verb	phrase	violations	in	this	
system.	 For	 the	 dictionary	 terms	 standard,	 the	 approach	
detects	82.0%	of	the	total	violations	in	this	set.	It	also	detects	5	
out	of	7	full	words	violations	and	4	of	5	prefix	and	suffix	ones.	
There	are	no	reported	violations	for	the	idioms	and	slang,	and	
length	standards	in	this	system.	

Table	 4	 Notepad++	 method	 name	 evaluations,	 and	 the	
average	of	precision,	recall,	and	f	score	

	

Table	5	Terminal	Image	Viewer	method	name	evaluations,	
and	average	of	precision,	recall,	and	f	score	

Violation	 TP		 TN	 FP		 FN	 Avg	
Precisio

n	

Avg	
Recall	

Avg	
F1	

Score	No	Violation	 TN	 TP	 FN	 FP	

Naming	Style	 69	 187	 1	 13	 96.0%	 91.8%	 93.6%	
Grammatical	
Structure	 16	 248	 0	 6	 98.8%	 86.4%	 91.5%	

Verb	Phrase	 81	 157	 10	 22	 88.4%	 86.3%	 87.1%	
Dictionary	

Terms	(Abbrv.	
Acronyms)	

119	 140	 10	 1	 95.8%	 96.3%	 95.9%	

Full	Words	 8	 254	 0	 8	 98.5%	 75.0%	 82.6%	
Idioms/Slang	 0	 270	 0	 0	 NA	 NA	 NA	
Prefix/Suffix	 0	 270	 0	 0	 NA	 NA	 NA	

Length	 0	 270	 0	 0	 NA	 NA	 NA	
	

The	average	precision	of	adherence	and	non-adherence	to	the	
naming	 style	 standard	 is	 86.9%,	 with	 an	 average	 recall	 of	
79.7%.	 There	 is	 an	 average	 precision	 of	 90.5%,	 an	 average	
recall	 of	 70.0%	 for	 the	 grammatical	 structure,	 an	 average	
precision	of	79.8%,	and	an	average	recall	of	77.9%	for	the	verb	
phrase	 standard.	The	accuracy	 for	 checking	dictionary	 terms	
standard	adherence	reached	an	average	precision	of	96.2%	and	
an	average	recall	of	90.8%.	 	There	 is	an	average	precision	of	
81.0%	 and	 average	 recall	 of	 91.4%	 for	 adhering	 to	 the	 full	
words	 standard.	 	 Additionally,	 the	 prefix/suffix	 standard	

Violation	 TP	 TN	 FP	 FN	 Avg	
Precision	

Avg	
Recall	

Avg	
F1	

Score	No	Violation	 TN	 TP	 FN	 FP	

Naming	Style	 6	 338	 6	 4	 86.9%	 79.7%	 82.6%	
Grammatical	
Structure	 13	 320	 2	 19	 90.5%	 70.0%	 76.0%	

Verb	Phrase	 51	 252	 22	 29	 79.8%	 77.9%	 78.7%	
Dictionary		

Terms	(Abbrv.	
Acronyms)	

41	 302	 2	 9	 96.2%	 90.8%	 93.2%	

Full	Words	 5	 345	 2	 2	 81.0%	 91.4%	 85.4%	
Idioms/Slang	 0	 354	 0	 0	 NA	 NA	 NA	
Prefix/Suffix	 4	 349	 0	 1	 99.9%	 90.0%	 94.4%	

Length	 0	 354	 0	 0	 NA	 NA	 NA	

An Approach to Automatically Assess Method Names WOODSTOCK’18, June, 2018, El Paso, Texas USA
	

received	an	average	precision	of	99.9%	and	average	recall	of	
90.0%.	 Overall	 observation	 of	 this	 system	 shows	 that	 our	
approach	can	achieve	decent	accuracy	(i.e.,	average	precision,	
recall,	and	F-score)	numbers	per	standard	(+70%)	compared	
against	the	golden	set.	These	results	led	us	to	take	another	step	
to	 verify	 the	 results	 of	 the	 approach	 and	 ensure	 that	 these	
results	generalizable	to	other	systems.		

Table	6	BIO	JAVA	Method	name	evaluations,	and	average	of	
precision,	recall,	and	f	score	

Violation	 TP	 TN	 FP	 FN	 Avg	
Precisio

n	

Avg	
Recall	

Avg	
F1	

Score	No	Violation	 TN	 TP	 FN	 FP	

Naming	Style	 12	 342	 8	 1	 79.9%	 95.0%	 85.7%	
Grammatical	
Structure	 7	 355	 0	 1	 99.9%	 93.8%	 96.6%	

Verb	Phrase	 22	 313	 15	 13	 77.7%	 77.4%	 78.4%	
Dictionary	

Terms	(Abbrv.	
Acronyms)	

90	 268	 2	 3	 98.7%	 98.0%	 98.2%	

Full	Words	 26	 333	 4	 0	 93.3%	 99.4%	 96.1%	
Idioms/Slang	 0	 363	 0	 0	 NA	 NA	 NA	
Prefix/Suffix	 0	 363	 0	 0	 NA	 NA	 NA	

Length	 6	 357	 0	 0	 100.0%	 100.0%	 100.0%	
	

Table	7	Flash	Develop	method	name	evaluations,	and	the	
average	of	precision,	recall,	and	f	score	

Violation	 TP	 TN	 FP	 FN	 Avg	
Precision	

Avg	
Recall	

Avg	
F1	

Score	No	Violation	 TN	 TP	 FN	 FP	

Naming	Style	 62	 308	 5	 1	 96.1%	 98.4%	 97.2%	
Grammatical	
Structure	 20	 353	 0	 3	 99.9%	 93.5%	 96.3%	

Verb	Phrase	 82	 274	 10	 10	 92.8%	 92.8%	 92.8%	
Dictionary	

Terms	(Abbrv.	
Acronyms)	

74	 281	 20	 1	 89.9%	 96.0%	 92.0%	

Full	Words	 8	 354	 2	 12	 88.4%	 69.7%	 75.7%	
Idioms/	Slang	 0	 376	 0	 0	 NA	 NA	 NA	
Prefix/Suffix	 2	 346	 0	 28	 96.3%	 53.3%	 54.3%	

