
Discovering Highly Reliable Subgraphs in
Uncertain Graphs ∗

Ruoming Jin
Kent State University

Kent, OH, USA
jin@cs.kent.edu

Lin Liu
Kent State University

Kent, OH, USA
lliu@cs.kent.edu

Charu C. Aggarwal
IBM T. J. Watson Research Ctr

Hawthorne, NY, USA
charu@us.ibm.com

ABSTRACT
In this paper, we investigate thehighly reliable subgraphproblem,
which arises in the context of uncertain graphs. This problem at-
tempts to identify all induced subgraphs for which the probability
of connectivity being maintained under uncertainty is higher than
a given threshold. This problem arises in a wide range of network
applications, such as protein-complex discovery, networkrouting,
and social network analysis. Since exact discovery may be compu-
tationally intractable, we introduce a novel sampling scheme which
enables approximate discovery of highly reliable subgraphs with
high probability. Furthermore, we transform the core mining task
into a newfrequent cohesive set problemin deterministic graphs.
Such transformation enables the development of an efficienttwo-
stage approach which combines novelpeeling techniquesfor max-
imal set discovery with depth-first search for further enumeration.
We demonstrate the effectiveness and efficiency of the proposed
algorithms on real and synthetic data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms, Theory

Keywords
Uncertain graph, Reliable subgraph, Frequent cohesive set

1. INTRODUCTION
Networks have evolved into a unified conceptual abstract to model

both natural and man-made complex systems such as the web, so-
cial networks, and cellular systems. Such networks often have in-
herent uncertainty. In a telecommunication or electrical network,
a link can be unreliable and may fail with certain probability [11,
31]. In a protein interaction network, the pairwise interaction is

∗R. Jin and L. Liu were partially supported by the National Science
Foundation, under CAREER grant IIS-0953950.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

derived from (approximate) statistical models [4, 3, 21]; in a so-
cial network, trust and influence issues may impact the likelihood
of social interactions [12, 26, 1]. Theuncertain graph modelis a
convenient framework to address such scenarios [30, 38, 41,40,
39] in a unified way. In this model, each edge is associated with
an edge existence probabilityto quantify the likelihood that this
edge exists in the graph. An uncertain graph is also referredto as a
probabilistic graph [2, 17].

It is evident that the connectivity of the network is a complex
probabilistic function of the network topology and edge uncertainty.
Such problems are notoriously difficult [34, 5] because of the com-
binatorially large number of possible instantiations of anuncertain
graph. For example, even the simple problem of pairwise vertex
reachability, which can be easily computed in linear time indeter-
ministic graphs, becomes a#P -complete problem in the uncertain
scenario [5]. Thenetwork reliability problem [10] is a general-
ization of pairwise reachability, in which the goal is to determine
the probability thatall pairs of nodesare reachable from one an-
other. In other words, network reliability measures the probability
that the entire graph remains connected under uncertainty.The ba-
sic reachability problem is also referred to astwo-terminal network
reliability and the latter problem is referred to asall-terminal net-
work reliability, which is also#P -complete [5]. As we will see,
the reliable subgraph problem addressed in this paper is an even
further generalization of these problems, as it relates to subgraph
discoverysatisfying the reliability property. Network reliabilityal-
gorithms have numerous applications in communication networks
[11, 31], biological networks [3], and social networks [33,35].

This paper uses a pattern mining approach towards reliable sub-
graph discovery, which is independent of specific sets of vertices.
We address the problem of determining allhighly reliable sets of
verticesfor which the induced subgraphs have network reliability
above a user-specified threshold. The problem of discovering all
highly reliable subgraphs can be found in a wide range of network
applications. In a protein-protein interaction network, the highly
reliable subgraphs can be used for identifying the core of protein
complexes [3]. In a telecommunication network, the highly reliable
subgraphs can serve as the basic constructs to help connect asource
and a destination [29]. In social networks with edge uncertainty,
highly reliable subgraphs can help discover cohesive groups [35].
The highly reliable subgraph problem on uncertain networkscan be
considered analogous to dense component mining in the determin-
istic scenario [28]. However, the combination of network topology
and edge probabilities make this problem much more challenging,
because a structurally dense component with low probability edges
may not be reliable, and vice versa. In general, the subtle effects
of different levels of uncertainty in different structuralportions of
the network need to be addressed by any algorithm for reliable sub-

(a) Uncertain GraphG (b) G1 with 0.00254016

Figure 1: Running Example

graph mining. In order to address these goals, we make the follow-
ing contributions in this paper:

1. We introduce and formally define the problem of discovering all
highly reliable subgraphs in uncertain graphs (Section 2).
2. We propose a sampling scheme, which enables approximate
discovery of highly reliable subgraphs with guaranteed probabilis-
tic accuracy. We transform the uncertain graph mining problem
into a newfrequent cohesive set discoveryproblem in deterministic
graphs (Section 3).
3. We present a two-stage approach to discover all frequent cohe-
sive sets. The algorithm combines an efficient top-downpeeling
approach in the first stage (to discover allmaximalfrequent cohe-
sive sets) with a fast depth-first-search (DFS) mining procedure to
discover the remaining non-maximal frequent cohesive sets(Sec-
tion 4).
4. We demonstrate the effectiveness and efficiency of the proposed
algorithms on real and synthetic data sets (Section 5).

2. PROBLEM FORMULATION
We denote anuncertain directed graphbyG = (V, E, P), where

V is a set of vertices,E is a set of edges, andP : E → (0, 1] is a
function that determines the probability of existence of edgee in the
graph. It is assumed that the uncertainty variables of different edges
are independent of one another, though our approach also applies
in principle to theconditional probability model[30], as long as
a computational method for generating appropriate samplesof the
uncertain graph is available.

A possible graphG = (VG, EG) of an uncertain graphG is
a deterministic graph which is a possibleoutcomeof the random
variables representing the edges of the probabilistic graph G. We
denote the possible graph byG ⊑ G. The graphG contains a sub-
set of edges ofG. In other words, we haveEG ⊆ G. The total
number of such possible graphs is2|E|, because for each edge, we
have two cases as to whether or not that edge is present in the graph.
The probability of sampling the graphG from the random variables
representing the uncertain graphG is given by the following sam-
pling or realization probabilityPr[G]:

Pr[G] =
Y

e∈EG

p(e)
Y

e∈E\EG

(1 − p(e)).

We present an example of an uncertain graphG and its possible
realizationG1 in Figure 1. The uncertain graphG has210 pos-
sible outcomes, and the sampling probability ofG1 is defined as
follows:

Pr[G1] = p(a, b)p(b, e)p(c, d)p(c, f)p(d, f)(1 − p(a, c)) ×

(1 − p(a, d))(1 − p(d, e))(1 − p(e, g))(1 − p(f, g)) = 0.00254016

The network reliability [10] measures the likelihood that the
entire graph is connected and can be formally defined as follows:

DEFINITION 1. (Network Reliability) Given an uncertain graph
G = (V, E, P), its network reliabilityR[G] is defined as the prob-
ability that its sampled realizations remain connected. Inother

words, we have:

R[G] =
X

G⊑G

I(G) · Pr[G], whereI(G) is an indicator function,

I(G) =

(

1, if G is connected;

0, otherwise

The definition can be easily generalized to the induced subgraph
G[Vs] for a subset of verticesVs ⊆ V :

R[G[Vs]] =
X

G⊑G

I(G[Vs]) · Pr[G], whereG[Vs] is the induced

subgraph ofVs. For simplicity, we also refer toR[G[Vs]] as the
subgraph reliability with respect toVs.

