
ICSM06 Submission Dragan, Collard, Maletic

 1 of 10

Reverse Engineering Method Stereotypes

Natalia Dragan, Michael L. Collard, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

{ndragan, collard, jmaletic}@cs.kent.edu

Abstract

An approach to automatically identify the stereotypes
of all the methods in an entire system is presented. A
taxonomy for object-oriented class method stereotypes is
given that unifies and extends the existing literature to
address gaps and deficiencies. Based on this taxonomy,
a set of definitions is given and method stereotypes are
reverse engineered using lightweight static program
analysis. Classification is done solely by programming
language structures and idioms, in this case C++. The
approach is used to automatically re-document each
method by annotating the original source code with the
stereotype information. A demonstration of the accuracy
and scalability of the approach is given.

1. Introduction

The work presented here investigates the problem of
reverse engineering method stereotypes. Very few
software systems have this information explicitly
documented in the source code and while this may be
simple to do manually for a small number of methods it
is very costly to do for an entire (large) system. We feel
method stereotype information forms the basis for
supporting more sophisticated types of design recovery.

Given accurate information about method stereotypes,
a number of things can be deduced/inferred in the context
of a class or interacting classes. For instance,
determining method stereotypes is the first step in
identifying the stereotype of a class, say boundary, entity,
or control. Knowing class stereotypes allows us to
determine architectural importance for automated layout
of class diagrams or architectural level understanding.

Additionally, stereotype information can support more
precise calculation of metrics. For example, it is well
known that LCOM metrics are biased by certain types of
methods (e.g., accessors and constructors). One can
develop metrics that take this information into account.
Good method abstraction is typically a requirement for
good object abstraction. As such, metrics to assess how
object oriented a class or system is based on method
stereotypes is a reasonable objective. Other metrics that

deal with change can also be envisioned. Changes in a
method’s stereotype due to modification may indicate
major design changes to the class rather than a simple fix.

As such, we feel this is a very important, yet
unexamined, area of OO design recovery. This work has
three main contributions. The first is a taxonomic
description of axiomatic object-oriented method
stereotypes. This is the first comprehensive investigation
on this topic with respect to reverse engineering and
design recovery. The second contribution is
demonstrating the use of a lightweight static analysis
method in the identification of method-design features.
The lightweight nature of our approach makes it very
efficient and scalable and at the same time shows little
loss of accuracy due to the tradeoff in lack of deep
analysis. The final contribution is the evaluation of the
approach that can serve as a benchmark for further
studies and investigations.

We restrict our discussion to a single programming
language for simplicity of presentation. While our
discussion on the taxonomy of method stereotypes is
generalizable to a large degree, the realization is
specifically for the C++ language. C++ is widely known
to be difficult to parse and extract facts from so we feel
that this choice best supports the usefulness of our
approach.

The paper is organized as follows. In the next section
the literature on method stereotype classification is
described. We then present a taxonomy of method
stereotypes derived from these previous classifications
with detailed definitions of each method type in section
3. This is followed by a section (4) describing definitions
(rules) for C++. Our tool, StereoCode, that automatically
identifies method stereotypes using lightweight static
analysis methods and the srcML infrastructure is detailed
in section 5. We consider the HippoDraw and Qt
applications for the validation of the approach (section
6). Here StereoCode is applied to the systems and an
assessment of our stereotype classification is performed
by an experienced developer. Results of this study are
given there. Conclusions and future work are presented
in the final section.

ICSM06 Submission Dragan, Collard, Maletic

 2 of 10

2. Method Stereotypes

While the concept of method stereotypes is widely
discussed, there is surprisingly little literature on the
subject and no formal in-depth studies. This reflects the
fuzzy nature of the concept – a stereotype is a high-level
description of the role of a method. A stereotype
designation gives a clear picture of what a method does
and its responsibilities within the class.

Stereotypes widely recognized by the development
and maintenance communities include constructor,
destructor, accessor, predicate, and mutator. These are
decades old terms that are commonly used. A
constructor is a method for initializing an object of a
class; destructor is a method for destroying an object
(cleaning up the memory) when the object goes out of
scope. An accessor is a method used to read the
members of a class and it returns the current state of an
object, but does not change it. A common use for
accessors is to test for truth or falsity of a condition and
such methods are called predicates. A mutator is a
method used to modify members of a class, to change the
state of an object.

Most work concerning method classification, for
stereotyping, has been with respect to distinguishing the
internal state of objects. The focus is the type of access a
method has to data members rather than the primary
purpose of the method. This is reflected in the naming of
accessor methods (a.k.a., query, inspector, get, getter, or
getting method) and mutator methods (a.k.a., modifier,
command, set, setter, or setting method). Typically get
and set methods are considered atomic methods which
respectively return a value of a data member or store a
value into a data member. We feel that a focus on the
internal state is important (while not sufficient) and
include this focus in our taxonomy of stereotypes.
Accessors and mutators are known by a few different
variations however these two terms along with get and
set are the most widespread and appropriate in our
opinion. We will stick with these terms and note any
variations when appropriate.