Length	 5	 371	 0	 0	 100.0%	 100.0%	 100.0%	

7.2	 Terminal	Image	Viewer	(270	methods)		
We	ran	our	approach	on	a	significant	sample	of	the	Terminal	
Image	Viewer	system.		We	inspect	the	results	and	observe	that	
the	method	names	of	this	system	appear	to	be	of	lower	quality	
than	Notepad++.		For	example,	several	methods	did	not	adopt	
any	naming	style,	thus	violating	this	standard.		Also,	there	are	
several	method	names	missing	a	verb.		We	hypothesize	this	is	
due	 to	 the	 system	 being	 in	 an	 early	 stage	 of	 development	
(release	 1.1	 with	 ~170	 commits)	 compared	 to	 Notepad++	
(release	7.9	with	+4K	commits).	 	After	assessing	 the	method	
names	of	this	system,	our	approach	can	correctly	detect	several	
poorly	 written	 methods	 (see	 Table	 5).	 For	 example,	 for	 the	
naming	style	standard,	a	 total	of	82	of	 the	examined	method	
names	 have	 naming	 style	 violations,	 and	 our	 approach	
correctly	 detects	 69	 of	 these	 cases	 (84%).	 	 Our	 approach	
detects	 73%	 of	 the	 methods	 that	 violate	 the	 grammatical	
structure	standard.	For	the	verb	phrase	standard,	it	can	detect	
79%	 of	 the	 violations.	 Also,	 there	 are	 120	method	 names	 in	
violation	of	 the	dictionary	 terms	 standard,	 and	 the	approach	

detects	 119	 of	 them	 (99%).	 	 For	 the	 full	word	 standard,	 the	
approach	identifies	50%	of	the	violations.		The	overall	results	
show	 that	 the	 approach	 can	 identify	 many	 true	 positives	
(violation	 view),	 with	 issues	 per	 a	 naming	 standard.	 	 This	
system’s	 precision	 and	 recall	 numbers	 for	 the	 standards	
adherents	 and	 non-adherents	 are	 also	 consistent	 with	 the	
previous	system.		

7.3	 BioJava	(363	methods)		
Overall,	 the	 evaluation	 of	 BioJava	 demonstrates	 that	 the	
approach	 can	 also	 recognize	 Java	 method	 names	 that	 have	
violations	 (TP,	 violation	 view)	 (see	 Table	 6).	 	 There	 are	 13	
method	names	that	violate	the	naming	style	standard,	and	12	
are	 correctly	 reported.	 	 There	 are	 8	 methods	 that	 have	
violations	with	 the	grammar	standard,	and	 the	approach	can	
correctly	recognize	7	of	them.		The	approach	found	63%	of	the	
methods	 that	violate	 the	verb	phrase	standard.	There	are	93	
methods	that	contain	non-dictionary	terms,	and	the	approach	
correctly	identifies	96.8%	of	them.	There	are	also	26	method	
names	 that	 violate	 the	 full	 words	 standard	 in	 this	 system,	
where	the	approach	recognizes	all	of	them.		While	there	are	no	
violations	 of	 using	 idioms/slang	 and	 prefix/suffix	 on	 this	
system,	there	are	6	length	violations	that	are	all	identified	by	
our	approach.	The	average	precision	and	recall	are	+77%	for	
reporting	standards	adherence/nonadherence	in	this	system.		

7.4	 Flash	Develop	(376	methods)		
The	results	on	Flash	Develop	appear	in	Table	7.	True-positives	
(violation	view)	detections	are	overly	high	per	each	standard.		
The	approach	detects	98%	of	 the	method	names	 that	violate	
the	 naming	 style,	 89%	of	 the	 ones	 violating	 the	 verb	 phrase	
standards,	and	87%	of	the	methods	with	grammatical	structure	
violations.	On	the	other	hand,	75	method	names	contain	non-
dictionary	terms	for	the	dictionary	terms	standard,	and	74	of	
those	are	detected	(99%).	All	length	violating	methods	are	also	
detected,	and	we	found	no	idioms/slang	violations.	However,	
the	approach	only	detects	40%	of	the	full	words	violations	and	
2	 of	 30	 violations	 to	 the	 prefix/suffix	 standard.	 We	 discuss	
these	more	in	depth	in	the	discussion	section.	 	This	aspect	of	
the	evaluation	shows	that	the	approach	is	effective	on	different	
systems	 and	 appears	 to	 generalize	 to	 different	 languages,	
specifically	 to	 C++,	 C#,	 and	 Java.	 	 However,	 these	 languages	
have	 the	 same	 historical	 roots	 and	 similar	 general	 syntax.		
Additional	study	is	needed	to	see	if	the	approach	generalizes	to	
other,	less	similar	languages.	

8	 Discussion		
This	section	discusses	the	quantitative	and	qualitative	results	
of	 our	 evaluation	 and	 golden	 set	 construction.	 	 We	 go	 over	
several	nuances	that	highlight	the	difficulty	of	the	problem	and	
complications	 brought	 about	 by	 the	 tools	 we	 rely	 on.	 In	
addition,	our	manual	validation	of	the	false-positive	instances	
shows	 a	 repeating	 pattern	 that,	 in	 most	 cases,	 causes	 the	

ICPC 2022 - Preprint R. Alsuhaibani et al.

approach	 to	misreport	 them	 as	 issues.	 These	 issues	 are	 also	
related	to	low	average	precision	and	recall	the	approach	has.	

8.1	 Naming	Style		
During	the	development	of	the	golden	set,	a	case	arose	where	
three	evaluators	argued	that	the	first	letter	that	comes	after	the	
acronym	 should	 be	 capitalized,	 while	 two	 others	 argued	 it	
should	 not.	 Our	 approach	 flags	 such	 method	 names	 with	 a	
naming	 style	 violation,	 e.g.,	 ColouriseAPDLDoc(),	
FoldVHDLDoc(),	 and	 FoldMSSQLDoc()	 only	 if	 the	
acronyms	are	not	added	to	the	exception	list.	If	it	is	added,	no	
violations	are	reported.	This	applies	to	all	the	similar	naming	
style	 false	 positives	 found	 in	 the	 other	 three	 systems.	 	 We	
observe	that	the	naming	style	is	associated	with	the	dictionary	
terms	standard;	so,	if	there	is	an	acronym	in	a	method	that	is	
not	 added	 to	 our	 dictionary,	 and	 acronyms	 usually	 are	 all	
capitalized,	the	approach	flags	these	method	names	with	two	
violations,	a	naming	style,	and	a	dictionary	terms	violation.	