Next, we introduce the problem of discovering all highly reliable
subgraphs in an uncertain graph:

DEFINITION 2. (Highly Reliable Subgraph (HRS) Problem)
Given an uncertain graphG = (V, E, P) and a reliability thresh-
old α ∈ [0, 1], determine all induced subgraphs whose network
reliability is at leastα.

In other words, we haveR[G[Vs]] ≥ α. The resulting set is
denoted bySα. We make the important observation that thedown-
ward closure propertydoesnot hold for reliable subgraphs:

LEMMA 1. Given an uncertain graphG and two subsetsVs and
V ′

s whereVs ⊃ V ′
s , we cannot claim eitherR[G[Vs]] ≥ R[G[V ′

s]]
or R[G[Vs]] ≤ R[G[V ′

s]].

For instance, in the uncertain graphG depicted in Figure 1,
R[G[{c, d, f}]] = 0.902 > R[G[{d, f}]] = 0.9 and we have
R[G[{b, e, g}]] = 0.2 < R[G[{e, g}]] = 0.5. The lack of down-
ward closure creates a challenge from an algorithmic perspective.

In addition, we can use a simple property of the uncertain graph
in order to preprocess it and drop some of the edges in order tore-
duce computational complexity. This property is as follows: Given
an uncertain graphG = (V, E, P) and a reliability thresholdα,
for an induced subgraphG[Vs] of G, if there is an edge cutC ⊆
E(G[Vs]) in G[Vs] (removing all edges inC makesG[Vs] discon-
nected), such thatp(C) =

P

e∈C
p(e) < α, thenR[G[Vs]] < α.

Given this, we can further observe the following:

LEMMA 2. (Edge-Cut Lemma) Given an uncertain graphG =
(V, E, P) and a reliability thresholdα, for any edge cutC in G,
C ⊆ E which breaks the uncertain graph into two partsG[V1]
and G[V2] (V1 ∪ V2 = V and C ⊆ V1 × V2), then if p(C) =
P

e∈C
p(e), then, for any high reliable subgraph (HRS)G[Vs], ei-

ther we haveVs ⊆ V1 or Vs ⊆ V2. In other words, there is no HRS
G[Vs] with Vs ∩ V1 6= ∅ andVs ∩ V2 6= ∅.

The implication of this lemma is that if for any cutC in uncer-
tain graphG with p(C) < α, then, we can safely drop all the edges
in C without missing any HRS. Clearly, this reduces the number of
candidate sets. However, finding all such cuts with value at most
α is computationally prohibitive. In this work, we apply a simple
linear min-cut algorithm [32] starting from each vertex in the un-
certain graph in order to drop edges. This algorithm starts from
an arbitrary vertex (a single vertex set) in a graph, and thenitera-
tively selects a vertex most tightly connected to the current set of
vertices and add it into the set until we find a cutC with p(C) less
thanα. At this point, we drop all the edges in the cut. We utilize
this procedure to preprocess the uncertain graphG by repeating the
procedure for all vertices.

We note that all singleton vertex sets are always highly reliable,
and a pair of vertices is a highly reliable set if and only if they are
connected by an edge with probability at leastα. Therefore, we will
focus on the interesting case of finding all highly reliable vertex
sets inSα with set size no less than3. Finally, since each induced
subgraph is uniquely determined by its vertex set, we reportonly
vertex sets inSα, and interchangeably use the terms “vertex sets”
and “induced subgraphs” in this paper.

3. SAMPLING APPROXIMATION SCHEME
Since the network reliability problem is #P-complete, the gener-

alized problem studied in this paper is at least as intractable. The
methods available for exact determination of subgraph reliability
are designed for cases where graphs are very small (tens of vertices
at most) [31]. We note that the problem of subgraph reliability
estimation and subgraph pattern discovery have different levels of
difficulty in terms of solvability. The former problem can ofcourse
be partially addressed by allowing approximate estimationthrough
Monte-Carlo sampling; however we will see that it continuesto be
a challenge to avoid uncontrolled false positives or negatives in the
pattern discovery version of the problem. The sampling approach
for subgraph reliability estimation is as follows:
(1) We first sampleN possible graphs,G1, G2, · · · , GN of G ac-
cording to edge probability functionP ; and (2) for any subset of
verticesVs, we compute the indicator functionI(Gi[Vs]) (whether
the induced subgraphGi[Vs] itself is a connected component) for
each sample graphGi. Given this, the sampling estimator (bR[G[Vs]])
of the subgraph reliability is as follows:

R[G[Vs]] ≈ bR[G[Vs]] =

PN

i=1
I(Gi[Vs])

N

The sampling estimatorbR[G[Vs]] is anunbiasedestimator of the
subgraph reliability, i.e.,E(bR[G[Vs]]) = R[G[Vs]]. More impor-
tantly, by applying the Chernoff-Hoeffding Bound [9, 19], we can
determine whether an induced subgraph is highly reliable with high
probability:

LEMMA 3. With sample sizeN ≥ 2

ǫ2
ln 2

δ
, for any subset of

verticesVs, Pr(|bR[G[Vs]] − R[G[Vs]]| ≥ ǫ) ≤ δ.

We would naturally like to use this approach for determiningthe
highly reliable setSα. However, from a set mining perspective, it
is hard to probabilistically control the number of false positives or
negatives. This is because the use of sampling to determine the re-
liability of an induced subgraph is a multiple hypothesis test, and
it is inherently difficult to provide guarantees in such cases [6, 7].
Some recent results have shown how to effectively use multiple
hypothesis tests for the special case of the frequent pattern min-
ing problem [15, 27], but these methods cannot be used to provide
guarantees for our problem.

To deal with this challenge, we utilize two sets to approximate
Sα: (a) the first setS which tries to maximize the recall of discov-
ering highly reliable subgraphs; (b) the second setS which tries
to maximize the precision of discovery.These two sets provide
flexible and complementary choices for different applications. In
cases where we do not wish to miss any highly reliable subgraphs
(false negatives), the first set can be used, and then false positives
can be filtered out. If the application is designed for discovering
some of the very highly reliable subgraphs, the second set ismore
helpful. When the two sets are similar, it is evident that it is pos-
sible to achieve both high precision and recall. We will design an
approach which achieves this goal.
Sampling-based Approach for Highly Reliable Set Discovery:
Our sampling-based approach utilizes additional parameters ǫ and

δ for controlling the discovery results. The approach consists of
two steps:
Step 1: SampleN1 = 2

ǫ2
ln 2

δ
possible graphs ofG, denoted as

datasetD1, discovering all induced subgraphsG[Vs] with reliabil-
ity bR[G[Vs]] ≥ α − ǫ usingN1 sampled graphs:

S = {G[Vs]|bR[G[Vs]] ≥ α − ǫ}

Step 2: SampleN2 = 2

ǫ2
ln 2|S|

δ
possible graphs ofG, denoted as

datasetD2, discovering all induced subgraphsG[Vs] with reliabil-
ity bR[G[Vs]] ≥ α + ǫ usingN2 sampled graphs andG[Vs] ∈ S:

S = {G[Vs]|bR[G[Vs]] ≥ α + ǫ} ∩ S

We make the following observations about this approach.

