
Maletic & Collard 8/5/2005

Adding Structure to Unstructured Text

Jonathan I. Maletic Michael L. Collard
Department of Computer Science Department of Computer Science

Kent State University Kent State University
Kent, Ohio 44242 Kent, Ohio 44242

jmaletic@cs.kent.edu collard@cs.kent.edu

Abstract

An overview of the authors’ research
program in document engineering is
presented. Underlying techniques are
being developed for agile parsing of
unstructured and semi-structured text to
extract metadata. XML technologies are
leveraged in novel ways to support
complex querying, analysis, and
transformation of large text bases. New
methods for difference analysis are being
developed to support document evolution
and maintenance. Additionally, advanced
information retrieval methods, namely
latent semantic indexing, in conjunction
with clustering techniques are used to
extract high level features and concepts
from large corpora.

1 Introduction

Our research program is centered on the
maintenance and reverse engineering of large
legacy software systems. To address this difficult
problem we must deal with large numbers of text
documents. These documents include source code
files in various programming languages and
dialects, internal documentation normally written
in English, external system documentation of
various types (e.g., text, diagrams, tables), and
possibility user manuals, bug reports, and version
histories.

These documents are all unstructured or semi-
structured in nature. We have developed a number
of fundamental techniques for querying, analyzing,

and transforming documents with the explicit goal
of recovering and identifying metadata from
unstructured and semi-structured text.

The domain of software documents poses
many significant problems due to the sheer amount
of text along with its heterogeneous nature. That
is, commercial software systems are measured in
millions (or 10’s of millions) of lines of code. To
this end we are investigating efficient and flexible
methods that can be applied across different
languages and in heterogeneous formats. Figure 1
presents an overview of the problem and what
aspects we are addressing. The main research
problems we have investigated are related to the
representation of unstructured and semi-structured
text in XML, parsing and translation methods to go
from raw text to XML, and tools for analysis and
transformation.

Our general approach is to use and leverage
XML technologies to support storage and
extraction of metadata. However, translating
unstructured text into XML requires specialized
custom built parsers. We utilize new parsing
methods based on flexible grammar specifications
that allow us to skip over uninteresting or ill
formed text. These parsing methods are very
robust and extremely efficient which allow them to
be applied to very large text bases in a practical
manner.

With regards to our research on XML
representations of text we have chosen a wholly
document view. This is opposed to the more
prevalent application of XML for data exchange.

We are continuously developing tools and
techniques for querying, analyzing, and
transforming both raw text and its more abstract
XML representation. This is particularly important

 Page 1 of 5

Maletic & Collard 8/5/2005

in automated feature detection or concept location
in raw text. At the raw text level we have
successfully used information retrieval methods,
namely latent semantic indexing, to cluster
document parts and automatically identify high-
level concepts in large document bases.

Figure 1. Overview of problem

Finally, we have developed a visualization tool

to help support the analysis of large amounts of
source code documents. This tool is quite generic
with regards to input data and can be applied to
any type of text document and other types of data.

This paper is organized to detail the work
we’ve done on a number of major research
problems. Section 2 discusses our work with
parsing methods; section 3 is on representation
issues. Section 4 deals with the analysis tools
we’ve develop to work on raw text and section 5
deals with analysis and translation tools for XML
representations. A short description of our
information visualization work is in section 6.

We feel that our techniques can be directly
applied to other problem domains that have
unstructured text documents and in section 7 we
briefly describe some proposed research directions
along these lines.

2 Agile Parsing Methods

Analysis begins with the extraction of lexical,
structural, syntactical, and documentary
information from documents (i.e., source code
files). Unfortunately, this is more difficult than it

should be. On a purely textual level a
straightforward lexical approach such as regular
expressions can be used. However, robust and
efficient regular expressions can be difficult to
write especially when determining the matching
context. To address this one can make use of
current compiler technology however existing
compiler-centric parsers have difficulties in the
preservation of the original (source-code) text
especially with regard to white space, comments,
and preprocessor directives. Parsers take a high
level AST (Abstract Syntax Tree) view of a
program and do not consider these items to be of
importance. In addition they are not robust and
cannot handle code that is either incomplete or has
compilation problems.

In order to analyze all aspects of a source code
document we have developed a robust and efficient
translator that parses unprocessed C/C++/Java
source code and generates srcML, our XML
representation of source code (Collard et al. 2003;
Maletic et al. 2004) . Our translator preserves all
of the source-code text and is able to work with
code fragments, e.g., an individual statement. It is
very robust and can handle the typical unstable
state of source code during development.