The	 approach	 is	 capable	 of	 detecting	 inconsistent	 or	 missing	
naming	 styles.	While	not	 every	 case	of	a	naming	violation	will	
degrade	 comprehension,	 it	 increases	 the	 chance	 of	 additional	
cognitive	load.	
Our	evaluation	of	 this	standard	shows	that	most	of	 the	false-
negative	 cases	 across	 the	 four	 systems	 are	 due	 to	 splitting	
issues.		The	approach	cannot	identify	a	naming	style	violation	
in	 examples	 like	 GetTypesep().	 In	 this	 case,	 the	 name	 is	
supposed	to	have	a	capital	S	to	adhere	to	PascalCase,	so	Type	
and	 sep	 can	 be	 recognized	 as	 two	 different	 words	 per	 the	
golden-set	evaluation.	However,	the	approach	misreports	these	
violations.	 The	 same	 applies	 to	 the	 method	 name	
isLispwordstart() that	appears	in	Notepad++.	

There	 are	 some	 interesting	 naming	 style	 practices	 in	 the	 C#	
system	that	we	did	not	observe	commonly	in	the	other	systems.	
There	appear	+20	methods	names	that	have	a	mixed	naming	
style.	 Developers	 of	 this	 system	 tend	 to	 use	 camelCase	 or	 a	
PascalCase	with	an	underscore	case.	Examples	include:	

addLibraryButton_CheckedChanged()
TreeIcons_Populate()

We	also	observed	when	developers	use	prefixes,	they	tend	to	
use	 all	 caps	 letters	 style,	 for	 example:	 	 mVALUE_int(),
mSTART_TAG(), mIDENTIFIER(), and	 mCOMMENT().		
We	 are	 not	 sure	 if	 this	 practice	 is	 due	 to	 a	 naming	 style	
guideline	provided	to	the	developers	of	this	project,	but	we	are	
certain	that	inconsistent	naming	style	does	not	support	method	
readability	according	to	the	literature	[14,	32,	48,	49].	Thus,	we	
consider	these	violations.	

8.2	 Verb	Phrase		
Most	of	the	false	positives	for	the	verb	phrase	standard	relate	
to	the	performance	of	the	tagger.		There	are	some	methods	that	
our	part-of-speech	tagger	is	not	able	to	annotate	correctly.		For	
example,	the	verbs	in	the	method	names:	

CountCharacterWidthsUTF8()	
GetRelativePositionUTF16()

that	appear	in	Notepad++	are	not	correctly	recognized	by	our	
approach.		After	investigation,	we	found	the	tagger	labeled	the	
first	words	as	nouns.		

There	are	some	false	positive	cases	where	“is”	(as	the	verb)	of	
the	method	is	not	recognized	as	a	verb	but	as	a	verb	modifier.	
For	 example:	 isIndentToFirstParm(),	
isInListA(),and	IsMyThread(). These	examples	 are	
incorrectly	 flagged	with	a	verb	phrase	violation.	 	These	 false	
positive	cases	highly	depend	on	how	the	tagger	interprets	the	
name.		Another	case	where	the	verb	is	not	recognized	is	when	
not	using	a	naming	style	such	as	in	fseek(),	where	seek	is	a	
verb,	but	it	was	not	recognized	because	the	approach	reads	this	
name	as	a	full	word.	

A	verb	must	be	present	within	a	method	name.	Detecting	the	verb	
is	challenging;	some	words	can	be	both	a	noun	and	a	verb.		
For	the	 false	negatives,	 the	reverse	occurs.	 	The	approach,	 in	
some	cases,	annotates	the	nouns	as	verbs.		For	example,	in	the	
method	names	RangeText()	and	CodePageFamily(),	the	
tagger	labels	Range	and	Code	as	verbs,	while	in	the	golden-set	
evaluation,	evaluators	agree	those	are	nouns.	 	The	mistake	is	
likely	because	the	words	“Range”	and	“Code”	function	as	verbs	
in	some	contexts.		More	examples	are	row() and	rows(),	and	
the	 approach	 does	 not	 flag	 these	 words	 with	 verb	 phrase	
violation	as	they	are	tagged	as	verbs.	

8.3	 Grammatical	Structure		
The	approach	can	identify	many	violations	of	the	grammatical	
structure	standard.	For	example,	cases	where	method	names	
start	 with	 a	 preposition	 such	 as	
IntoCreateViewStatement()or	 end	 with	 a	 preposition	
such	 as	 syncFoldStateWith(), convertInto(),	
endsWith(), sizeTo(), activateWindowAt(), or
MoveTo(), or	also	end	with	a	pronoun	or	a	determiner	such	
as	in WeakNotifyThis().		These	method	names	are	flagged	
by	 the	 golden-set	 evaluators	 as	 sub-optimal	 grammatical	
structures,	as	they	do	not	form	a	complete	phrase	satisfying	the	
grammatical	 structure	 standard	 definition.	 	 They	 are	
recognized	all	as	a	violation.		

During	 the	 construction	 of	 the	 golden	 set,	 there	 were	 some	
disagreements	about	method	names	that	end	with	nouns	that	
could	also	be	 interpreted	as	verbs.	 	For	example,	 the	method	
names	 WordListSet(),	 FineTickerCancel(),	
MoveForInsertDelete(),	 InputSymbolScan(),	 and	
ContractionStateCreate()	 have	diverging	opinions.	 In	
our	approach	they	are	identified	as	nouns.		

In	general,	challenges	to	detecting	violations	can	be	classified	
into	the	following	three	cases:		

1) The	verb	comes	at	the	end	of	the	method	name,	so	it	
is	difficult	to	determine	if	the	name	is	a	verb	phrase	

An Approach to Automatically Assess Method Names WOODSTOCK’18, June, 2018, El Paso, Texas USA
	

or	noun	phrase.		Examples:	FineTickerCancel(),	
SelectionEnd()and	InputSymbolScan().	

2) The	method	name	is	not	clear,	and	therefore	it	is	not	
comprehensible.		While	the	original	developers	most	
likely	understand	the	name,	it	is	difficult	for	the	non-
informed	to	decipher.		Example:	
lookingAtHereDocDelim().	