THEOREM 1. (Precision and Recall) The setsS and S pro-
duced by the sampling procedure have the following properties:

1. The expected fraction of missed highly reliable subgraphs is

at mostδ. In other words, we haveE(|Sα\S|
|Sα|

) ≤ δ;

2. With probability at least1 − δ, all induced subgraph inS
are highly reliable subgraphs:Pr(∀G[Vs] ∈ S,R[G[Vs]] ≥
α) ≥ 1 − δ andPr(|S ∩ Sα|/|S| = 1) ≥ 1 − δ;

3. With probability at least1 − δ, the precision ofS is no less
thanβ = |S|

|S|
(S ⊆ S): Pr(|Sα ∩ S|/|S| ≥ β) ≥ 1 − δ.

Whenβ is close to 1, the two sets become similar and the
precision increases;

4. The expected fraction of missed highly reliable subgraphs in
S is no higher thanδ + 1 − β + δβ/|S| ≈ δ + 1 − β:
E(|Sα\S|

|Sα|
) ≤ δ + 1 − β + δβ/|S| ≈ δ + 1 − β. Whenβ is

close to 1, the expected false negative rate is small.

We omit the detailed proofs since these are direct applications of
the Chernoff-Hoeffding bounds. It is evident from Theorem 1that
δ is directly responsible for controlling the precision and recall of
the reliable subgraph discovery algorithm. The parameterǫ needs
further explanation. Though it does not directly appear in the preci-
sion and recall formulas, it helps to control the differencebetween
S andS. In other words, whenǫ decreases,β tends to increase.
However, since the required sample sizesN1 andN2 are inversely
related to the square ofǫ, it may be important to balance between
computational cost and approximation quality. We will examine
these tradeoffs in detail in the experimental section.

An important observation is that the precision and recall are con-
trolled in this approach by different probabilistic criteria. Specifi-
cally, in order to control recall, the expected false negative rate is
applied instead of the standard Bonferroni correction for multiple
comparison [15]. This is because of the difficulty in determining
the size of the result setSα. To deal with this problem, we simply
employ the expected false negative rate in the first step. Once we
have a candidate setS, we are able to utilize a more strict Bon-
ferroni correction approach [15] in the second step for controlling
precision. It is important to remember that the approach (and the
corresponding theoretical results) can be applied to an uncertain
graph in which edge probabilities are not independent, as long as
appropriate samples of the graph can be generated. For this pur-
pose, an independent set of possible graphs can be generatedfrom
the uncertain graph by a Gibbs sampler or a Markov Chain Monte
Carlo technique [30].
Discovering Frequent Cohesive Sets:The aforementioned sam-
pling approximation scheme results in a new graph mining prob-
lem, which we call theFrequent Cohesive Set(FCS) problem:

DEFINITION 3. (Frequent Cohesive Set Problem) Given a graph
G and a subset of verticesVs ⊆ V [G], if its induced subgraph
G[Vs] forms one connected component, thenVs is referred to as a
cohesive setin G. Given a set of graphsD = {G1, G2, · · · , GN}
with verticesV (G1) = V (G2) = · · · = V (GN) = V and a
minimal support thresholdθ, a frequent cohesive set (FSC) is any
subset of verticesVs ⊆ V that is a cohesive set in at leastθ · N
graphs.

In order to be consistent with the problem of highly reliablesub-
graph discovery, we denote the frequency ofVs being cohesive as
bR[Vs]. In addition, themaximal frequent cohesive set (MFCS)
problem identifies all frequent cohesive sets inD, for which none
of their supersets are cohesive. In the aforementioned sampling ap-
proach, the first step is the key, and it is needed to solve the MFCS
problem. Specifically, the datasetD1 consists ofN1 graphs (Step
1 in the sampling approach), and the generation of the approximate
setS corresponds to the discovery of all frequent cohesive sets in
D1 with minimum supportθ = α − ǫ. Once we have determined
S, we only need to determine whether each of the vertex sets is fre-
quently cohesive in the new sampling datasetD2 (Step2). Since
connectivity can be checked for each induced subgraph in linear
time [20], this can be done rather quickly. Due to the simplicity of
the second step, we omit further discussion and focus on the first
step of discovering all frequent cohesive sets in a graph database.

Interestingly, to the best of our knowledge, this problem has not
been studied before. The closest is Yanet al.’s work [36] on min-
ing closed frequent subgraphs with connectivity constraints. The
main difference is that in our problem, there is no isomorphism re-
quirement on the induced subgraphs, a fact which can be leveraged
towards more efficient algorithm design. In the next section, we
will introduce an efficient method for mining all the FCS in a large
graph database. Finally, we note that it is possible to generalize the
cohesive set with additional connectivity constraints, ina manner
similar to [36]. For instance, each induced subgraph may notonly
be connected, butk-connected as well. Our algorithm can be gen-
eralized to handle such constraints as well. However, this is beyond
the scope of the present work.

4. MINING FREQUENT COHESIVE SETS
The frequent cohesive set problem is similar to the highly re-

liable subgraph problem, in that it also lacks the downward clo-
sure property (Lemma 1). This creates an algorithmic challenge
for the pattern mining process. In order to address this challenge,
we develop a novel two-stage mining algorithm. In the first stage,
a novel top-downpeelingprocess is employed to iteratively refine
patterns to make them converge into maximal frequent cohesive
sets (MFCS) (Subsections 4.1 and 4.2). In the second stage, we
perform a DFS mining process which utilizes the MFCS as the
boundary to prune the search space for discovering all the non-
maximal frequent cohesive sets (Subsection 4.3). We will now de-
scribe these different stages.

4.1 Peeling Algorithm for MFCS
In this subsection, we describe a novel and efficient algorithm

for mining the maximal frequent cohesive sets (MFCS). We refer
to our approach as thepeelingalgorithm, because we work from
supersets to subsetsduring pattern discovery, as patterns are be-
ing iteratively refined (or peeled). Clearly, a successful peeling ap-
proach requires two main properties:(a) We need to dicover the
initial patterns containing all the MFCS.(b) We need an effective
peeling approach in order to converge to the correct MFCS. Inthe
following, we address these two key issues and provide details of
the peeling algorithm.

Relaxation Approach: In order to discover the initial patterns
which contain all the maximal frequent cohesive sets (MFCS), we
relax thecohesivecondition on a vertex set by allowing connectiv-
ity through vertices outside the set. This relaxed problem also turns
out to be easier to solve because it satisfies the downward closure
property. Specifically, we introduce themaximal frequent linked
sets(MFLS) problem, which allows connectivity of a vertex set not
just through the induced subgraph itself, but other vertices as well.

DEFINITION 4. (Maximal Frequent Linked Set Problem) A
subset of verticesVs ⊆ V [G] in graph G is said to be alinked
set if it belongs to a connected component inG. Given a graph
databaseD = {G1, G2, · · · , GN} with V (G1) = V (G2) =
· · · = V (GN) = V and a minimum support thresholdθ, a sub-
set of verticesVs ⊆ V is referred to as afrequent linked set, if it
is a linked set in at leastθ · N graphs.

