Discovering Highly Reliable Subgraphs in
Uncertain Graphs -

Ruoming Jin Lin Liu Charu C. Aggarwal
Kent State University Kent State University IBM T. J. Watson Research Ctr
Kent, OH, USA Kent, OH, USA Hawthorne, NY, USA

jin@cs.kent.edu

ABSTRACT

In this paper, we investigate théghly reliable subgraptproblem,
which arises in the context of uncertain graphs. This probd-
tempts to identify all induced subgraphs for which the piolig
of connectivity being maintained under uncertainty is leigthan
a given threshold. This problem arises in a wide range of agtw
applications, such as protein-complex discovery, netwotking,
and social network analysis. Since exact discovery may bgoe
tationally intractable, we introduce a novel sampling schevhich
enables approximate discovery of highly reliable subgsapith
high probability. Furthermore, we transform the core mintask
into a newfrequent cohesive set probldmdeterministic graphs.
Such transformation enables the development of an effitieot
stage approach which combines nopekling techniquefor max-
imal set discovery with depth-first search for further encatien.
We demonstrate the effectiveness and efficiency of the grxbo
algorithms on real and synthetic data sets.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-Bata Min-
ing

General Terms
Algorithms, Theory

Keywords

Uncertain graph, Reliable subgraph, Frequent cohesive set

1. INTRODUCTION

Networks have evolved into a unified conceptual abstractideh

both natural and man-made complex systems such as the web, so

cial networks, and cellular systems. Such networks oftes fira-
herent uncertainty. In a telecommunication or electricztinork,
a link can be unreliable and may fail with certain probabpi|it1,
31]. In a protein interaction network, the pairwise inteiac is

*R.Jin and L. Liu were partially supported by the Nationale®cie
Foundation, under CAREER grant 11S-0953950.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

KDD’11, August 21-24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

lliu@cs.kent.edu

charu@us.ibm.com

derived from (approximate) statistical models [4, 3, 21;al so-
cial network, trust and influence issues may impact theihkeld

of social interactions [12, 26, 1]. Thencertain graph modek a
convenient framework to address such scenarios [30, 384@1,
39] in a unified way. In this model, each edge is associated wit
an edge existence probability quantify the likelihood that this
edge exists in the graph. An uncertain graph is also reféoed a
probabilistic graph [2, 17].

It is evident that the connectivity of the network is a comple
probabilistic function of the network topology and edge emainty.
Such problems are notoriously difficult [34, 5] because efdhm-
binatorially large number of possible instantiations ofusutertain
graph. For example, even the simple problem of pairwiseexert
reachability, which can be easily computed in linear timeléter-
ministic graphs, becomes#AP-complete problem in the uncertain
scenario [5]. Thenetwork reliability problem [10] is a general-
ization of pairwise reachability, in which the goal is to ei@hine
the probability thall pairs of nodesare reachable from one an-
other. In other words, network reliability measures thebatality
that the entire graph remains connected under uncertaihtyba-
sic reachability problem is also referred tota®-terminal network
reliability and the latter problem is referred to alé-terminal net-
work reliability, which is alsc#P-complete [5]. As we will see,
the reliable subgraph problem addressed in this paper isvam e
further generalization of these problems, as it relatesutigsaph
discoverysatisfying the reliability property. Network reliabiliig-
gorithms have numerous applications in communication agtsv
[11, 31], biological networks [3], and social networks [35)].

This paper uses a pattern mining approach towards reliatble s
graph discovery, which is independent of specific sets dices.
We address the problem of determining laigjhly reliable sets of
verticesfor which the induced subgraphs have network reliability
above a user-specified threshold. The problem of discoyeaaih
highly reliable subgraphs can be found in a wide range of agtw
applications. In a protein-protein interaction networte thighly
reliable subgraphs can be used for identifying the core ofgin
complexes [3]. In a telecommunication network, the higlelyable
subgraphs can serve as the basic constructs to help corsmatcz
and a destination [29]. In social networks with edge unaetya
highly reliable subgraphs can help discover cohesive gd8p].
The highly reliable subgraph problem on uncertain netwoedshe
considered analogous to dense component mining in thendieter
istic scenario [28]. However, the combination of networgdtmgy
and edge probabilities make this problem much more chaleng
because a structurally dense component with low probgpleitiges
may not be reliable, and vice versa. In general, the subfbetsf
of different levels of uncertainty in different structugadrtions of
the network need to be addressed by any algorithm for relisinb-