3) The	method	name	ends	with	an	abbreviation,	and	it	is	
unclear	whether	it	is	a	verb	or	a	noun.	For	example,	
numstrcmp().	In	this	case,	one	can	question	if	cmp	
stands	for	comparison	or	compare.	

Dangling	prepositions	and	determiners	are	somewhat	common	
patterns	 in	 names.	 However,	 these	 are	 incomplete	 phrases.	
Developers	need	to	consider	whether	using	incomplete	phrases	is	
appropriate	 even	 if	 their	parameters/arguments	 can	 complete	
the	 phrase.	 	 In	 addition,	 we	 found	 several	 examples	 of	 verbs	
appearing	at	the	end	of	method	names	when	placing	them	at	the	
beginning	is	better	syntax.		
There	are	 false-negative	cases	where	adding	a	preposition	 in	
the	middle	of	a	name	supports	better	readability.		For	example,	
the	 name	DrawTextNoClip()	 can	 be	 improved	 if	 we	 add	
with	as	a	preposition:	DrawTextWithNoClip().	However,	
currently	 our	 approach	 does	 not	 support	 checking	 for	
preposition	occurrences	at	the	middle	of	a	phrase.		Our	general	
observation	for	this	standard	shows	that	as	long	as	a	verb	exists	
in	 the	 method	 name,	 it	 is	 usually	 understandable	 to	 the	
developer,	even	if	not	optimal.	

8.4	 Dictionary	Terms			
Most	of	the	false	positives	for	the	dictionary	terms	standard	are	
due	to	the	splitter	performance.		For	example,	in	cases	where	a	
capitalized	single	letter	(i.e.,	Articles)	is	followed	by	a	word	that	
starts	 with	 a	 capital	 letter	 (e.g.,	 IsASpace()	 from	
Notepad++),	 the	 approach	 flags	 it	 with	 a	 dictionary	 term	
violation	as	it	evaluates	“pace”	as	a	non-dictionary	term.			

When	 method	 names	 do	 not	 adopt	 any	 naming	 style,	 e.g.,	
wordchar(),	the	approach	treats	them	as	one	word	and	flags	
them	as	non-dictionary	terms.	However,	in	other	cases	where	a	
method	contains	a	component	word	such	as	whitespace in	
IsNextNonWhitespace(),	 the	 approach	 recognizes	 such	
word	as	one	word	and	does	not	flag	it	as	a	violation,	as	also	the	
golden-set	 evaluators	 agree	 that	 whitespace	 is	 a	 full	
dictionary	word.	

Developers	are	highly	recommended	to	use	the	full	form	of	a	word	
while	naming	their	methods.		Unknown	abbreviations	in	source	
code	are	common	in	non-source	code	contexts,	which	can	cause	a	
misunderstanding	 not	 only	 to	 other	 developers	 but	 also	 to	
software	text	analysis	tools	that	use	English	dictionaries.	
Some	 terms	 in	 the	 method	 names	 appear	 in	 the	 WordNet	
dictionary,	but	 they	have	a	different	meaning	 from	how	they	
are	 used	 in	 source	 code.	 For	 example,	 the	 method	 names	
nbScintillas(), and	testGetNcsMatrix(),	where	the	
evaluators	agree	that	the	abbreviations	“nb”	and	“ncs”	are	not	

dictionary	 terms.	 	 However,	 WordNet	 contains	 those	
abbreviations	 as	 full	 words	 and	 defines	 these	 words	 in	
unrelated	 contexts.	 	 The	 evaluation	 results	 show	 that	 these	
cases	are	false	negatives.		

8.5	 Full	Words	
Most	of	the	false	negatives	of	the	full	words	standard	are	due	to	
the	splitting	issue	at	handling	single	letters.		For	example,	with	
the	method	getLParamFromIndex(),	 the	 approach	 is	 not	
able	to	recognize	the	single	letter	violation	as	it	recognizes	LP	
as	a	dictionary	word.	It	flags	such	a	method	with	a	naming	style	
and	dictionary	terms	violations,	but	not	a	full	words	violation.	
Also,	there	are	false	negatives	where	the	names	are	not	flagged	
with	full	words	violations,	as	developers	do	not	use	any	naming	
styles	 to	 differentiate	 between	 the	 words	 and	 single	 letters	
included	in	their	method	names.	Examples	include	fdate(),
fseek(),	 and	 fsize(),	 which	 appear	 in	
TerminalImageViewer.	 	 They	 all	 received	 a	 score	 of	 5	 for	
violating	the	naming	style,	dictionary	terms,	and	verb	phrase	
standards	 but	 not	 for	 the	 full	 words	 standard.	 	 The	 false	
positives	in	this	evaluation	include:			

a) Single	letters	used	to	differentiate	lists,	collections,	or	
groups,	such	as	isInListA().

b) Single	letters	are	used	as	a	name	of	a	programming	
language,	such	as	FoldOScriptDoc().	

c) Single	letters	used	in	boolean	functions,	such	as	
isADigit(). 	

When	 there	 is	 no	 naming	 style	 used	 to	 differentiate	 the	
constituting	of	words	for	a	method,	it	is	not	only	difficult	for	the	
developer	to	read	and	disassemble	such	names,	but	it	can	cause	
more	cognitive	challenges	as	well	if	they	have	single	letters	that	
are	 not	 clear	what	 they	 stand	 for.	 	 Single	 letter	 abbreviations	
have	the	most	potential	expansions	[50][51][52]	and,	therefore,	
are	the	most	difficult	for	both	humans	and	machines	to	parse	if	
they	do	not	know	the	expansion	beforehand.			

8.6	 Idiom	and	Slang		
There	 are	 no	 false	 positives	 and	 negatives	 during	 our	
evaluation	based	on	our	idiom	and	slang	list.	We	believe	that	
the	only	case	where	a	false	positive	can	occur	is	when	there	is	
an	 acronym	 from	 the	 system	 domain	 (formally	 a	 dictionary	
word)	that	is	in	our	idiom	and	slang	list.	E.g.,	the	idiom	ASAP	
(“As	Soon	As	Possible”).	