The following is a review of the literature that defines
method stereotypes. The first group is mainly focused on
defining stereotypes by classifying methods for design
and development purposes. A later group of literature
defines stereotypes with some particular application in
mind.

2.1. Stereotype Definitions for Development

Fowler [8] classifies methods at the design level (i.e.,
UML class) concentrating on the object’s state with
categories getting, setting, query (accessor), and modifier
or command (mutator). However, details about the

classification within accessor and mutator groups are not
provided.

Method stereotypes have been proposed to assist in
program development. Stroustrup [15] classifies
methods (operations) with the goal of helping developers
design a class interface in C++. His classification
includes the categories described above, inspector
(accessor) and modifier (mutator), and additionally
conversion (produces an object of a different type based
on the applied object), iterator (traverses container), and
foundation operator (constructor, copy constructor, and
destructor). A number of well-known programming and
data-structure textbooks (e.g., [7], [14], [16], and [17])
propose similar categories. Deitel additionally presents
the notion of predicate and utility (or helper) methods.
Predicates test the truth or falsity of conditions, and
utility methods serve class’ public methods and are not
part of the class’ interface.

Also to assist in program development, Riehle [13]
classifies methods in C++ programs based mainly on the
read/write type of access to data members. The proposed
categories are query, mutation, and helper with fine-
grained subcategories. However, their classification does
not consider any types of collaborations between classes,
identification is not explicitly mentioned, and only a
naming convention for the categories is given.

In order to describe the behavior of methods within
the class hierarchy, the stereotypes template and hook [9]
have been proposed and used. Template methods
perform self calls to abstract methods, while hook
methods are designed to be overridden in subclasses.

2.2. Stereotype Definitions for Applications

In general, the previously-discussed work assumes a
forward-engineering approach. The developer manually
inserts the classification into the source code or defines it
at the design level. The stereotype information must then
be manually maintained.

However, other work uses stereotypes as a basis for
problem solving. In the investigations by Workman [18],
a method taxonomy for Java is considered as a base for
class categorization to detect plagiarism. The eventual
goal is to use the taxonomy for the program-
identification problem in comparison analysis. Some use
of the collaboration between methods is considered,
however no means for identification is given.

Clarke et al., [3] presents a taxonomy of classes for
the identification of changes in object-oriented software.
Their approach takes into consideration the properties
and features of the class which are based on the
relationships between classes within the inheritance
hierarchy and types of data associated with the class.
Any other types of collaborations between classes as well

ICSM06 Submission Dragan, Collard, Maletic

 3 of 10

as on the method level are not considered in the proposed
taxonomy.

Visualization approaches to support method and class
understanding are proposed in [1] and [11]. Arevalo et
al. [1] propose X-Ray Views which group methods based
on the state usage (state access), external/internal calls
(self and super calls), and behavioral skeleton (client
access) using concept analysis. This approach considers
collaboration between groups of methods and attributes
of a single class in terms of the direct or indirect
accessors; however no differentiation whether the
method reads or updates the class attributes is done.
Lanza et al. [11] consider categorization of classes based
on the class blueprint, i.e., visual representation of the
class as a set of four method’s layers: initialization,
interface, implementation and accessor, and an attribute
layer. This approach provides semantic information on
the method level, but collaborations between methods of
different classes are limited to generalization
relationships.

Stereotypes are also used as a powerful extension
mechanism in the UML [10]. There are two basic ways
of using stereotypes in UML: to emulate metamodel
extensions and to support the classification of objects in
terms of assigning them certain features and properties
[2]. As an extension mechanism stereotyping allows us
to introduce new semantics to an existing model.

All of the stereotype definitions given in this section
are primarily based on the access type to the data
members. Collaborations between classes (if they are
used at all) are limited to inheritance relationships, while
association and aggregation relationships are not taken
into consideration. Our work fills this gap in the method-
stereotype classification, presents a full taxonomy, and
presents a method to automatically extract, and re-
document, this information from the source code.

3. A Taxonomy of Stereotypes

We now unify the literature on method stereotypes by
integrating the different perspectives given in the
previous section while simultaneously addressing a
number of deficiencies. Our taxonomy is based on a
method’s main role and duties while emphasizing the
creational, structural, and collaborative aspects with
respect to a class’s design.

Methods can be viewed from a number of different
perspectives however we categorized them broadly by
how they access data (i.e., a method changes the objects
state or leaves it constant) and their behavioral
characteristics that is, creational, structural, or
collaborational. Creational methods are responsible for
creating or destroying objects of the class. Structural
methods allow one to set or get data member (attribute)
values, hence provide and support the structure of the

class. Collaborational methods help define the
communication between objects and how objects are
controlled in the system. Taking into consideration both
perspectives we present definitions of the following
method categories at the implementation level:
creational, structural (accessor, mutator) and
collaborational. The overview of our method stereotype
taxonomy is given in Table 1.