Unlike typical parsers, a top-down approach is
used that allows for it to be used as part of a stream
or pipeline. For srcML this means that the
translator can be used a source for SAX
processing. The robustness of our translator is due
to a selective parsing approach based on the
concept of Island Grammars (Moonen 2001). In
this approach “islands”, i.e., patterns of tokens of
specific interest can be discovered even when
surrounded by “water”, i.e., tokens not of interest.
The concept was implemented using the LL(k)
compiler generator ANTLR. The top-down
parsing of ANTLR was extended to provide stream
parsing where XML tokens were inserted into the
stream of text tokens as soon as a markup element
is identified. This provides for low latency when
used as a source for SAX processing.

3 XML Representations

From its original application to text, XML is
now used to represent a data of all types. The wide
variety of applications of XML has led to two
major categories of application: document-oriented
and data-oriented. Document-oriented XML uses

 Page 2 of 5

Maletic & Collard 8/5/2005

elements to organize and provide context to text. It
has been mainly applied to text documents, e.g.,
XHTML, DocBook, etc. Mixed content is
typically used – where elements contain both text
and sub elements. The original document text is
preserved (possibly including white space) in its
original document order. A full range of XML
technologies may than be used, but in particular
the schema languages DTD and RelaxNG are
preferred over XML Schema. XML Schema is not
used due to its inability to handle mixed content
and less of a need for data-typing of text elements.

Data-oriented XML stores the textual
information in attributes, or in pure elements (i.e.,
no mixed content). All types of XML technologies
may be used, but the deficiencies of DTD and the
need to express strong data-type relationships leads
to a preference for use of XML Schema or
RelaxNG.

We have found a document-oriented approach
particularly useful for software engineering
applications involving source code. In our srcML
representation (SouRce-Code Markup Language)
(Collard et al. 2003; Collard and Maletic 2004;
Collard et al. 2002) XML is used to augment C,
C++, and Java source code with syntactic
information from the parse tree to add explicit
structure and metadata to program source code.
Comments, preprocessing information and
formatting are preserved and identified for use by
other maintenance tools.

The srcML representation is transparent to the
original source code text, i.e., there exists a 1-1
mapping between the text of the source-code
document and the equivalent srcML document.
Source code can be converted from plain text to
the srcML representation and back without the loss
of any textual information including white space.
Locations in the source code can be addressed
using XML addressing languages such as XPath
and XPointer. In addition to the syntactic meta-
data that the srcML elements provide, additional
metadata can be embedded as attributes in the
syntactic elements, or stored externally with links
into the srcML document.

In practice the format has proven itself to be
very lightweight. Application to large source code
projects, (e.g., Linux kernel), has shown that the
srcML representation is on average only 3.5 times
the size of the original plain text. This is unlike
data-oriented XML representations of source code

whose representations are hundreds and even
thousands of times larger than the original text, and
which often lose essential document information.
The speed of our translator is currently at 11,000
lines of source code per second.

The srcML representation has been extended
to simultaneously represent multiple versions of a
source-code document. This representation,
srcDiff, (Collard 2004; Maletic and Collard 2004)
is a source-code meta-difference format
Differences between versions of the document are
represented in an XML format based on srcML.
The original and modified source code is
integrated into a single srcML-based representation
with the differences marked in additional XML
elements. Both the original and modified versions
of the document can be directly extracted from the
srcDiff representation. Locations in the both
versions and their relationship to the changes can
be addressed using XML addressing languages
such as XPath and XPointer. This allows direct
support for a syntactic description of the
differences. Queries may be performed on the
difference information involving location of
source-code changes, characteristics of the
changes, etc. Modeling of differences at this level
allows for the validation and transformation of
differences. Currently, our srcDiff tool translates
at approximately five times the speed of diff. For a
project with 60,000 lines of source code it requires
less than 14 minutes. This is in sharp contrast to
all semantic and most syntactic differencing tools
which take this amount of time on a small file.

4 IR and Unstructured Text

We have successfully applied an advanced
information retrieval method, namely latent
semantic indexing, to a number of problems
(Maletic and Marcus 2001; Maletic and Valluri
1999; Marcus and Maletic 2001; 2003; Marcus et
al. 2004) dealing with unstructured, heterogeneous,
text documents. This novel work deals with
identifying abstract concepts and features from
large sets of documents.