8.7	 PreNix	and	SufNix	
The	 results	 show	 that	 the	 approach	 can	 correctly	 identify	
prefixes/suffixes	in	the	Notepad++	and	Flash	Develop	systems	
according	 to	 our	 prefixes	 and	 suffixes	 list,	 with	 no	 false	
positives.	 However,	 there	 are	 many	 false	 negatives	 when	 a	
method	name	starts	or	ends	with	a	single	letter	that	is	a	prefix	
of	a	method.		In	such	cases,	the	approach	does	not	flag	the	name	
with	 a	 prefix	 or	 suffix	 violation;	 but	 flags	 it	 with	 full	 words	
violation.	 For	 example,	 the	 method	 name:	 u_iswalpha()
from	 Notepad++	 	 and	 mCOMMENT(), mUSE(), and	

ICPC 2022 - Preprint R. Alsuhaibani et al.

mUNDERSCORE() from	the	FlashDevelop	system.	This	naming	
practice	explains	why	we	get	a	low	average	recall	of	53%	in	the	
Flash	Develop	system.	

8.8	 Length	
Our	approach	has	no	issue	with	identifying	any	length	standard	
violations.		But	because	of	possible	errors	when	splitting,	it	is	
possible	for	it	to	occur.		We	set	7	words	as	the	maximum	length	
a	 method	 name	 can	 have.	 During	 the	 golden-set	 evaluation,	
evaluators	 manually	 validated	 the	 method	 names	 for	 any	
method	 exceeding	 7	 words.	 Although	 there	 are	 no	 positive	
cases	in	the	C++	systems,	we	did	find	some	length	violations	in	
the	C#	and	 Java	 systems.	 	 In	 the	C#	systems	 there	are	a	 few	
method	 names	 that	 contain	 up	 to	 ten	 words,	 and	 all	 are	
correctly	 identified	 with	 a	 length	 violation.	 These	 examples	
received	a	score	of	9:	

getMetaTagsToKeepOnSameLineAsFunction()
getAdvancedSpacesAfterColonsInDeclarations()

In	 the	BioJava	system,	6	method	names	violate	 the	 length	
standard.	However,	according	to	the	comments	provided	in	the	
system	code,	those	are	all	test	method	names.		
Method	names	need	to	be	descriptive	but	must	also	strive	to	avoid	
overloading	the	reader.	Prior	studies	indicate	that	7	is	at	or	near	
the	 upper	 bound	 during	 reading/comprehending	 a	 method	
name.	
	

Across	all	the	evaluated	systems,	the	dictionary	terms	and	verb	
phrase	 standards	have	 the	highest	number	of	 violations.	 For	
the	dictionary	terms	standard,	 it	 is	mainly	due	to	developers	
using	abbreviations	and	acronyms	that	are	uncommon	or	non-
dictionary	 terms.	 	 For	 the	 verb	 phrase	 standard,	 previous	
literature	 emphasizes	 that	 including	 a	 verb	 to	 refer	 to	 the	
action	of	a	method	is	vital,	but	according	to	the	results	missing	
a	 verb	 in	 a	 name	 is	 common	 across	 systems.	 	 We	 believe	
increasing	the	awareness	about	the	importance	of	this	naming	
aspect	among	developers	will	support	better-naming	practices,	
resulting	 in	more	 comprehensible	 names.	 	 The	 naming	 style	
standard	also	had	a	high	number	of	violations.	This	resulted	in	
splitting	 issues	 and	 incorrect	 identification	 of	 a	 method’s	
constituting	 words.	 	 In	 general,	 these	 three	 standards	 are	
extremely	 critical	 in	 supporting	 the	 readability	 and	
comprehension	of	a	name.	

Broadly,	 our	 approach	 shows	 that	 it	 can	 successfully	 detect	
adherent	and	non-adherent	methods	to	the	ten	method	naming	
standards	to	a	great	extent.	The	approach	records	high	average	
precisions,	recalls,	and	F-scores	across	the	evaluated	systems.		
We	 believe	 that	 these	 high	 numbers	 are	 not	 only	 due	 to	
implementing	very	fine	grain	method	naming	characteristics;	
but	also	due	to	using	source	code	specialized	tools,	i.e.,	a	source	
code	tagger	and	a	splitter	which	greatly	assist	in	analyzing	the	
different	components	of	a	given	name.	

9	 Threats	to	Validity	
Our	 evaluation	 is	 on	 multiple	 systems	 written	 in	 different	
programming	 languages,	 and	 showing	 consistent	 results	
confirms	 the	 generalizability	 of	 our	 approach.	 The	 approach	
can	be	used	with	any	project	srcML	supports.	C++/C,	C#,	and	
Java	projects	 in	 this	 version	of	 the	 approach	 are	 verified.	To	
maintain	 validity,	 the	 approach	 is	 implemented	 by	 the	 first	
author,	and	the	golden	set	is	constructed	by	the	other	authors.		

It	 is	 possible	 that	 the	 part-of-speech	 tagger	 we	 used	 in	 this	
study	 could	 cause	 some	 threats	 to	 the	 results.	 However,	 the	
tagger	used	represents	the	current	state-of-the-art	 tagger	 for	
source-code	 identifiers,	 and	 furthermore,	 the	 false-positives	
and	false-negatives	were	very	few.	The	approach	can	correctly	
detect	a	high	number	of	non-violating	cases	without	issues.	We	
discussed	earlier	 that	 some	of	 the	 false-positives	 in	 the	verb	
phrase	and	grammatical	structure	standards	are	caused	by	the	
tagger	 performance.	 There	were	 cases	 in	which	 some	 of	 the	
words	 in	 method	 names	 are	 verified	 dictionary	 words,	 and	
after	checking	these	words’	definitions,	they	are	of	a	different	
context	than	source	code.	We	believe	that	using	a	specialized	
computer	 science/software	 engineering	 dictionary	 will	
support	our	approach	by	reducing	those	minor	false-negatives.	
Also,	it	is	possible	that	the	methods	tested	in	this	study	include	
a	 few	 test	 methods,	 although	 most	 of	 them	 adhered	 to	 our	
standards	and	received	an	average	quality	score	above	8	with	
violations	 of	 the	 length	 standard.	 Additionally,	 while	 some	
idioms	and	slang	could	exist	that	we	are	not	familiar	with,	it	is	
possible	to	add	these	phrases.	