L— b a——»>b

a
iV/ RN | 0.4 [

c—2—d-2-e c¢c——d
Nl & @

g
(b) G with 0.00254016

(a) Uncertain Graply
Figure 1: Running Example

(¢

graph mining. In order to address these goals, we make ttosvfol
ing contributions in this paper:

1. We introduce and formally define the problem of discoverilig a
highly reliable subgraphs in uncertain graphs (Section 2).

words, we have:

R[G] = Z I(G) - Pr[G], whereI(G) is an indicator function,
GCg

if G is connected
otherwise

The definition can be easily generalized to the induced sydtgr
G[V,] for a subset of vertice®, C V:

R[G[V:]] = Z I(G[Vi]) - Pr[G], whereG[V:] is the induced
GCo

2. We propose a sampling scheme, which enables approximatesubgraph ofV;. For simplicity, we also refer t®[G[V:]] as the

discovery of highly reliable subgraphs with guaranteephilis-
tic accuracy. We transform the uncertain graph mining pobl
into a newfrequent cohesive set discovenpblem in deterministic
graphs (Section 3).

3. We present a two-stage approach to discover all frequerg-coh
sive sets. The algorithm combines an efficient top-dgerling
approach in the first stage (to discover mlhximalfrequent cohe-
sive sets) with a fast depth-first-search (DFS) mining pilace to
discover the remaining non-maximal frequent cohesive (&s-
tion 4).

4. We demonstrate the effectiveness and efficiency of the gexpo
algorithms on real and synthetic data sets (Section 5).

2. PROBLEM FORMULATION

We denote anncertain directed graphy G = (V, E, P), where
V is a set of vertices is a set of edges, anl : E — (0,1] is a
function that determines the probability of existence afedin the
graph. Itis assumed that the uncertainty variables ofdiffeedges
are independent of one another, though our approach aldespp
in principle to theconditional probability mode[30], as long as
a computational method for generating appropriate sangilése
uncertain graph is available.

A possible graphG = (Vg, E¢) of an uncertain grapl§ is
a deterministic graph which is a possitdatcomeof the random
variables representing the edges of the probabilisticlgapWe
denote the possible graph by C G. The graphG contains a sub-
set of edges ofj. In other words, we hav&s C G. The total
number of such possible graphs2i€’!, because for each edge, we
have two cases as to whether or not that edge is present irdple.g
The probability of sampling the graphi from the random variables
representing the uncertain graghis given by the following sam-
pling or realization probabilityPr [G]:

Pr(G]= [] pte) TI (1-n(e).
ecEg e€E\Eg
We present an example of an uncertain grgphnd its possible

realizationG; in Figure 1. The uncertain grapf has2'° pos-
sible outcomes, and the sampling probability(ef is defined as
follows:

Pl‘[Gﬂ = p(a, b)p(b, e)p(c, d)p(c, f)p(d, f)(l - P((L C)) X
(1 =p(a,d)(1 —p(d, e))(1 — p(e, 9))(1 — p(f, 9)) = 0.00254016

The network reliability [10] measures the likelihood thaet
entire graph is connected and can be formally defined asifsilo

DEFINITION 1. (Network Reliability) Given an uncertain graph
G = (V, E, P), its network reliabilityR[G] is defined as the prob-
ability that its sampled realizations remain connected. other

subgraph reliability with respect tdvs.
Next, we introduce the problem of discovering all highlyiable
subgraphs in an uncertain graph:

DEFINITION 2. (Highly Reliable Subgraph (HRS) Problem)
Given an uncertain graply = (V, E, P) and a reliability thresh-
old a € [0,1], determine all induced subgraphs whose network
reliability is at leasta.

In other words, we hav®[G[Vs]] > «. The resulting set is
denoted byS.. We make the important observation that tfoevn-
ward closure propertgloesnot hold for reliable subgraphs:

LEMMA 1. Given an uncertain grapg and two subsetg; and
VI whereV, D VY, we cannot claim eitheR[G[V;]] > R[G[VY]]
or RIG[Vi]] < R[G[V]].