Latent Semantic Indexing (LSI) (Landauer et
al. 1998) is a machine-learning model that induces
representations of the meaning of words by
analyzing the relation between words and passages
in large bodies of text. As a model, LSI’s most
impressive achievements have been in human

 Page 3 of 5

Maletic & Collard 8/5/2005

language acquisition simulations and in modeling
of high-level comprehension phenomena like
metaphor understanding, causal inferences and
judgments of similarity. For complete details on
LSI see (Deerwester et al. 1990). LSI was
originally developed in the context of information
retrieval as a way of overcoming problems with
polysemy and synonymy that occurred with vector
space model (VSM) (Salton and McGill 1983)
approaches. One of the most successful
applications of SVD in information retrieval is the
Google search engine (www.google.com).

Most importantly however, is that LSI does not
utilize a predefined grammar or vocabulary. As
such it can be easily applied different types of
unstructured text documents in different languages
or formats. Many other information retrieval (IR)
and natural language processing (NLP) techniques
require a detailed grammar to extract any
meaningful information. These grammars are
often expensive to construct or brittle. While some
of these approaches are more accurate than LSI
they cannot compete with regards to its flexibility
and low cost of application.

5 XML Applications

The first major application of srcML was to
perform queries on source code documents. A
combination of the srcML format and common
XML tools were used to extract information from
source-code documents with results comparable to
other heavyweight (full parser-based) parsing
approaches according to results obtained using a
standard C++ fact extraction benchmark (Collard
et al. 2003) . Queries can be performed on source
code in a realistic state, i.e., incomplete code, code
fragments, etc. The queries are written in XPath
and a command-line XPath tool was used to query
the source code.

The transparency of our approach makes it
ideal for document transformation.
Transformation of source code text can be
performed at the XML level (Collard and Maletic
2004) with the use of XPath to select the parts of
the document that need to be transformed. These
non-intrusive transformations of source code can
be performed at the XML level using XSLT,
DOM, SAX, etc. This allows changes to specific
elements in the source code e.g., insertion or
removal of an individual statement.

As mentioned previously, the srcML
representation allows for the addition of attributes
for embedded metadata. However, storing
metadata externally is a more flexible approach. In
our work (Collard 2003; Collard 2004)
associations between entities and regions of source
code are represented as an XML model. This
model uses the XML linking language XLink for
the integration of source models with the source
code. Multiple source models, from highly
abstract to low-level source-code associations, can
be integrated with source code into a single query
or transformation.

6 Visualization of Documents

Information visualization techniques are being
investigated and applied to visualize the complex
abstract relationships and characteristics of large
software systems (Maletic et al. 2002; Maletic et
al. 2003; Marcus et al. 2003). Our current research
prototype, sv3D, was developed specifically as a
visualization front-end and is completely
independent of any underlying data acquisition or
analysis tool. The system accepts simple XML
input and be applied to text documents. sv3D
allows the user to simultaneously visualize
multiple attributes of multiple documents. It
supports object level manipulation (rotation,
scaling, etc.), filtering, and user selectable
mappings of visual features to attributes.

7 Proposed Research

Our research program has given us a large
amount of experience and expertise in dealing with
and extracting metadata from unstructured text.
We feel that many of the fundamental techniques
we developed will directly apply to the specific
business needs and challenges of industry. Our
interest is to identify some of these problems and
investigate the applicability of our techniques.

Our techniques are very efficient and scalable
to large corpora. The parsing techniques are novel
and provide a means to add structure to
unstructured documents in various domains.

8 Bio Sketches

Dr. Jonathan I. Maletic is an Associate
Professor of Computer Science at Kent State
University. He has authored nearly 60 published

 Page 4 of 5

Maletic & Collard 8/5/2005

papers and is an internationally recognized
researcher in software engineering and document
engineering. Dr. Maletic is on the Steering
Committee of the ACM Symposium on Document
Engineering. He completed the Ph.D. in 1995
from Wayne State University. His web site is at
www.cs.kent.edu/~jmaletic/.

Dr. Michael L. Collard recently graduated
(2004) from Kent State University with the Ph.D.
He is currently a lecturer within the Department of
Computer Science. Dr. Collard’s research interests
are in document-oriented approaches to single and
multiple versions of source code. He is a member
of the Program Committee for the 5th ACM
Symposium on Document Engineering (DocEng)
2005. See www.cs.kent.edu/~collard/.