The frequency ofVs being linked inD is denoted asbRL[Vs].
Themaximal frequent linked set problem tries to identify all the
frequent linked sets inD, such that any superset of these sets is
not frequently linked. A frequent linked set relaxes the cohesive
constraint by not requiring the set to be connected only through the
vertices (and edges) of the induced subgraph. It is easy to see that
any frequent cohesive set must be a frequent linked set, though the
reverse is not necessarily true. Consequently,if Vs is a maximal
frequent cohesive set (MFCS), then there must be a maximal fre-
quent linked set (MFLS)V ′

s , such thatV ′
s ⊇ Vs. Thus, the set of all

MFLS can naturally serve as the initial pattern set which forms an
“upper bound” on all MFCS. Furthermore, unlike the FCS problem,
the relaxed MFLS problem has thedown-closure property, which
allows efficient discovery.

Discovering all MFLS is surprisingly simple, because we can
reduce it to the classical maximal frequent itemset problem[14],
for which many efficient algorithms are available. Specifically, the
transformationprocedure which converts the graph databaseD into
a transactional databaseT is as follows:
For each graphGi ∈ D, find all its connected components, i.e.,
Gi = Ci1 ∪ Ci2 ∪ · · · ∪ Cik. Output the vertex set of each
connected component as an independent transaction, i.e.,T =
T ∪ {V [Ci1], V [Ci2], · · · , V [Cik]} (T = ∅ initially).

LEMMA 4. The set of all maximal frequent itemsets (MFI) inT
with minimum supportθ is equivalent to maximal frequent linked
sets (MFLS) inD with the same minimum support level.

Note that the transformation process can be achieved very quickly
[20], since it has linear computational complexity with respect to
the size of the graph database. Thus, the question is how we can
refine these MFLS to produce the final set of all maximal frequent
cohesive itemsets (MFCS). Next, we discuss how this initialset can
be peeled.
Naïve Peeling:The basic idea of peeling is as follows. For each
initially discovered maximal frequent linked set (MFLS)m in D,
we keep refining it in order to convert it to a (maximal) frequent
cohesive set (FCS). Specifically, ifm is not a frequent cohesive set,
we first effectively peel the graph database so that it contains only
vertices inm. In other words, to refinem, we only work on the
partial graph databaseD[m] = {G1[m], G2[m], · · · , GN [m]},
which contains only the induced subgraph ofm for each graph in
D. Note that once we peel the graphs so that they contain only
vertex setm, they may become disconnected (since they are likely
to be linked through other vertices in the graph). Then, we can
discover all the maximal frequent linked sets (MFLS) on the par-
tial graph databaseD[m] using the earlier method. Thus, we can

recursively perform this process until all maximal frequent linked
sets (MFLS) converge into the frequent cohesive sets.

Algorithm 1 Peeling(D, mfls, MFCS)

Parameter: D: the graph databaseD = {G1, G2 · · · , GN};
Parameter: mfls: the intermediate maximal frequent linked sets;
Parameter: MFCS: the final maximal frequent cohesive sets;
1: for each m ∈ mfls do
2: if bR[m|D[m]] ≥ θ {if m is a frequent cohesive set}then
3: if ∄m′ ∈MFCS ∧m′ ⊇ m then
4: MFCS ← prune(MFCS ∪ {m}); {maximal patterns}
5: end if
6: else
7: T ← transform(D[m]) {transform graph database to transac-

tional database};
8: mfls′ ←MFI(T, θ) {maximal frequent itemsets};
9: Peeling(D, mfls′, MFCS);

10: end if
11: end for

Algorithm 1 sketches the peeling process. The input is the initial
MFLS discovered using the aforementioned MFI mining approach.
Then, we invoke thepeelingalgorithm. In the loop (Lines1 to 13),
we iteratively visit each maximal frequent linked setm in mfls.
If m is indeed a frequent cohesive set (bR[m|D[m]] ≥ θ), we try
to add it in the result setMFCS (Lines3 to 5) where theprune
procedure enforces the maximal constraint. If not, we perform the
refinement process described in lines8 − 10. In other words, we
discover the maximal frequent linked sets inD[m]. We recursively
perform peeling for all newly discovered MFLS (Line11).

THEOREM 2. (Correctness of Peeling) ThePeelingalgorithm
(Algorithm 1) can discover all maximal frequent cohesive sets from
graph databaseD with minimum supportθ.

The proof of the theorem is omitted for simplicity. Note that
the peeling process requires us to recursively invoke the pattern
discovery algorithm on smaller sets. It is important to remember
that later invocations of the MFI procedure are typically ontrans-
actions ofmuchsmaller length. This is therefore typically very
fast at lower levels of the recursion. Furthermore, the costto com-
pute bR[m|D[m]] and transform a graph database to a transactional
database requires a simple DFS scan ofD[m] [20], which is a com-
paratively very small overhead to MFI mining. Nevertheless, the
naïve peeling algorithm may redundantly re-examine the same in-
termediate frequent linked sets (MFLS) multiple times. Forex-
ample, when two MFLS overlap along a large number of vertices,
then their individual peeling processes may produce the same in-
termediate MFLS. The recursion could then create a combinational
explosion, the bulk of which is redundant processing. This needs to
be controlled in order to enable more efficient and practicalpattern
discovery. In the following, we will present a number of elegant
methods to avoid duplicate work, and significantly speed up the
peeling algorithm.

4.2 Fast Peeling Algorithm
In order to speed up vertex pattern generation, we use the meth-

ods oflayered peelingandtransaction reduction. We discuss them
below.
Layered Peeling:This technique focuses on reducing the process-
ing of redundant intermediate patterns. The basic idea is that in-
stead of performing the recursive peeling of each individual inter-
mediate pattern, we employ alayered peelingstrategy. For an ini-
tial set of patterns in the first layer, we peel them all together to
produce another set of intermediate patterns in the second layer.

We then perform the same peeling process for the new set of in-
termediate patterns. If the new patterns (frequent linked sets) are
frequent cohesive sets, we remove them from the new layer. More
importantly,each layer is composed of only maximal patterns. This
is based on the following observation:

LEMMA 5. Given two frequent linked setsm andm′, if m ⊆
m′, then the maximal frequent cohesive sets (MFCS) contained by
m, denoted asMFCS(m), must be contained inMFCS(m′).
Furthermore, assuming a patternT is already known to be a FCS,
then in the new layer, if it contains an intermediate patternwhich
is the subset ofT , then, the intermediate pattern can be pruned
without missing any MFCS.

This property ensures that it is sufficient to work only with maxi-
mal linked sets without losing information. This allows each unique
intermediate pattern to be peeled only once when it is necessary for
new maximal frequent cohesive set discovery. In addition, for the
latter statement, ifm is such an intermediate patternm ⊆ T , then
m cannot produce any new MFCS. Using our running example in
Figure 1 with100 sampling graphs andθ = 0.5, we need three lay-
ers to discover all the MFCS. In the first layer which includesall
the initial MFLS inG, we have four:{a, b, c, d, f}, {a, c, d, f, g},
{c, d, e, f, g}, and{a, c, d, f, e}. Then, in the second layer, we
have three MFCS{c, d, e, f}, {a, c, d, f}, and{a, b}, and two in-
termediate patterns (MFLS){d, e, f, g} and{c, d, f, g}. Finally,
in the third layer, from the last two intermediate patterns,we found
one MFCS{e, g} and two new intermediate patterns{c, d, f} and
{d, e, f}. Since we already knew{a, c, d, f} is a MFCS, we can
prune{c, d, f} from the new layer. Similarly, we can prune{d, e, f}
because of{d, e, f, g}. Thus, the third layer becomes empty and
we already have found all the MFLS.
Transaction Reduction: In the method discussed above, we en-
sure that patterns in a given layer do not contain one another. How-
ever, this does not account for the fact that patterns which are pro-
duced in lower layers may be subsets of those produced in earlier
layers. Therefore, in order to further speed up the peeling algo-
rithm, we would like to prevent such non-maximal patterns from
being generated in the first place. The following lemma provides
an important tool for achieving this.