For instance, in the uncertain gragh depicted in Figure 1,
R[G[{c,d, f}]] = 0.902 > R[G[{d, f}]] = 0.9 and we have
R[G[{b,e,g}]] = 0.2 < R[G[{e, g}]] = 0.5. The lack of down-
ward closure creates a challenge from an algorithmic petisge

In addition, we can use a simple property of the uncertaiplgra
in order to preprocess it and drop some of the edges in orderto
duce computational complexity. This property is as follo@sven
an uncertain graptg = (V, E, P) and a reliability thresholdv,
for an induced subgraply[V;] of G, if there is an edge cuf’ C
E(G[V4]) in G[Vs] (removing all edges i makesG|[V;] discon-
nected), such thai(C) = ... p(e) < o, thenR[G[V;]] < a.
Given this, we can further observe the following:

LEMMA 2. (Edge-CutLemma) Given an uncertain grap§ =
(V, E, P) and a reliability thresholdw, for any edge cut' in G,
C C FE which breaks the uncertain graph into two padsVs]
andG[Vz] Vi UVa = VandC C Vi x W,), then ifp(C) =
> .cc P(e), then, for any high reliable subgraph (HRG)V;], ei-
ther we havd’; C Vi or Vi C V5. In other words, there is no HRS
GlVslwithVsn'Vi # @and Vs NVa # 0.

The implication of this lemma is that if for any cdat in uncer-
tain graphg with p(C') < «, then, we can safely drop all the edges
in C without missing any HRS. Clearly, this reduces the number of
candidate sets. However, finding all such cuts with value @étm
« is computationally prohibitive. In this work, we apply a fila
linear min-cut algorithm [32] starting from each vertex hetun-
certain graph in order to drop edges. This algorithm stadmf
an arbitrary vertex (a single vertex set) in a graph, and iteza-
tively selects a vertex most tightly connected to the cursen of
vertices and add it into the set until we find a €utvith p(C') less
thana. At this point, we drop all the edges in the cut. We utilize
this procedure to preprocess the uncertain g@bly repeating the
procedure for all vertices.

We note that all singleton vertex sets are always highlyabdd,
and a pair of vertices is a highly reliable set if and only éyrare
connected by an edge with probability at leasiTherefore, we will
focus on the interesting case of finding all highly reliabltex
sets inS, with set size no less thah Finally, since each induced
subgraph is uniquely determined by its vertex set, we repoalst

vertex sets inS,, and interchangeably use the terms “vertex sets”

and “induced subgraphs” in this paper.

3. SAMPLING APPROXIMATION SCHEME

Since the network reliability problem is #P-complete, tleaer-
alized problem studied in this paper is at least as intréetabhe
methods available for exact determination of subgraplabéity
are designed for cases where graphs are very small (tenstiiage
at most) [31]. We note that the problem of subgraph religbili
estimation and subgraph pattern discovery have diffeesrl$ of
difficulty in terms of solvability. The former problem can cburse
be partially addressed by allowing approximate estimatiwough
Monte-Carlo sampling; however we will see that it contintebe
a challenge to avoid uncontrolled false positives or nggatin the
pattern discovery version of the problem. The sampling eggin
for subgraph reliability estimation is as follows:

(1) We first sampleV possible graphszi, G2, -- ,Gnx 0of G ac-
cording to edge probability functio®; and (2) for any subset of
verticesV, we compute the indicator functidfG;[Vs]) (whether
the induced subgrapty;[V] itself is a connected component) for
each sample grapy;. Given this, the sampling estimatcfi(g[vs]])
of the subgraph reliability is as follows

PORE (VA
N

The sampling estimatdR [G[V]] is anunbiasedestimator of the
subgraph reliability, i.e.E(R[G[V:]]) = R[G[V:]]. More impor-
tantly, by applying the Chernoff-Hoeffding Bound [9, 19]ewan
determine whether an induced subgraph is highly reliabile high
probability:

R[G[V:)] ~ RG[V:]] =

for any subset of
Vil]| > €) <.

LEMMA 3. With sample sizeV > % In 2,
verticesVs, Pr(|R[G[V:]] — R[G[

We would naturally like to use this approach for determinting
highly reliable setS.. However, from a set mining perspective, it
is hard to probabilistically control the number of false pgss or
negatives. This is because the use of sampling to deteriménet
liability of an induced subgraph is a multiple hypothesisttand
it is inherently difficult to provide guarantees in such g 7].
Some recent results have shown how to effectively use nhelltip
hypothesis tests for the special case of the frequent paiién-
ing problem [15, 27], but these methods cannot be used tadeov
guarantees for our problem.