Of the stereotypes presented in Table 1, factory,
command, and collaborator are the only ones not
typically discussed in the context of method stereotype
literature. Factory and command are two variants on
well know stereotypes that we feel are important
distinctions for design recovery. Collaborators are
methods that connect one object with other types of
objects. Typically, these are put under the general
stereotype of accessor or mutators and no distinction is
made for interacting with external objects. We feel this
is a major deficiency in previous method stereotype
descriptions.

Definitions of method categories and their subtypes
will now be presented. This is illustrated by considering
the class DataSource and DisplayController from
the HippoDraw application given in Figure 1 and Figure
2. Note that we do not consider the full C++ interfaces
but only the methods and attributes that are pertinent.
The class DataSource supplies one or more arrays of
data. The class DisplayController is an interface
between a graphic user interface and the displays. These
two classes will be used throughout as examples for
describing stereotypes. Necessary information about
particular method definitions will be described as needed.
We now discuss each category (each column in Table 1)
of method stereotypes.

Table 1. A taxonomy of method stereotypes.

Structural Collaborational Creational
Accessor Mutator

Get Set Collaborator-
Accessor Constructor

Predicate Command Collaborator-
Mutator

Copy
Constructor

Property Destructor
 Factory

3.1. Structural Methods: Accessors

An accessor is a read-only method that returns
information about the data members of an object. It does
not change the state of the object, i.e., the value of any
data member. There are three types: get, predicate, and
property.

A get method is an accessor that returns the value of a
data member. The purpose of this method is very simple
and primitive. In Figure 1 the class DataSource has the
get methods getName() and rows(), which return the

ICSM06 Submission Dragan, Collard, Maletic

 4 of 10

values of the data members m_ds_name and m_rows
respectively. Although it may be seen as a predicate
method, the method isNull() is classified as a get
method since it directly returns the value of the data
member m_is_null.

class DataSource :public Observable
{
private:
 string m_ds_name;
 vector<string> m_labels;
 bool m_is_null;
protected:
 mutable vector<double> m_array;
 int m_rows;

public:
 /** @stereotype get */
 bool isNull() const;
 /** @stereotype get */
 virtual int rows() const;
 /** @stereotype get */
 const string& getName() const;

 /** @stereotype predicate */
 bool isValidLabel(const string& label) const;

 /** @stereotype property */
 virtual double sum(int column) const;
 /** @stereotype property */
 int columns() const;
 /** @stereotype property */
 virtual int indexOfMinElement(int index)const;
 /** @stereotype set */
 void setName(const string& name);
 /** @stereotype set */
 void setLabels(const vector<string>& v);

 /** @stereotype command */
 virtual void clear();
 /** @stereotype command */
 virtual void reserve(int count);
};
Figure 1. The HippoDraw C++ class DataSource after

re-documenting with the method stereotypes.

A predicate method is an accessor that returns a
Boolean result. The result is not the value of a data
member but instead computed based on a data
member(s). The condition may be directly based on the
data member’s values, or indirectly based using other get,
predicate, or property methods. In Figure 1 the class
DataSource has the predicate method
isValidLabel() which returns whether the parameter
label is a valid label for a column. This information is
not directly stored in a data member, but must be
determined by traversing the vector data member
m_labels.

A property method is an accessor that returns
information about an object based on data member
values. It can compute a result, compare two objects, or
convert a class object. As in the case of the predicate
method, the returned value computed is based on the data
members or by calling other accessor methods. The main
feature of this type of method is that it derives some
characteristics of the object from the data members’

values. In Figure 1 the class DataSource has the
property method sum() which returns the sum of all the
elements in the sequence of the column specified by the
parameter column, the method columns() which
returns the number of columns or data arrays available
from DataSource by calling the method size() on the
vector, and method indexOfMinElement() which
returns the row index of the minimum element in a
column for the given column using the property method
columns().

class DisplayController
{
private:
 static DisplayController* s_instance;
 string m_null_string;
 vector<string> m_null_vector;

public:
 /** @stereotype collaborator,factory */
 PlotterBase* createDisplay(const string& name)

 /** @stereotype collaborator-property*/
 const vector<string>& getDisplayTypes() const;

 /** @stereotype collaborator-predicate*/
 bool hasControlPoints
 (const PlotterBase* plotter) const;

 /** @stereotype collaborator-command*/
 void setIntervalCount
 (const PlotterBase* plotter, int count);
};
Figure 2. The HippoDraw C++ class DisplayController

after re-documenting with the method stereotypes.

3.2. Structural Methods: Mutators

A mutator is a method that changes the state of the
object to which it belongs. A widespread convention is
that mutators (a.k.a. command by Fowler) do not return a
value to the client. In general we can assume that
methods that return a value are accessors (queries).
Meyer [12] refers to this as the Command-Query
separation principle. We divide these types of methods
into two classes: set and command.

A set method is a mutator that changes the value of a
data member. This involves a direct change of a data
member, i.e., some new value is assigned to the data
member. The new value is typically given to the method
as a parameter. In Figure 1 the class DataSource has
the set method setName() which assigns the name of
the ntuple (row), i.e., the data member m_ds_name, and
the method setLabels which assigns the label to each
column from the vector of strings v, i.e., the data
member m_labels.