As	the	approach	is	implemented	by	one	of	the	authors	involved	
with	 the	 creation	 of	 the	 golden	 set,	 this	 might	 constitute	 a	
threat.		Mitigating	this,	the	approach	is	applied	to	and	manually	
evaluated	independently	against	three	additional	systems.	

10	 Conclusion	
We	present	 an	 approach	 for	 assessing	 the	quality	of	method	
names	 according	 to	 the	 method	 naming	 standards	 formally	
investigated	and	evaluated	in	[14].		The	approach	implements	
all	 ten	 standards.	Further,	 it	 is	1)	 lightweight,	only	 requiring	
publicly	available	NLP	tools.	2)	the	scores	 it	produces	can	be	
easily	 used	 to	 understand	 how	 many	 flaws	 an	 identifier	
exemplifies,	 helping	 highlight	 identifiers	 that	 may	 be	 more	
problematic	 and	 3)	 it	 is	 explainable—the	 feedback	 this	 tool	
provides	is	based	on	well-reasoned,	data-driven	standards	that	
can	help	developers	make	 informed	decisions	about	whether	
their	method	names	should	be	updated	or	not.	The	technique	is	
complementary	to	other	method	appraisal	approaches	such	as	
linguistic	 antipatterns,	 inviting	 the	 opportunity	 to	 combine	
tools.		Our	future	work	involves	adding	more	details	about	the	
grammatical	structures	underneath	the	method	name	using	the	
Identifier	Name	Structure	Catalogue	[31].	 	Another	avenue	of	
research	is	to	use	method	stereotype	information	[53]	to	fine	
tune	the	standards	for	a	particular	type	of	method	(getter	vs.	
command).		

An Approach to Automatically Assess Method Names WOODSTOCK’18, June, 2018, El Paso, Texas USA
	

REFERENCES	
[1]	 F.	 Deisenbock	 and	 M.	 Pizka,	 “Concise	 and	 Consistent	 Naming,”	 in	 13th	

International	Workshop	on	Program	Comprehension	(IWPC’05),	St.	Louis,	
MO,	USA,	2005,	pp.	97–106.	

[2]	 T.	M.	Pigoski,	Practical	software	maintenance:	best	practices	for	managing	
your	software	investment.	New	York:	Wiley	Computer	Pub,	1997.	

[3]	 S.	Butler,	M.	Wermelinger,	Y.	Yu,	and	H.	Sharp,	“Relating	Identinier	Naming	
Flaws	 and	 Code	 Quality:	 An	 Empirical	 Study,”	 in	 2009	 16th	 Working	
Conference	on	Reverse	Engineering,	Lille,	France,	2009,	pp.	31–35.	

[4]	 S.	Butler,	M.	Wermelinger,	Yijun	Yu,	and	H.	Sharp,	“Exploring	the	Innluence	
of	 Identinier	 Names	 on	 Code	 Quality:	 An	 Empirical	 Study,”	 in	 2010	 14th	
European	Conference	on	Software	Maintenance	and	Reengineering,	Madrid,	
2010,	pp.	156–165.	

[5]	 L.	Pollock,	K.	Vijay-Shanker,	E.	Hill,	G.	Sridhara,	and	D.	Shepherd,	“Natural	
Language-Based	Software	Analyses	and	Tools	for	Software	Maintenance,”	in	
Software	 Engineering,	 vol.	 7171,	 A.	 De	 Lucia	 and	 F.	 Ferrucci,	 Eds.	 Berlin,	
Heidelberg:	Springer	Berlin	Heidelberg,	2013,	pp.	94–125.	

[6]	 E.	W.	Høst	and	B.	M.	Østvold,	“Debugging	Method	Names,”	in	23rd	European	
Conference	on	ECOOP	2009	—	Object-Oriented	Programming,	Genoa,	Italy,	
2009,	pp.	294–317.	

[7]	 P.	A.	Relf,	“Tool	assisted	identinier	naming	for	improved	software	readability:	
an	 empirical	 study,”	 in	 2005	 International	 Symposium	 on	 Empirical	
Software	Engineering,	2005.,	Queensland,	Australia,	2005,	pp.	52–61.	

[8]	 B.	 Boehm	 and	 V.	 R.	 Basili,	 “Software	 Defect	 Reduction	 Top	 10	 List,”	
Computer,	vol.	34,	no.	1,	pp.	135–137,	Jan.	2001.	

[9]	 J.	C.	Hofmeister,	J.	Siegmund,	and	D.	V.	Holt,	“Shorter	identinier	names	take	
longer	to	comprehend,”	Empirical	Software	Engineering,	vol.	24,	no.	1,	pp.	
417–443,	Feb.	2019.	

[10]	D.	Lawrie,	C.	Morrell,	H.	Feild,	and	D.	Binkley,	“What’s	in	a	Name?	A	Study	of	
Identiniers,”	 in	 14th	 IEEE	 International	 Conference	 on	 Program	
Comprehension	(ICPC’06),	2006,	pp.	3–12.	

[11]	A.	A.	Takang,	P.	A.	Grubb,	and	R.	D.	Macredie,	“The	effects	of	comments	and	
identinier	 names	 on	 program	 comprehensibility:	 an	 experimental	
investigation,”	J.	Prog.	Lang.,	vol.	4,	no.	3,	pp.	143–167,	1996.	

[12]	B.	Liblit,	A.	Begel,	 and	E.	Sweetser,	 “Cognitive	Perspectives	on	 the	Role	of	
Naming	 in	 Computer	 Programs,”	 in	 Proceedings	 of	 the	 18th	 Annual	
Workshop	 of	 the	 Psychology	 of	 Programming	 Interest	Group,	 PPIG	2006,	
Brighton,	UK,	September	7-8,	2006,	2006,	p.	11.	

[13]	V.	Arnaoudova,	M.	Di	Penta,	and	G.	Antoniol,	“Linguistic	antipatterns:	what	
they	are	and	how	developers	perceive	them,”	Empir	Software	Eng,	vol.	21,	
no.	1,	pp.	104–158,	Feb.	2016.	

[14]	R.	S.	Alsuhaibani,	C.	D.	Newman,	M.	J.	Decker,	M.	L.	Collard,	and	J.	I.	Maletic,	
“On	the	Naming	of	Methods:	A	Survey	of	Professional	Developers,”	in	2021	
IEEE/ACM	43rd	International	Conference	on	Software	Engineering	(ICSE),	
Madrid,	Spain,	2021,	pp.	587–599.	