LEMMA 6. Let us assume that the patterns in the current layer
L are visited sequentially. LetP ⊆ L include those patterns which
have already been visited (peeled) at any given time point. LetVij

be the vertex set of a connected componentCij in Gi[m], where
m ∈ L has not been peeled. If there is another pattern (frequent
linked sets)m′ which has been processed (peeled) (m′ ∈ P) and
Vij ⊆ m, then we can safely dropVij in the transactional database
transformed fromD[m] without losing any potential maximal fre-
quent cohesive sets inD.

The same dropping condition can be applied for any discovered
(maximal) frequent cohesive sets inD. If any transaction is a subset
of a (maximal) frequent cohesive set inD, we can also safely drop
it. This is because transactions such asVij cannot contribute to any
new MFCS, and can only help generate patterns which are subsets
of patterns which have already been visited. Thus, droppingsuch
transactions in the first place can help prevent the generation of un-
necessary patterns. In addition, such transaction reduction can also
help reduce the computational cost, because it results in a smaller
database for MFI.
Overall Algorithm: Algorithm 2 depicts the fast peeling process.
Initially, L contains all the maximal frequent linked sets inD (Line

1). Then we iteratively visit each elementm of L in decreasing or-
der of pattern size. This order is chosen in order to maximizethe ef-
ficiency of search space pruning. This is based on Lemma 6. We try
to add those frequent cohesive patterns into the result setMFCS
(line 6 to 10), whereprunemaintains the maximal constraint for
MFCS. For those that are not frequent cohesive sets,transRe-
ducproduces and reduces the transactions which are contained by
patterns inP or MFCS (Line 11) according to Lemma 6. This
reduced databaseT is used to generate the intermediate patterns
mfls′ (Line 13). These are merged intoL′ by thepruneprocedure
to maintain the maximal constraint(Line14). Finally, the new layer
will be processed (Line17) until there are no new patterns to be
generated.

Algorithm 2 FastPeeling(D))

Parameter: D: the graph databaseD = {G1, G2 · · · , GN}; {Step 1:
generating initial patterns}

1: L←MFI(transform[D], θ) {L: existing layer};
2: L′ ← ∅ {L′: new layer};MFCS ← ∅ {the result set};
3: while L 6= ∅ do
4: P ← ∅ {already peeled patterns inL}
5: for eachm ∈ L {decreasing order of the pattern size}do
6: if bR[m|D[m]] ≥ θ {if m is a frequent cohesive set}then
7: if ∄m′ ∈MFCS ∧m′ ⊇ m then
8: MFCS ← prune(MFCS ∪ {m});
9: end if

10: else
11: T ← transReduce(D[m], P ∪MFCS) {Lemma 6}
12: mfls′ ← MFI(T, θ) {maximal frequent itemsets};
13: L′ ← prune(L′ ∪mfls′); {Lemma 5: maximal patterns}
14: end if
15: P ← P ∪ {m};
16: end for
17: L← prune(L′ ∪MFCS) \MFCS {Lemma 5: pruning using

FCS}; L′ ← ∅;
18: end while

The computational complexity of our algorithm is dominatedby
the cost of mining Maximal Frequent Itemsets (MFI). Let the cost
of mining MFI in the transformed transactional database from the
entire graph databaseD beO(MFID) (Line 1). For i-th layerL,
we can break it into the minimal numberci of batches, such that the
patterns are all disjoint with one another in each batch. Thus, we
can see the overall cost of each layer is bounded byO(ciMFID).
If there are a total ofk layers, then the total computational com-
plexity is O((

Pk

i=1
ci)MFID). However, since the transactional

database in each batch is typically much smaller than the first trans-
actional database (Line1), the total cost of mining MFI for all lay-
ers is generally even smaller than the cost of MFI mining onceat
the start (Line1). We note the number of total layers is typically
quite small in practice. For example, in all our experiments, this
number was less than 5. Therefore, the total computational com-
plexity of the peeling approach is proportional to a single execution
of MFID (or O(MFID)). As we will show from the experimen-
tal results in Section 5, the overall computational time of peeling is
no higher than2 times that of mining MFI in the first round.

4.3 DFS Mining for Non-Maximal FCS
While the previous section provides a way to discover maximal

patterns, we also need to discover all non-maximal frequentcohe-
sive sets. A naïve approach would be to directly apply the peeling
algorithm to further discover the remaining sets. To do that, we can
explicitly remove each vertex from the (maximal) frequent cohe-
sive set to produce the intermediate patterns for further peeling. For
instance, for a (maximal) pattern{a, b, c, d}, we can generate new
intermediate patterns{b, c, d}, {a, c, d}, {a, b, d}, and{a, b, c}.

Clearly, this may significantly increase the number of timeswe
need to scan the graphs, and invoke the maximal frequent item-
set mining algorithm. The speedup techniques of Lemma 5 and
6 are also not directly applicable in this case. The key question
is whether we can leverage our knowledge of the maximal frequent
cohesive sets in order to enable discovery of the non-maximal ones.
In the following, we provide a positive answer to this question by
amortizing the discovery across different maximal patterns.

The basic idea of our mining algorithm is that we perform a DFS
traversal onG to enumerate anyconnected vertex setsin V which
are contained by at least one MFCS being covered in the peeling
algorithm. Then, for each of these vertex sets, we perform aneffi-
cient test to determine whether they are frequently cohesive. Since
there is a standard method for enumerating connected vertexsets
along the lines of enumerating cliques [23, 8], the main issue is
how we can efficiently control the enumeration boundary. Clearly,
we may simply test whether each discovered vertex set is contained
by a MFCS, but such a test can be rather costly [37]. Therefore, we
next discuss how to speed up this test.
Fast Subset Checking:Each MFCS is assigned a unique ID, and
each vertex in the uncertain graph is associated with a list that
records the IDs of each MFCS containing it. Furthermore, each
enumerating vertex set maintains a list which is the intersection of
the lists from its individual vertices. In other words, the list records
all the MFCS which contain the vertex set. Importantly, thislist can
be maintained in an incremental fashion. We also note that when
the list for a vertex set is empty, it is implied that no MFCS contains
it.
Fast Connectivity Test: In order to test whether a vertex setVs is
frequently cohesive, the straightforward method would be to di-
rectly check the connectivity of each induced subgraphG1[Vs],
G2[Vs], · · · , GN [Vs]. An observation which enables convenient
speedup is as follows:For a fully connected induced subgraph, if a
new vertex is added and it is adjacent to at least one vertex inthe
subgraph, then the new subgraph is also connected.