A command is a mutator that executes a complex
change of the object’s state. The change may involve
several data members. It may change the data members
either directly or indirectly using another mutator.
Typically, the command method does not return any
values or the only return value is a status or error code.

ICSM06 Submission Dragan, Collard, Maletic

 5 of 10

In Figure 1 the class DataSource has the command
method clear() which clears the data source, and the
method reserve() that for each column, reserves
enough memory for the row to grow to size count.

3.3. Collaborational Methods

A collaborator is a method that works on objects of
classes different from itself. It normally doesn't change
the data members of the method’s object. These other
objects are typically parameters or local variables,
however they may also be accessed indirectly through a
data member that is a pointer/reference or may contain a
pointer/reference (e.g., a vector of object pointers).

Collaborator methods work outside the class of which
they are part. This category is different because
collaborators can additionally be any subtype of accessor
or mutator. Collaborator-accessors methods read and
return objects of other classes. Collaborator-mutators
methods change the state of the external objects with
which they have relations. In Figure 2 the class
DisplayController has both collaborator-accessors
and collaborator-mutators. The collaborator-property
method getDisplayTypes() returns the types of
displays available from a local object. The collaborator-
predicate method hasControlPoints() returns true if
the object that is created using the parameter plotter.
The collaborator-command method
setIntervalCount() sets the interval count on an
object of class NTuple.

3.4. Creational Methods

In the work presented here, we restrict the
consideration of creational methods to the factory method
because constructor, copy constructor, and destructor
methods are well-known and previously defined in the
general literature on object-oriented development.
Additionally, these former methods are fairly easy and
straightforward to identify. In fact most languages have
specific syntax for these special-purpose methods and
C++ is no exception.

The factory stereotype is a method that creates an
object and returns it to the client. It is also called an
object-creation method. The factory stereotype for
methods is akin to what is described in the factory
method design pattern. Fowler mentions this stereotype
under the general category of utility methods. These
types of methods work outside of the class that they are
part and change the state of the external objects with
which they have relations. In Figure 2 the class
DisplayController has the factory
createDisplay() which creates an instance whose
type is a derivation of the class PlotterBase.

4. Rules for Stereotype Identification in C++

Based on our taxonomy that was derived from the
literature we now identify the main features to support
reverse engineering method stereotypes from source code
written in C++. These features include: access type to
data members, a method’s return type, and the type and
multiplicity of parameters. However, in the context of
C++ these main features are not sufficient to classify a
method’s stereotype. We identified additional features to
support the automatic identification, including an
indicator if the method changes the object state (i.e., a
method can be const or non-const) and local variable
types.

The rules were further refined by an examination of a
number of C++ systems (for idioms). Specifically,
among others, we examined LAN simulation system (an
opensource small simulation of a LAN network to
illustrate good object-oriented design, Java, 20 classes),
HotDraw (an opensource two-dimensional graphics
framework for structured drawing editors, Java, about
150 classes), and HippoDraw (an opensource data
analysis environment, C++, over 200 classes).

We now provide detailed rules for automatic detection
of method stereotypes (in C++), show that most of the
categories are disjoint, and explain which multiple
stereotypes are possible.

To identify the stereotype Accessor::Get the following
conditions need to be satisfied:

• method is const
• returns a data member
• return type is primitive or container of a

primitives
To identify the stereotype Accessor::Predicate the

following conditions need to be satisfied:
• method is const
• returns a Boolean value that is not a data member
To identify the stereotype Accessor::Property the

following conditions need to be satisfied:
• method is const
• does not return a data member
• return type is primitive or container of primitives
• return type is not Boolean
To identify the stereotype Mutator::Set the following

conditions need to be satisfied:
• method is not const
• return type is void or Boolean
• only one data member is changed
To identify the stereotype Mutator::Command the

following conditions need to be satisfied:
• method is not const
• return type is void or Boolean
• complex change to the object’s state is performed

e.g., more than one data member was changed

ICSM06 Submission Dragan, Collard, Maletic

 6 of 10

To identify the stereotype Collaborator one of the
following statements needs to be satisfied:

• returns void and at least one of the method’s
parameters or local variables is an object

• returns a parameter or local variable that is an
object

To identify the stereotype Creator::Factory the
following conditions need to be satisfied:

• returns an object created in the method’s body
The rules of the accessors, mutators, and factory will

result in a method only having a single stereotype from
these categories. A method may have a second
stereotype of collaborator if it has a parameter or a local
variable that is an object (which are rules for
collaborators). In this case multiple stereotypes are
assigned to this method, e.g., collaborator, property or
collaborator, command, etc.

More analysis is required to further refine whether a
collaborator method also can be labeled with a subtype of
accessor or mutator. For example, if a method changes a
few data members of a different class then this method is
a collaborator-command. In the experiments performed
here we did not differentiate between different subtypes
of a collaborator and leave these considerations as future
work. In the next section we describe how these rules for
the automatic identification of methods are implemented
to reverse engineer stereotypes from existing C++ source.