[15]	S.	 Butler,	 M.	 Wermelinger,	 and	 Y.	 Yu,	 “Investigating	 naming	 convention	
adherence	 in	 Java	 references,”	 in	 2015	 IEEE	 International	 Conference	 on	
Software	Maintenance	and	Evolution	(ICSME),	Bremen,	Germany,	2015,	pp.	
41–50.	

[16]	 “Checkstyle.”	[Online].	Available:	https://checkstyle.sourceforge.io.	
[17]	 “Java	 Coding	 Standard	 Checker	 (JCSC).”	 [Online].	 Available:	

https://sourceforge.net/projects/jcsc/.	
[18]	A.	Peruma,	E.	Hu,	J.	Chen,	E.	A.	AlOmar,	M.	W.	Mkaouer,	and	C.	D.	Newman,	

“Using	 Grammar	 Patterns	 to	 Interpret	 Test	 Method	 Name	 Evolution,”	 in	
2021	IEEE/ACM	29th	International	Conference	on	Program	Comprehension	
(ICPC),	Madrid,	Spain,	2021,	pp.	335–346.	

[19]	 J.	Wu	and	J.	Clause,	“A	pattern-based	approach	to	detect	and	improve	non-
descriptive	 test	 names,”	 Journal	 of	 Systems	 and	 Software,	 vol.	 168,	 p.	
110639,	Oct.	2020.	

[20]	B.	 Zhang,	 E.	Hill,	 and	 J.	 Clause,	 “Automatically	Generating	Test	Templates	
from	Test	Names	(N),”	in	2015	30th	IEEE/ACM	International	Conference	on	
Automated	Software	Engineering	 (ASE),	Lincoln,	NE,	USA,	2015,	pp.	506–
511.	

[21]	B.	 Zhang,	 E.	 Hill,	 and	 J.	 Clause,	 “Towards	 automatically	 generating	
descriptive	 names	 for	 unit	 tests,”	 in	 Proceedings	 of	 the	 31st	 IEEE/ACM	
International	 Conference	 on	 Automated	 Software	 Engineering,	 Singapore	
Singapore,	2016,	pp.	625–636.	

[22]	 J.	Koenemann	and	S.	P.	Robertson,	 “Expert	problem	solving	 strategies	 for	
program	 comprehension,”	 in	 Proceedings	 of	 the	 SIGCHI	 conference	 on	
Human	factors	in	computing	systems	Reaching	through	technology	-	CHI	’91,	
New	Orleans,	Louisiana,	United	States,	1991,	pp.	125–130.	

[23]	T.	A.	Corbi,	“Program	understanding:	Challenge	for	the	1990s,”	IBM	Syst.	J.,	
vol.	28,	no.	2,	pp.	294–306,	1989.	

[24]	D.	Lawrie,	C.	Morrell,	H.	Feild,	and	D.	Binkley,	“Effective	identinier	names	for	
comprehension	 and	 memory,”	 Innovations	 in	 Systems	 and	 Software	
Engineering,	vol.	3,	no.	4,	pp.	303–318,	2007.	

[25]	S.	Fakhoury,	Y.	Ma,	V.	Arnaoudova,	and	O.	Adesope,	“The	effect	of	poor	source	
code	lexicon	and	readability	on	developers’	cognitive	load,”	in	Proceedings	
of	the	26th	Conference	on	Program	Comprehension	-	ICPC	’18,	Gothenburg,	
Sweden,	2018,	pp.	286–296.	

[26]	W.	Maalej,	R.	Tiarks,	T.	Roehm,	and	R.	Koschke,	“On	the	Comprehension	of	
Program	Comprehension,”	ACM	Trans.	Softw.	Eng.	Methodol.,	vol.	23,	no.	4,	
pp.	1–37,	Sep.	2014.	

[27]	D.	 Feitelson,	A.	Mizrahi,	N.	Noy,	A.	Ben	Shabat,	O.	Eliyahu,	 and	R.	 Sheffer,	
“How	Developers	Choose	Names,”	IIEEE	Trans.	Software	Eng.,	pp.	1–1,	2020.	

[28]	V.	Arnaoudova,	M.	Di	Penta,	G.	Antoniol,	and	Y.-G.	Gueheneuc,	“A	New	Family	
of	Software	Anti-patterns:	Linguistic	Anti-patterns,”	in	2013	17th	European	
Conference	on	Software	Maintenance	and	Reengineering,	Genova,	2013,	pp.	
187–196.	

[29]	A.	 Peruma,	 V.	 Arnaoudova,	 and	 C.	 Newman,	 “IDEAL:	 An	 Open-Source	
Identinier	Name	Appraisal	Tool,”	in	2021	IEEE	International	Conference	on	
Software	Maintenance	and	Evolution	(ICSME),	2021.	

[30]	P.	Relf,	“Achieving	Software	Quality	through	Source	Code	Readability.”	01-
Jan-2004.	

[31]	S.	 Butler,	 M.	 Wermelinger,	 and	 Y.	 Yu,	 “A	 Survey	 of	 the	 Forms	 of	 Java	
Reference	Names,”	in	2015	IEEE	23rd	International	Conference	on	Program	
Comprehension,	Florence,	Italy,	2015,	pp.	196–206.	

[32]	R.	S.	Alsuhaibani,	C.	D.	Newman,	M.	J.	Decker,	M.	L.	Collard,	and	J.	I.	Maletic,	
“A	Survey	on	Method	Naming	Standards:	Questions	and	Responses	Artifact,”	
in	2021	IEEE/ACM	43rd	International	Conference	on	Software	Engineering:	
Companion	Proceedings	(ICSE-Companion),	Madrid,	ES,	2021,	pp.	242–243.	

[33]	M.	L.	Collard,	M.	J.	Decker,	and	J.	I.	Maletic,	“srcml:	An	infrastructure	for	the	
exploration,	 analysis,	 and	 manipulation	 of	 source	 code:	 A	 tool	
demonstration,”	 in	 Software	 Maintenance	 (ICSM),	 2013	 29th	 IEEE	
International	Conference	on,	2013,	pp.	516–519.	

[34]	 J.	 I.	Maletic	 and	M.	 L.	 Collard,	 “Exploration,	Analysis,	 and	Manipulation	of	
Source	Code	using	srcML,”	presented	at	the	37th	International	Conference	
on	Software	Engineering	-	Volume	2,	Florence,	Italy,	2015.	