This implies that we can use a binary vector to record whether
each induced subgraph of the current vertex set is connected, and
then we can apply it to test whether its immediate expansion by one
vertex is connected. It is only when the induced subgraph is not
fully connected that we need to traverse its immediate expansion in
order to determine its connectivity.
Algorithm Description: Algorithm 3 describes a DFS mining pro-
cedure in order to discover all non-maximal frequent cohesive sets.
First, we note that parametersv, Vs, N andEx are the standard pa-
rameters for enumerating the connected vertex sets in a graph [23,
8]: v is the newly expanded vertex in the current connected ver-
tex setVs in uncertain graphG; N records all the neighbors ofVs,
which can be possibly added intoVs; andEx is the exclusion list
of vertices which should not be added intoVs (a basic mechanism
to avoid the redundant enumeration of the same connected vertex
set in a graph).Ex typically records those vertices visited earlier
in the DFS enumeration order. The parameterID is for the afore-
mentioned boundary test and vectorCon is for the fast connectivity
test.

For each newly expanded vertex setVs (to which vertexv was
newly added), Algorithm 3 first checks whether it is a FCS using
the fast connectivity test(Lines1 to 10). Then, no matter whether
the vertex set is a FCS or not, each of its neighbors except those
in the exclusion list (avoid redundant enumeration) will bevisited
(Line 11). This is a typical way for recursively enumerating the
connected vertex set. Specifically,ID′ is the list recording all the
IDs of those MFCS containingVs∪{w} and it is maintained incre-
mentally (Line12). Once a vertexw is visited, we put it immedi-

Algorithm 3 MiningNonMaximal(v, Vs, ID, Con, N, Ex)

Parameter: v {the newly added edge-vertex inVs}
Parameter: Vs {the current vertex sets}
Parameter: ID {the IDs of maximal cohesive sets containingVs}
Parameter: Con {the binary vector for connectivity}
Parameter: N {the neighbors ofVs}
Parameter: Ex {exclusion list of vertices (already expanded)}
1: for each Gi ∈ D do
2: if Con[i] then
3: Con′[i]← (Neighbor(v|Gi) ∩ Vs) 6= ∅;
4: else
5: Con′[i]← Connected(Gi[Vs]);
6: end if
7: end for
8: if bR[Vs] ≥ θ {using Con′ to compute}then
9: FCS ← FCS ∪ {Vs} {non-maximal frequent cohesive sets}

10: end if
11: for eachw ∈ N\Ex do
12: ID′ ← ID ∩ ID[w]; {MFCS containingVs}
13: Ex← Ex ∪ {w};
14: if |ID′| > 1 ∨ (|ID′| = 1 ∧ Vs ∪ {v} 6= MFCS inID′) then
15: MiningNonMaximal (w, Vs ∪ {v}, ID′, Con′,

Neighbor(w|G) ∪N, Ex);
16: end if
17: end for
Procedure Main
1: Ex← ∅;
2: for each w ∈ V \Ex do
3: Ex← Ex ∪ {w};
4: MiningNonMaximal (w, {w}, ID[w],0,Neighbor(w|G),Ex);
5: end for

ately in the exclusion list so that the latter iteration willnot visit it
again (Line13). For each newly expanded vertex set, when either
its list ID′ is contained by at least two MFCS or is a strict subset of
the only MFCS (|ID′| = 1), we know it has not reached the bound-
ary yet and cannot be considered a candidate for non-maximalFCS
(Lines14 − 15).

Note that the worst case computational complexity of this al-
gorithm is determined by the total number of connected vertex
subsets which are bounded by MFCS. For each connected vertex
set, we need to traverse each of its induced subgraphs in the graph
database. This has linear cost.

5. EXPERIMENTAL EVALUATION
In this section, we present experimental results studying the ac-

curacy and efficiency of our method. Specifically, we are interested
in the following two questions:
1. Accuracy: How well does the sampling approach approximate
the set of highly reliable subgraphsSα? Recall that we utilize two
setsS andS (S ⊇ S) to approximateSα, and these two sets are
designed to measure recall and precision respectively. When the
two sets are similar, they can provide accurate estimation of theSα

according to Theorem 1. In such cases, the precision and recall are
both high. It is easy to see that the fractionβ = |S|

|S|
provides a

good indicator for the accuracy of the sampling approach forex-
perimental evaluation.
2. Efficiency: What is the performance in terms of overall running
time? As we mentioned before, the sampling approach consists of
two steps for (1) sampling datasetD1 and for (2) sampling dataset
D2.

In step (1), we need to discover all frequent cohesive sets (FCS)
from D1. Specifically, step (1) contains two stages: in the first
stage, we apply peeling (naïve or fast) algorithms to discover all
maximal frequent cohesive set (MFCS); and in the second stage,
we utilize a DFS mining process using MFCS to discover all the

Table 1: β(%) vs varying ǫ (δ = 0.01, α = 0.99)
ǫ =0.030 ǫ =0.035 ǫ =0.040 ǫ =0.045 ǫ =0.050

Yeast 55.92 54.26 53.63 53.55 49.54
Fly 57.86 56.90 52.40 52.57 52.62

Mouse 98.65 99.10 99.10 99.10 99.10
Rat 100.00 100.00 100.00 100.00 100.00

DBLP 73.90 70.28 70.01 68.60 65.11

Table 2: β(%) vs varying δ (ǫ = 0.05, α = 0.99)
δ=0.01 δ=0.008 δ=0.006 δ=0.004 δ=0.002

Yeast 46.78 46.72 49.66 49.30 48.76
Fly 50.76 51.46 51.46 52.23 52.91

Mouse 99.10 99.10 99.10 99.10 99.10
Rat 100.00 100.00 100.00 100.00 100.00

DBLP 65.49 66.73 67.42 65.32 66.23

remaining Non-Maximal FCS. Given this, we would like to under-
stand how the computational time is distributed between Steps (1)
and (2), and a quantification of the efficiency advantage of fast peel-
ing over the naïve approach. Step (2) can be implemented much
more efficiently, because it requires us to only check membership
onD2.

All algorithms were implemented using C++ and the Standard
Template Library (STL), and were conducted on a 2.0GHz Dual
Core AMD Opteron CPU with 4.0GB RAM running Linux.

5.1 Experimental Results on Real Datasets
In this subsection, we report our experimental results on five real

datasets: four protein-protein interaction (PPI) uncertain graphs
and one coauthor graph. The PPI datasets are integrated fromBi-
oGRID database and STRING databases, and are provided by the
author in [39]. The coauthorship network is derived from DBLP,
and is extracted from the dataset provided by the author in [30].
The summary of those datasets are listed in Figure 2, where the
last columnavg(pe) indicates the average edge probability in the
uncertain graph.