5. Implementation of the StereoCode Tool

Implementation of our approach requires three main
activities: static analysis, stereotype identification, and
re-documentation (as can be seen in Figure 3). The
driving activity, stereotype identification, which our tool
StereoCode implements requires rules that define
stereotype categories to be realized and applied to a code
base. The previous section describes these rules in detail.
Obviously, to implement the rules a reasonable amount
of static program analysis and fact extraction must be
supported. We have developed an infrastructure to
support static analysis, querying, and fact extraction of
C/C++ source and use this to reverse engineer method
stereotypes. This same infrastructure directly supports
the re-documentation (annotation) of the source code via
the addition of comments.

Our infrastructure is based on srcML1 (SouRce Code
Markup Language) [6] an XML representation that
supports both document and data views of source code.
The format supports lightweight static program analysis
using standard XML tools while at the same time
preserving all original lexical information. This allows
the integration of static program analysis into a
transformation. A very usable and efficient tool to

1 Pronounced source M L.

translate C/C++ to/from srcML is freely available2. The
srcML format, combined with standard XML tools, has
been successfully used for querying and fact extraction of
C++ source code [4] and transformation (refactoring) [5].

Figure 3. The approach taken to automatically
identify and re-document the source code with

method stereotypes.

For the purposes of method-stereotype identification
we translate the source code into srcML and then
StereoCode takes over by leverage XPath, an XML
standard for addressing locations in XML. The rules
described in section 4 are realized as XPath queries on
srcML. This is a relatively straightforward process and
the complete implementation using XPath took only a
few days. As such one can define their own custom
stereotype rules quite easily.

Adding the comments is also quite efficient in the
context of srcML. The XPath query gives us a location
of the method and we can then do a simple
transformation within the srcML document to add the
necessary comments. This process is fully automated
and very efficient/scalable. The next two subsections
describe each of these activities in more detail.

5.1. Rules as XPath Queries

The rules for the method stereotypes were converted
into XPath predicates using the terminology of srcML. If
all the predicates for a stereotype are true, then the
function matches that stereotype. Some of the rules can
be directly extracted from srcML, while others take a bit
more processing. For example, because the keyword
const is marked with an element specifier in srcML
it is directly extractable using the XPath expression
specifier='const'. Likewise, the return type of a
function is in the element type. The type can be directly
compared and easily determine if it is of type void with
type='void'. For matching specific parts of a type the
individual names can be used, e.g., matching "Data" in
the type const Data& can be matched with the
expression type/name='Data'. This is true if at least

2 See www.sdml.info for translator tool download.

ICSM06 Submission Dragan, Collard, Maletic

 7 of 10

one element name is equal to "Data". A full example of
the XPath query that matches function definitions for
methods with the stereotype predicate is:

function[specifier='const']
[type/name='bool']
[descendant::return/expr/name=
 descendant::decl/name
 or descendant::return/expr='false'
 or descendant::return/expr='true']
[not(contains(descendant::type,'*'))]

For other rules further processing is required. For

example, the expressions in return statements are found
directly using the expression return/expr. However,
determining that the expressions consist of a variable that
is a data member requires non-local (to the definition)
information. A variable is considered a data member if it
is not declared in the function definition, i.e., not a
parameter or a local variable. This allowed stereotype
determination based on the function definition alone
without the corresponding class information (complete
symbol table) or full inheritance hierarchy.

Determining the number of changed data members is
done in a similar manner on expression statements.
Because srcML does not explicitly mark operators, text
comparison is used to determine if a data member is
assigned. Then counts of the assigned data members are
used. A number of our rules make a distinction between
objects and variables, i.e., between user-defined classes
and standard types. The srcML representation makes no
distinction between standard and non-standard types, so a
list of standard types is maintained which are compared
to the declaration names.

5.2. Automatic Re-Documentation

In our approach, method stereotypes are not only
automatically classified but also used to re-document the
source code of the original method. This re-
documentation is one of the most flexible ways of storing
the method stereotypes as it shows the method in context,
allows for updates by the developer, and can be easily
extracted for aggregation using the srcML platform.

The re-documentation is performed on the class
declaration in the include file (e.g., DataSource.h) by the
insertion of a Javadoc/Doxygen-like formatted comment
before the function declaration. For example, given the
original method declaration:

// set current status
void setStatus(const string& s);

we re-document it with the derived stereotype:
// set current status
/** @stereotype set */
void setStatus(const string& s);

In order to accomplish this, both the class declaration

file (e.g., DataSource.h) and the corresponding
implementation/definition file (e.g., DataSource.cpp) are

translated into srcML. A XSLT program we built,
annotate_stereotype.xsl, performs an identity
transformation of the srcML file with special handling of
the methods in class definitions. A comment with the
stereotype annotation is inserted before the method
declaration/definition in the class declaration file. Pure-
virtual functions are not annotated. After the re-
documentation is done on the srcML the file is converted
back to a source-code file via a quick translation.