[35]	Michael	L.	Collard	and	Jonathan	I.	Maletic,	“srcML	1.0:	Explore,	Analyze,	and	
Manipulate	 Source	 Code,”	 presented	 at	 the	 32nd	 IEEE	 International	
Conference	on	Software	Maintenance	and	Evolution	(ICSME),	Raleigh,	NC,	
USA,	02-Oct-2016.	

[36]	 J.	Gosling,	B.	Joy,	G.	L.	Jr.	Steele,	G.	Bracha,	A.	Buckley,	and	G.	L.	S.	Jr,	The	Java	
Language	 Specinication,	 Java	 SE	 8	 Edition,	 1	 edition.	 Addison-Wesley	
Professional,	2014.	

[37]	A.	Vermeulen,	The	Elements	of	Java-	Style,	Reprint	edition.	Cambridge ;	New	
York:	Cambridge	University	Press,	2000.	

[38]	C.	D.	Newman	et	al.,	“On	the	generation,	structure,	and	semantics	of	grammar	
patterns	 in	source	code	 identiniers,”	 Journal	of	Systems	and	Software,	vol.	
170,	p.	110740,	Dec.	2020.	

[39]	C.	D.	Newman	et	 al.,	 “An	Ensemble	Approach	 for	Annotating	Source	Code	
Identiniers	with	Part-of-speech	Tags,”	TSE,	vol.	Under	Review,	Jun.	2021.	

[40]	S.	Gupta,	S.	Malik,	L.	Pollock,	and	K.	Vijay-Shanker,	“Part-of-speech	tagging	of	
program	identiniers	for	improved	text-based	software	engineering	tools,”	in	
2013	21st	International	Conference	on	Program	Comprehension	(ICPC),	San	
Francisco,	CA,	2013,	pp.	3–12.	

[41]	E.	 Hill,	 “A	model	 of	 software	word	 usage	 and	 its	 use	 in	 searching	 source	
code,”	Ph.D.	thesis,	University	of	Delaware,	2010.	

[42]	K.	Toutanova,	D.	Klein,	C.	D.	Manning,	and	Y.	Singer,	“Feature-rich	part-of-
speech	 tagging	with	 a	 cyclic	 dependency	 network,”	 in	 Proceedings	 of	 the	
2003	 Conference	 of	 the	 North	 American	 Chapter	 of	 the	 Association	 for	
Computational	Linguistics	on	Human	Language	Technology-Volume	1,	2003,	
pp.	173–180.	

[43]	G.	A.	Miller,	“WordNet:	a	 lexical	database	for	English,”	Commun.	ACM,	vol.	
38,	no.	11,	pp.	39–41,	Nov.	1995.	

[44]	M.	Hucka,	“Spiral:	splitters	for	identiniers	in	source	code	niles,”	The	Journal	
of	 Open	 Source	 Software,	 04-Apr-2018.	 [Online].	 Available:	
https://doi.org/10.21105/joss.00653.	[Accessed:	19-Feb-2019].	

[45]	E.	Hill,	D.	Binkley,	D.	Lawrie,	L.	Pollock,	and	K.	Vijay-Shanker,	“An	empirical	
study	 of	 identinier	 splitting	 techniques,”	 Empirical	 Software	 Engineering,	
vol.	19,	no.	6,	pp.	1754–1780,	Dec.	2014.	

[46]	R.	C.	Martin,	Ed.,	Clean	code:	a	handbook	of	agile	software	craftsmanship.	
Upper	Saddle	River,	NJ:	Prentice	Hall,	2009.	

[47]	M.	 Sokolova	 and	 G.	 Lapalme,	 “A	 systematic	 analysis	 of	 performance	
measures	 for	classinication	tasks,”	 Information	Processing	&	Management,	
vol.	45,	no.	4,	pp.	427–437,	Jul.	2009.	

[48]	D.	 Binkley,	 M.	 Davis,	 D.	 Lawrie,	 and	 C.	 Morrell,	 “To	 camelcase	 or	
under_score,”	 in	 2009	 IEEE	 17th	 International	 Conference	 on	 Program	
Comprehension,	2009,	pp.	158–167.	

[49]	B.	 Sharif	 and	 J.	 I.	 Maletic,	 “An	 Eye	 Tracking	 Study	 on	 camelCase	 and	
under_score	Identinier	Styles,”	in	2010	IEEE	18th	International	Conference	
on	Program	Comprehension,	Braga,	Portugal,	2010,	pp.	196–205.	

ICPC 2022 - Preprint R. Alsuhaibani et al.

[50]	Y.	Jiang,	H.	Liu,	Y.	Zhang,	N.	Niu,	Y.	Zhao,	and	L.	Zhang,	“Which	abbreviations	
should	 be	 expanded?,”	 in	 Proceedings	 of	 the	 29th	 ACM	 Joint	Meeting	 on	
European	 Software	 Engineering	 Conference	 and	 Symposium	 on	 the	
Foundations	of	Software	Engineering,	Athens	Greece,	2021,	pp.	578–589.	

[51]	E.	 Hill	 et	 al.,	 “AMAP:	 automatically	 mining	 abbreviation	 expansions	 in	
programs	 to	 enhance	 software	maintenance	 tools,”	 in	 Proceedings	 of	 the	
2008	 International	Working	Conference	on	Mining	Software	Repositories,	
2008,	pp.	79–88.	

[52]	C.	D.	Newman,	M.	J.	Decker,	R.	S.	Alsuhaibani,	A.	Peruma,	D.	Kaushik,	and	E.	
Hill,	 “An	 Empirical	 Study	 of	 Abbreviations	 and	 Expansions	 in	 Software	
Artifacts,”	in	2019	IEEE	International	Conference	on	Software	Maintenance	
and	Evolution	(ICSME),	Cleveland,	OH,	USA,	2019,	pp.	269–279.	

[53]	N.	 Dragan,	 M.	 L.	 Collard,	 and	 J.	 I.	 Maletic,	 “Reverse	 Engineering	 Method	
Stereotypes,”	 in	 22nd	 IEEE	 International	 Conference	 on	 Software	
Maintenance	(ICSM’06),	2006,	pp.	24–34.	

	
	
	
	