In the first three groups of experiments, we focus on studying
how the accuracy indicatorβ is affected by the three user-defined
parameters, the reliability thresholdα, the confidence levelδ, and
ǫ which directly relates toβ (Section 3).
Varying ǫ: In this experiment, we fix the reliability thresholdα
and the confidence levelδ with α = 0.99 and δ = 0.01 (99%
confidence), and we vary theǫ from 0.03 to 0.05. Table 1 reports
the variation of the accuracy indicatorβ with ǫ on each dataset.
First, it is evident thatβ is always at least50%, and in3 out of 5
datasets (Mouse, Rat, and DBLP),β is generally much higher than
65%. The lowest values ofβ were obtained for the Yeast and Fly
data sets, but were still above or very close to50%. TakingS as
the example, this simply suggests that at least half of the discovered
subgraphs inS are guaranteed to be highly reliable (≥ α = 0.99),
and the expected fraction of HRS being missed byS is no more
than1%. The best performance was obtained on Mouse and Rat,
for which β was very close to 1. A detailed analysis shows that
most of the subgraphs discovered from these two datasets arevery
small and their number is also small. They also seem to form a

Table 3: β(%) vs varying α (ǫ = 0.05, δ = 0.01)
α=0.99 α=0.97 α=0.95 α=0.93 α=0.90

Yeast 48.64 9.25 5.25 52.94 80.92
Fly 51.27 41.87 30.92 52.77 63.69

Mouse 99.10 92.36 86.42 94.24 96.04
Rat 100.00 100.00 100.00 98.00 97.13

DBLP 65.51 53.82 45.64 68.13 83.84

|V | |E| agv(pe)

Yeast 162 300 0.148
Fly 3751 7384 0.456

Mouse 199 286 0.413
Rat 130 178 0.374

DBLP 1000 2356 0.560

Figure 2: datasets summary

 0

 200

 400

 600

 800

 1000

 1200

 1 1.5 2 2.5 3

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

#Vertex

Fpeel
Npeel

FpeelDFS
NpeelDFS

(a) Time vs.|V |

 0

 100

 200

 300

 400

 500

 600

 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Reliability Threshold

Fpeel
Npeel

FpeelDFS
NpeelDFS

(b) Time vs.α

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Density

Fpeel
Npeel

FpeelDFS
NpeelDFS

(c) Time vs. Density

Figure 3: Running Time vs. Random Block Model Graphs

Table 4: Execution time(seconds) for real datasets (ǫ =
0.05, δ = 0.01, α = 0.99)

NpeelDFS FpeelDFS
Step 1-p Step 1-d Step 2 Step 1-p Step 1-d Step 2

Yeast 30.03 3.05 47.23 0.99 2.88 44.71
Fly 437.08 22.76 209.90 23.28 19.22 180.95

Mouse 28.79 0.05 0.86 0.75 0.05 0.84
Rat 8.67 0.02 0.44 0.39 0.02 0.40

DBLP 368.67 63.60 26.64 26.58 61.77 28.52

few small components. Thus, these small components are highly
reliable and are easily discovered without too many false positives.
Second, it is evident thatβ increases for lower values ofǫ. This is
because reduced values ofǫ lead to higher sample sizes, and also
because smallerǫ would result in more accurate thresholds for the
hypothesis test. In other words,α−ǫ increases andα+ǫ decreases.
Thus,S tends to reduce andS tends to increase asǫ reduces.
Varying δ: In this experiment, we fix the reliability thresholdα and
parameterǫ (α = 0.99 andǫ = 0.05), and we varyδ from 0.01 to
0.002, which correspond to very high levels of confidence. Table 2
reports the accuracy indicatorβ with respect to different values ofδ
on each dataset. First, we can see that the overall accuracy indicator
β is consistent with the first experiment, because it is usually larger
than50%. Second, we observe that asδ decreases (confidence level
1 − δ increases),β also tends to increase. However, the margin of
increase is relatively small. This is because the influence of δ on
sample size is proportional toln(1/δ), whereas the influence ofǫ
on sample size is proportional to1/ǫ2. Therefore,δ has a much
smaller influence on the sample size. This also suggests thatthe
overall recall rate ofS is quite consistent, because of our earlier
observation that the expected false negative rate isδ.
Varying α: In this experiment, we fix the confidence parameterδ
and parameterǫ (δ = 0.01 andǫ = 0.05), and we vary the relia-
bility thresholdα from 0.99 to 0.90. Table 3 reports the accuracy
indicatorβ with respect to the differentα on each dataset. Interest-
ingly, we note that whenα reduces,β first decreases and then in-
creases. This reduction inβ is particularly noticeable for the Yeast
data set, though it is moderate for all other data sets. The reason for
the decreasing-increasing trend seems related to the distribution of
highly reliable subgraphs. Whenα is very high (α = 0.99), both
S andS are quite small and also close. Asα slightly decreases,S
(defined by thresholdα + ǫ) remains relatively stable, butS (with
thresholdα− ǫ) can grow rather quickly. This results in a decrease
in β. However, whenα further decreases, the setS grows faster
thanS. Therefore, the difference between them becomes smaller.
Execution Time: In this experiment, we study the computational
time of Steps1 and2, and compare the performance of naïve peel-
ing and fast peeling. Specifically, we fix the parametersα, δ and
ǫ, and report the peeling time (discovering MFCS in Step1), the
DFS mining time (discovering Non-maximal FCS in Step1), and
the time in Step2. We denote NpeelDFS to be the algorithm uti-

lizing the naïve peeling (Algorithm 1) and FpeelDFS (Algorithm
2) to the algorithm utilizing the fast peeling. We can see that in
most of the cases, the peeling stage requires most of the computa-
tional time in NpeelDFS. The FpeelDFS algorithm is faster than the
naïve peeling approach by more than one order of magnitude. Fur-
thermore, we observe that the overall computational times of Steps
1 and Step2 become comparable in the case of the fast peeling
approach. Since the processing in Step2 is rather straightforward
(checking whether a given subgraph is a FCS on the larger dataset
D2), we do not consider further optimization of this step here.

5.2 Experimental Results on Synthetic Datasets
Here, we focus on studying the running time of our mining ap-

proach on synthetic datasets. Specifically, we utilize the block-
random graph model [24], which can generate both the Erdös-Rényi
random graph and Scale-free random graph, along with a speci-
fied community structure. The edge existence probability isuni-
formly generated between0 and1. We report the overall running
time of NpeelDFS and FpeelDFS, and their respective peelingtime
(Npeel and Fpeel) in Step1. The default parameters areα = 0.99,
δ = 0.01, andǫ = 0.05. Figure 3(a) reports the running time with
respect to the graph size as the the number of vertices changefrom
1000 to 3000 with the average edge density fixed at1.5. Figure 3(b)
reports the running time with respect to the reliability threshold
varying from0.95 to 0.99 on an uncertain graph with 1000 nodes
and edge density fixed to 1.5. Figure 3(c) reports the runningtime
with respect to the edge density varying from1.8 to 3.5 on an un-
certain graph with 1000 nodes. Here, we can see that throughout
these experiments, the overall running time of the fast peeling based
approach FpeelDFS is much faster than that of the naïve peeling
approach NpeelDFS. In addition, in most of the cases, it seems the
peeling time (discovering MFCS) is also a major component ofthe
overall running time.

6. RELATED WORK
The work closest to ours is the most reliable subgraph prob-

lem [16, 17, 25, 18]. Given a set of vertices, this problem tries
to removeK edges from the original graph so that the remaining
subgraph can maximize the probability of these vertices belonging
to one connected component. Thus, the highly reliable subgraph
(HRS) problem can be viewed as a generalization of the most re-
liable subgraph problem, because no initial set of verticesis spec-
ified. Furthermore, HRS also puts more constraints on vertexset
reliability, because it requires all vertices in each subgraph to be
fully connected, whereas the most reliable problem only requires
the targeted set of vertices in the subgraph to be connected.Be-
cause of these differences, the methods developed for most reliable
subgraph mining cannot be generalized to this new problem.