To automatically determine the stereotype it is
necessary to examine the method body. If the method is
defined inside the class then it can be determined in-
place. However, if the class only declares the method
then the method definition has to be found. The XSLT
program is passed the name of the corresponding
definition file as a parameter which it searches for the
proper method definition. The program also searches for
methods defined in the include file but outside of the
class. The linking of the declaration to the definition is
based on the name and the parameter signature, i.e.,
ordering and type of the parameters. Namespace prefixes
on type names were not used in order keep analysis local
to the definition.

All of the rules XPath expressions are applied to each
function definition. The inserted stereotype is the
concatenation of all matches. This determines whether
the predicates given are unique. The re-documentation is
applied to an entire project by repeating this process on
each pair of declaration/definition files.

6. Evaluation of the Approach

In order to assess the approach we applied StereoCode
to the medium and large-sized software systems
HippoDraw and Qt. HippoDraw is an opensource
application providing a data-analysis environment. It is a
wide-ranging application with parts for data-analysis
processing and visualization with an application GUI
interface. The studied version contains approximately 60
KLOC of source code in over 400 C++ files. The system
contains over 200 classes (2900 methods & free
functions). Qt is a cross-platform C++ GUI framework.
The 4.1.2 version contains about 1000 KLOC of source
code. Over 1000 classes with about 20900 methods were
annotated. The source code for both is well written and
follows a pretty consistent object-oriented style.

We used StereoCode to re-document the original
source code. Translation to srcML took less then 15
seconds for HippoDraw and 3 minutes for Qt. The
identification and re-documentation both took less then
30 seconds and 6 minutes respectively. Converting back
to raw source is very fast (two seconds for HippoDraw
and under 30 seconds for Qt). These figures are from
running our application on a desktop machine under
Linux. Table 2 gives a summary of the results of the re-

ICSM06 Submission Dragan, Collard, Maletic

 8 of 10

documentation process. Of the 2706 methods in
HippoDraw all but 220 were classified with one or more
stereotypes. Additionally, 30 were empty methods (no
body) and could not be classified (for a total of about
9%). Qt had a much lower percentage of unclassified
and empty methods (only 2%).

Table 2. Summary results for the reverse engineering
of method stereotypes from HippoDraw and Qt. Each

method was labeled with one or more stereotypes.

Occurrences %
Stereotype(s)

HD Qt HD Qt

command 439 1281 16.2 6.1

property 361 1098 13.3 5.3

collaborator 239 3707 8.8 17.7

get 133 109 4.9 0.5

predicate 99 54 3.7 0.3

set 84 161 3.1 0.8

factory 2 0.1
Number of methods
labeled with only one
stereotype

1357 6410 50.1 30.7

collaborator,command 623 8546 23.0 40.9

collaborator,factory 296 889 10.9 4.3

collaborator,property 90 2806 3.3 13.4

collaborator,set 30 819 1.1 3.9

collaborator,predicate 23 471 0.8 2.3

collaborator,get 22 378 0.8 1.8

collaborator,empty_method 14 156 0.5 0.8

property,empty_method 1 0.0
Number of methods
labeled with two
stereotypes

1099 14067 40.6 67.4

unclassified 220 386 8.1 1.8

empty_method 30 8 1.1 0.04

Overall Total 2706 20869 100 100

Our approach labels a method with multiple
stereotypes if it meets the constraints of multiple rules.
HippoDraw has almost equal percentage of methods
labeled with only one stereotype and with two
stereotypes (50% and 41% respectively). Qt had a much
higher percentage of methods with multiple stereotypes
(67%). No methods were labeled with more than two.
Command, property, and collaborator make up the largest
percentage of methods. When combined with the multi-
labeled methods these three stereotypes make up a
significantly larger portion of the methods. Variations on
collaborator make up nearly 50% of the methods in
HippoDraw with a much higher percentage in Qt (85%).
The other stereotypes make up a relatively small portion.

A small number of the empty methods were classified
as collaborators due to the associated formal parameter
list (i.e., an external object was passed to the method).
We labeled these methods collaborator, empty_method to
distinguish them from other collaborators.

StereoCode was also applied to the opensource web
development project Mozilla. The same categories as in
HippoDraw and Qt occurred but a large percentage of all
methods were variations on collaborators (about 95%).
More analysis is required which takes into account
indirect calls and the heavy use of macros in this system.

6.1. Developer Assessment

To further assess our approach an experienced
developer (subject) helped to rate how well the
automatically-generated annotations matched with each
method. The subject is a graduate student in computer
science with multiple years of industry experience (OO
development). This student is a member of our
laboratory but was not involved in the implementation,
development, or discussions on this research.

Table 3. Summary of assessment study. 19 classes

from HippoDraw were annotated with method
stereotypes and then assessed by an experienced

developer. The automated re-documentation of each
method was rated as Very Good, Good, Fair, or Poor.