References
Collard, M. L., (2003), "An Infrastructure to Support

Meta-Differencing and Refactoring of Source Code",
in Proceedings of 18th IEEE International
Conference on Automated Software Engineering
(ASE '03), October 6-10, pp. 377-380.

Collard, M. L., (2004), Meta-Differencing: An
Infrastructure for Source Code Difference Analysis,
Kent State University, Kent, Ohio USA, Ph.D.
Dissertation Thesis.

Collard, M. L., Kagdi, H. H., and Maletic, J. I., (2003),
"An XML-Based Lightweight C++ Fact Extractor",
in Proceedings of 11th IEEE International Workshop
on Program Comprehension (IWPC'03), Portland,
OR, May 10-11, pp. 134-143.

Collard, M. L. and Maletic, J. I., (2004), "Document-
Oriented Source Code Transformation using XML",
in Proceedings of 1st International Workshop on
Software Evolution Transformation (SET'04), Delft,
The Netherlands, Nov. 9, pp. 11-14.

Collard, M. L., Maletic, J. I., and Marcus, A., (2002),
"Supporting Document and Data Views of Source
Code", in Proceedings of ACM Symposium on
Document Engineering (DocEng’02), McLean VA,
November 8-9, pp. 34-41.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R., (1990), "Indexing by
Latent Semantic Analysis", Journal of the American
Society for Information Science, vol. 41, pp. 391-
407.

Landauer, T. K., Foltz, P. W., and Laham, D., (1998),
"An Introduction to Latent Semantic Analysis",
Discourse Processes, vol. 25, no. 2&3, pp. 259-284.

Maletic, J. I. and Collard, M. L., (2004), "Supporting
Source Code Difference Analysis", in Proceedings of
IEEE International Conference on Software

Maintenance (ICSM'04), Chicago, Illinois,
September 11-17, pp. 210-219.

Maletic, J. I., Collard, M. L., and Kagdi, H. H., (2004),
"Leveraging XML Technologies in Developing
Program Analysis Tools", in Proceedings of 4th
International Workshop on Adoption-Centric
Software Engineering (ACSE'04), Edinburgh,
Scotland, May 25, pp. 80-85.

Maletic, J. I. and Marcus, A., (2001), "Supporting
Program Comprehension Using Semantic and
Structural Information", in Proceedings of 23rd
International Conference on Software Engineering
(ICSE'01), Toronto, CA, May 12-19, pp. 103-112.

Maletic, J. I., Marcus, A., and Collard, M. L., (2002),
"A Task Oriented View of Software Visualization",
in Proceedings of 1st IEEE Workshop of Visualizing
Software for Understanding and Analysis
(VISSOFT'02), Paris, France, June 26, pp. 32-40.

Maletic, J. I., Marcus, A., and Feng, L., (2003), "Source
Viewer 3D (sv3D) - A Framework for Software
Visualization", in Proceedings of 25th IEEE/ACM
International Conference on Software Engineering
(ICSE'03), Portland, OR, May 3-10, pp. 812-813.

Maletic, J. I. and Valluri, N., (1999), "Automatic
Software Clustering via Latent Semantic Analysis",
in Proceedings of 14th IEEE International
Conference on Automated Software Engineering
(ASE'99), Cocoa Beach Florida, Oct., pp. 251-254.

Marcus, A., Feng, L., and Maletic, J. I., (2003), "3D
Representations for Software Visualization", in
Proceedings of 1st ACM Symposium on Software
Visualization (SoftVis'03), San Diego, CA, June 11-
13, pp. 27-36.

Marcus, A. and Maletic, J. I., (2001), "Identification of
High-Level Concept Clones in Source Code", in
Proceedings of Automated Software Engineering
(ASE'01), San Diego, CA, Nov. 26-29, pp. 107-114.

Marcus, A. and Maletic, J. I., (2003), "Recovering
Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing", in Proceedings of
25th IEEE/ACM International Conference on
Software Engineering (ICSE'03), Portland, OR, May
3-10, pp. 125-137.

Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J. I.,
(2004), "Concept Location using Latent Semantic
Analysis", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE'04),
Delft, The Netherlands, Nov. 9-12, pp. 214-223.

Moonen, L., (2001), "Generating Robust Parsers using
Island Grammars", in Proceedings of 8th IEEE
Working Conference on Reverse Engineering
(WCRE'01), Suttgart, Germany, Oct. 2-5, pp. 13-24.

Salton, G. and McGill, M.,(1983),Introduction to
Modern Information Retrival, McGraw-Hill.

 Page 5 of 5