Mining uncertain graphs has recently attracted much attention
in the data mining and database research communities [30, 38, 39,
40]. Specifically, Zouet al. study mining frequent subgraphs [39]
and topk-cliques [40] in a single uncertain graph. Potamiaset

al. study the k-Nearest Neighbor problem in uncertain graphs [30].
Yuanet al. study a new variant of the shortest path problem in an
uncertain graph [38], and Jinet al. study the distance-constraint
reachability problem, a generalization of the classic two-terminal
reliability problem [22].

The frequent cohesive set (FCS) discovery problem studied in
this work is closely related to frequent pattern mining [13]. This
broad subfield has been extensively studied since its inception in
the early nineties. However, the frequent cohesive set (FCS) prob-
lem has not been studied before. Furthermore, we deviate from nat-
ural pattern mining approaches which focus on bottom-up strate-
gies (level-wise or pattern-growth). Here, we introduce a novel
peeling approach which enables top-down pattern discovery.

7. CONCLUSIONS AND SUMMARY
In this paper, we present a method for mining reliable subgraph

patterns in uncertain graphs. Such problems are extremely chal-
lenging in the uncertain scenario and tend to be#P -complete.
We present a probabilistic method for mining such reliable graphs
which retains efficiency and also provides probabilistic bounds for
accuracy. A novel peeling approach reduces the computational
complexity by carefully pruning of large portions of the massive
search space during the pattern discovery and exploration process.
We present experimental results illustrating the effectiveness and
efficiency of the method.

8. REFERENCES
[1] E. Adar and C. Re. Managing uncertainty in social networks. IEEE

Data Eng. Bull., 30(2):15–22, 2007.
[2] C. C. Aggarwal, editor.Managing and Mining Uncertain Data.

Advances in Database Systems. Springer, 2009.
[3] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting

protein complex membership using probabilistic network reliability.
Genome Res, 14(6):1170–1175, June 2004.

[4] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant. Gaining
confidence in high-throughput protein interaction networks.Nature
Biotechnology, 22(1):78–85, December 2003.

[5] M. O. Ball. Computational complexity of network reliability
analysis: An overview.IEEE Transactions on Reliability,
35:230–239, 1986.

[6] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate:
A practical and powerful approach to multiple testing.Journal of the
Royal Statistical Society. Series B (Methodological), 57(1):289–300,
1995.

[7] Y. Benjamini and D. Yekutieli. The Control of the False Discovery
Rate in Multiple Testing under Dependency.The Annals of Statistics,
29(4):1165–1188, 2001.

[8] C. Chen, X. Yan, F. Zhu, and J. Han. gapprox: Mining frequent
approximate patterns from a massive network. InICDM, pages
445–450, 2007.

[9] H. Chernoff. A measure of asymptotic efficiency for testsof a
hypothesis based on the sum of observations.The Annals of
Mathematical Statistics, 23(4):493–507, 1952.

[10] C. J. Colbourn.The Combinatorics of Network Reliability. Oxford
University Press, Inc., 1987.

[11] J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a Routing Problem
Within Probabilistic Graphs and its Application to Intermittently
Connected Networks. InINFOCOM’07, pages 1721–1729, 2007.

[12] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of
trust and distrust. InWWW’04, pages 403–412, 2004.

[13] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining:
Current Status and Future Directions.Data Mining and Knowledge
Discovery, 14(1), 2007.

[14] J. Han, M. Kamber, and J. Pei.Data Mining: Concepts and
Techniques, Second Edition (The Morgan Kaufmann Series in Data
Management Systems). Morgan Kaufmann, 2nd edition, 2006.

[15] S. Hanhijärvi, K. Puolamäki, and G. C. Garriga. Multiple hypothesis
testing in pattern discovery, 2009. arXiv:0906.5263v1 [stat.ML].

[16] P. Hintsanen. The most reliable subgraph problem. InPKDD, pages
471–478, 2007.

[17] P. Hintsanen and H. Toivonen. Finding reliable subgraphs from large
probabilistic graphs.Data Min. Knowl. Discov., 17(1):3–23, 2008.

[18] P. Hintsanen, H. Toivonen, and P. Sevon. Fast discoveryof reliable
subnetworks. InASONAM, pages 104–111, 2010.

[19] W. Hoeffding. Probability inequalities for sums of bounded random
variables.Journal of the American Statistical Association,
58(301):13–30, 1963.

[20] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for
graph manipulation.Commun. ACM, 16:372–378, June 1973.

[21] R. Jiang, Z. Tu, T. Chen, and F. Sun. Network motif identification in
stochastic networks.PNAS, 103(25):9404–9409, June 2006.

[22] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint
reachability computation in uncertain graphs. InProceedings of the
VLDB Endowment, volume 4, 2011.

[23] R. Jin, S. McCallen, and E. Almaas. Trend motif: A graph mining
approach for analysis of dynamic complex networks. InICDM, pages
541–546, 2007.

[24] B. Karrer and M. E. J. Newman. Stochastic blockmodels and
community structure in networks.Phys. Rev. E, 83(1):016107, Jan
2011.

[25] M. Kasari, H. Toivonen, and P. Hintsanen. Fast discovery of reliable
k-terminal subgraphs. InPAKDD (2), pages 168–177, 2010.

[26] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing thespread of
influence through a social network. InKDD, pages 137–146, 2003.

[27] A. Kirsch, M. Mitzenmacher, A. Pietracaprina, G. Pucci, E. Upfal,
and F. Vandin. An efficient rigorous approach for identifying
statistically significant frequent itemsets. InPODS’09, pages
117–126, 2009.

[28] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms
for dense subgraph discovery. In Charu C. Aggarwal and Haixun
Wang, editors,Managing and Mining Graph Data, pages 303–336.
Springer US, 2010.

[29] V. Manfredi, R. Hancock, and J. Kurose. Robust routing in dynamic
manets. InAnnual Conference of the International Technology
Alliance (ACITA), 2008.

[30] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-nearest
neighbors in uncertain graphs.PVLDB, 3(1):997–1008, 2010.

[31] G. Rubino. Network reliability evaluation. InNetwork performance
modeling and simulation, pages 275–302. 1999.

[32] M. Stoer and F. Wagner. A simple min-cut algorithm.J. ACM,
44:585–591, July 1997.

[33] G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and B. Y.Zhao.
Do social networks improve e-commerce?: a study on social
marketplaces. InWOSP ’08: Proceedings of the first workshop on
Online social networks, pages 1–6, 2008.

[34] L. G. Valiant. The complexity of enumeration and reliability
problems.SIAM Journal on Computing, 8(3):410–421, 1979.

[35] D. R. White and F. Harary. The cohesiveness of blocks in social
networks: Node connectivity and conditional density.Sociological
Methodology, 31:305–359, 2001.

[36] X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with
connectivity constraints. InKDD ’05, 2005.

[37] D. M. Yellin. An algorithm for dynamic subset and intersection
testing.Theoretical Computer Science, 129(2):397–406, 1994.

[38] Y. Yuan, L. Chen, and G. Wang. Efficiently answering probability
threshold-based shortest path queries over uncertain graphs. In
DASFAA, pages 155–170, 2010.

[39] Z. Zou, H. Gao, and J. Li. Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics.In KDD,
pages 633–642, 2010.

[40] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximalcliques
in an uncertain graph. InICDE, pages 649–652, 2010.

[41] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent subgraph
patterns from uncertain graph data.IEEE Trans. on Knowl. and Data
Eng., 22(9), 2010.