Class Name # of
Meth VG G F P

BinsFactory 2 2
CircularBuffer 4 3 1
CutController 22 19 3
DataRepController 8 8
DataSource 28 23 2 3
DataSourceException 1 1
DisplayController 80 76 4
FunctionController 45 28 5 10 2
LinearTransform 9 5 1 3
NTuple 32 29 2 1
NTupleController 17 16 1
NTupleSorter 11 5 1 2 3
OpenGLView 30 21 7 2
OpenGLWindow 4 4
QtView 18 13 5
QtViewImp 28 20 6 1 1
QtViewWidget 17 13 2 1 1
ViewBase 8 4 2 2
ViewFactory 1 1
Total Methods 365

Subject’s Assessment 289
(79%)

40
(11%)

15
(4%)

21
(6%)

Errors due to poor
design of methods 1 5

Errors due to
lightweight analysis 19 5

Errors due to
differences in
interpretation

 7 5 11

ICSM06 Submission Dragan, Collard, Maletic

 9 of 10

The subject was given a subset of the entire
HippoDraw system comprising approximately 14% of
the system. We randomly selected 19 classes that
consisted of 365 methods. However, these 19 classes
were inspected to assure that a wide diversity of
stereotypes was represented. The assessment procedure
took the subject more than four hours of constant work.

The assessment was run as follows. The subject was
given the definitions of our stereotypes (as stated in
Section 3) to make them familiar with the terminology.
The subject was not given the rules (as stated in Section 4
and 5). Then they were asked to rate our classification of
a method’s stereotype on a Likert scale of 1) Very Good -
completely agree, 2) Good - agree with minor issue, 3)
Fair - disagree because of false positive, and 4) Poor -
complete disagree. The subject also provided a short
explanation for why they did not agree (Fair or Poor)
with a particular method classification.

In a postmortem the subject described their method.
They went through the code class by class and examined
all the methods in one class at a time. The assessment of
the stereotype classification was done within the context
of the entire class. That is, they examined other methods
in the class and the class attributes (data members).
Rarely, if ever, did the subject need to extend their scope
beyond that of the method’s class to assess the
classification. The subject quickly attempted to
categorize each method broadly as a mutator or accessor
via the method’s signature – name, parameters, and
return type. The next step would then be to inspect how
the method utilized data members. Finally, if necessary,
what other method calls were made inside the method
were examined.

The results of the subject’s assessment are given in
Table 3. We’ve included the list of classes that were
inspected and the number of methods for each. The
overall ratings per method are also given as Very Good,
Good, Fair, and Poor.

Based on the assessment, our system labeled 90% of
the methods inspected by the subject as either Very Good
or Good. In 10% of the methods the subject was in
disagreement with our classification. Upon close
inspection of the subject’s ratings and notes, we were
able to better understand these disagreements. We found
that methods viewed as poorly classified were due to
three issues: the method was poorly designed, the
lightweight static analysis applied was insufficient, or
there were differences of opinions on the stereotype
definitions (between us and the subject).

The subject stated that a small number of
disagreements with our classification came about due to
poorly designed methods in the application under study.
Examples of this were methods that used output
parameters when it was clearly unnecessary. In one
example a method was classified as collaborator but

should have been classified as collaborator and property.
That is, the property was returned via the parameter list
instead of a return value, which in this case was void.

In a small number of cases (five methods, less than
1.5%) our system did not perform the complex analysis
of the code required to get a correct result (good or very
good instead of poor). Additionally, in another 19
methods more analysis would be necessary to increase
the rating from good to very good.

There was a difference in the interpretation of the
stereotype definitions by our subject in a small number of
cases and these are noted in the table. For example, we
labeled one method as collaborator and command
however the subject felt it should only be stereotyped as
a collaborator. Upon careful inspection of our definitions
this particular method should in fact be labeled as both
collaborator and command. These cases seem to
represent differing opinions and views on method
stereotype classifications. The definitions could be
modified to address these differences.

6.2. Threats to Validity

The assessment of StereoCode is subject to a number
of threats to validity. There was only one subject and as
such no statistical analysis to the significance of the
results could be employed. The study only included one
software system and additional examples are warranted.
The implementation is specifically for C++ so the
usefulness of the taxonomy applied to other languages is
still open. As stated, we attempted to construct the study
in an unbiased fashion however the selection of the
subset of the application is a potential problem. Also, the
size of the subset inspected (nearly 14% of the system)
could be increased however the assessment is quite time
consuming (it would require about 30 hours of the
subject’s work for the manual re-documentation of the
entire system) and it is quite difficult securing subjects to
conduct such a study.

7. Conclusions

We presented a tool, StereoCode, for reverse
engineering method stereotypes of an entire system. Our
assessment demonstrates that our stereotype
classification along with our tool for automatically
identifying and re-documenting method stereotypes is
both sound and efficient. Our results were very good as
an experienced developer agreed 90% of the time with
our classification. StereoCode, based on a lightweight
static program analysis approach, is very efficient and
usable – while still giving very good results. While our
system incorrectly labeled 10% of the methods for
HippoDraw, only a very small number of methods (less
than 1.5 % of those assessed) were not correctly

ICSM06 Submission Dragan, Collard, Maletic

 10 of 10

classified in the lightweight approach. Even if this
number proved to be larger for different systems, the cost
trade-off is hard to compete with.

The approach is obviously limited by the definitions
of the stereotypes and the underlying need for
information about the method. Knowledge about the
problem/solution domains and programming idioms can
play an important role in the quality of the results. As
can be seen for the stereotype categories we presented,
much can be done with fairly simple assumptions and
heuristics. In addition the re-documentation allows for
the developer to improve the quality by further (manual)
refinement. Even the rules used in StereoCode can be
easily modified and customized. Poorly written code and
the lack of standard idioms also pose serious limitations.
Systems of this quality give little hope for design
recovery - manual or automatic.

A very small percentage of the incorrectly labeled
methods are due to the poor programming style (5
methods, less than 1.5%). In general, the identification
of property and predicate methods might be affected by
the poor programming style. However, the statistics
presented give hope that for any arbitrary software
system all methods will be labeled, but possibly with less
accuracy if there are many poor-designed methods exist.

While our tools are specifically for C++ the approach
can be easily extended to other object-oriented
programming languages (ex., Java, C#). For example,
the rule ‘if the method is const’ can be substituted with
the more general one ‘if the method changes the data
member’. Other rules satisfy the object-oriented
programming language structures and idioms.

We feel that this work forms the basis for a number of
avenues of research in design recovery. First is the
construction of design-quality metrics based on
stereotype classification. In the initial phases of this
investigation we attempted to apply classical object
oriented metrics to the problem of method-stereotype
classification. However, these metrics are too coarse
grained and were poor predictors of stereotype. Knowing
method stereotypes may also assist in identifying design
patterns. However, our goal is to extend this approach to
automatically reverse engineer class stereotypes. Our
current investigations have shown that information about
the method stereotypes is a necessary requirement to
adequately address this problem.

8. References
[1] Arevalo, G., Ducasse, S., and Nierstrasz, O., " XRay Views:
Understanding the Internals of Classes", in Proceedings of 18th
IEEE International Conference on Automated Software
Engineering, 2003, pp. 267-270.

[2] Atkinson, C., Kuhne, T., and Henderson-Sellers, B.,
"Stereotypical Encounters of the Third Kind", in Proceedings of
UML, 2002, pp. 100-114.

[3] Clarke, P. J., Malloy, B. A., and Gibson, J. P., "Using a
Taxonomy Tool to Identify Changes in OO Software", in
Proceedings of 7th European Conference on Software
Maintenance and Reengineering, 2003, pp. 213-222.

[4] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-
Based Lightweight C++ Fact Extractor", in Proceedings of 11th
IEEE International Workshop on Program Comprehension
(IWPC'03), Portland, OR, May 10-11 2003, pp. 134-143.

[5] Collard, M. L. and Maletic, J. I., "Document-Oriented
Source Code Transformation using XML", in Proceedings of
1st International Workshop on Software Evolution
Transformation (SET'04), Delft, Nov. 9 2004, pp. 11-14.

[6] Collard, M. L., Maletic, J. I., and Marcus, A., "Supporting
Document and Data Views of Source Code", in Proceedings of
ACM Symposium on Document Engineering (DocEng’02),
McLean VA, November 8-9 2002, pp. 34-41.

[7] Deitel, H. M. and Deitel, P. J., C++ How to Program Third
Edition, Prentice Hall, 2001.

[8] Fowler, M., UML Distilled 3rd Ed. A Brief Guide to the
Standard Object Modeling Language, Addison-Wesley, 2000.

[9] Gamma, E., et al, Design Patterns Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

[10] Gogolla, M. and Henderson-Sellers, B., "Analysis of UML
Stereotypes within the UML Metamodel", in Proceedings of
UML, 2002, pp. 84-99.

[11] Lanza, M. and Ducasse, S., "A Categorization of classes
based on the visualization of their Internal Structure: the Class
Blueprint", in Proceedings of 16th ACM Conference on Object-
Oriented Programming, Systems. Languages and Applications
(OOPSLA ' 01), 2001, pp. pp. 300-311.

[12] Meyer, B., Object-Oriented Software Construction,
Prentice-Hall, 2000.

[13] Riehle, D. and Berczuk, S., "Types of Member Functions
in C++", http://www.riehle.org/computer-
science/industry/publications.html, 2001.

[14] Savitch, W., Problem Solving with C++ The Object of
Programming Second Edition, Addisson-Wesley ed., 1999.

[15] Stroustrup, B., The C++ Programming Language,
Addison-Wesley, 2000.

[16] Tremblay, J.-P. and Cheston, G. A., Data Structures and
Software Development in an Object-Oriented Domain Eiffel
Edition, Prentice Hall, 2001.

[17] Weiss, M. A., Data Structures & Algorithm Analysis in
C++, Addisson-Wesley, 1999.

[18] Workman, D., "A Class and Method Taxonomy for
Object-Oriented Programs", Software Engineering Notes, vol.
27, no. 2, 2002, pp. 53-58.