To deal with this challenge, we utilize two sets to approxgna
S.: (a) the first setS which tries to maximize the recall of discov-
ering highly reliable subgraphs; (b) the second $ewhich tries
to maximize the precision of discoveryThese two sets provide
flexible and complementary choices for different applicas. In
cases where we do not wish to miss any highly reliable sulbgrap
(false negatives), the first set can be used, and then fatstvps
can be filtered out. If the application is designed for digcog
some of the very highly reliable subgraphs, the second sabie
helpful. When the two sets are similar, it is evident thasipbs-
sible to achieve both high precision and recall. We will dasin
approach which achieves this goal.

Sampling-based Approach for Highly Reliable Set Discovery
Our sampling-based approach utilizes additional parametend

o for controlling the discovery results. The approach cdssis
two steps:

Step 1: SampleN; = 3 In 2 possible graphs of, denoted as
datasetDl, discovering all induced subgraplég V] with reliabil-
ity R[g[V]] > a — e using N, sampled graphs:

S = {GIV.]IR[GIV:]] > & — €}
Step 2: SampleN; = 52 In 2‘3‘ possible graphs ofj, denoted as
datasetD-, discovering all mduced subgraplg V] with reliabil-

ity ﬁ[g[vs]] > a + e using N> sampled graphs and[V;] € S:
S = {G[V:][R[G[V:]) > a+ €} NS

We make the following observations about this approach.

THEOREM 1. (Precision and Recal) The setsS and S pro-
duced by the sampling procedure have the following propgrti

1. The expected fraction of missed highly reliable subgsaph
at mosts. In other words, we havé(‘Sa\s‘) <6

2. With probability at leastt — ¢, all induced subgraph irt
are highly reliable subgraphsPr(vYG[Vs] € S, R[G[V]] >
a)>1—-dandPr(|SNSal/|S|=1) > 1-4;

3. With probability at least — 6, the precision ofS is no less
than 3 = ‘ (_ S C8): Pr(|SanS|/[S] > B) >1-06.
Wheng is close to 1, the two sets become similar and the
precision increases;

4. The expected fraction of mlssed highly reliable subgsaph
S is no higher thans + 1 — 3 + d3/[S| =~ 6 + 1 — 3
B(13e2l) <54+ 1-B8+08/[S| ~ 5+ 1— 3. Wheng is
close to 1, the expected false negative rate is small.

We omit the detailed proofs since these are direct apptinatof
the Chernoff-Hoeffding bounds. It is evident from Theorerthat
o is directly responsible for controlling the precision amdall of
the reliable subgraph discovery algorithm. The parametezeds
further explanation. Though it does not directly appeahareci-
sion and recall formulas, it helps to control the differebetween
S and S. In other words, whenr decreases3 tends to increase.
However, since the required sample si2ésand N, are inversely
related to the square @f it may be important to balance between
computational cost and approximation quality. We will exaen
these tradeoffs in detail in the experimental section.

An important observation is that the precision and recallcam-
trolled in this approach by different probabilistic cri@r Specifi-
cally, in order to control recall, the expected false negatate is
applied instead of the standard Bonferroni correction faitiple
comparison [15]. This is because of the difficulty in deterimg
the size of the result s&,. To deal with this problem, we simply
employ the expected false negative rate in the first step.e Qe
have a candidate s&, we are able to utilize a more strict Bon-
ferroni correction approach [15] in the second step for caling
precision. It is important to remember that the approachl the
corresponding theoretical results) can be applied to arentaio
graph in which edge probabilities are not independent, ag &s
appropriate samples of the graph can be generated. Foruhis p
pose, an independent set of possible graphs can be gentmated
the uncertain graph by a Gibbs sampler or a Markov Chain Monte
Carlo technique [30].

Discovering Frequent Cohesive SetsThe aforementioned sam-
pling approximation scheme results in a new graph miningpro
lem, which we call thé&=requent Cohesive SEtCS) problem:

DEFINITION 3. (Frequent Cohesive Set ProblemGiven a graph
G and a subset of verticeg, C V[G], if its induced subgraph
G|[Vs] forms one connected component, théris referred to as a
cohesive sein G. Given a set of graph® = {G1,G2, -+ ,Gn}
with verticesV(G1) = V(Gz) = --- = V(Gny) = V and a
minimal support threshold, a frequent cohesive set (FSC) is any
subset of vertice¥; C V that is a cohesive set in at leaét N
graphs.

In order to be consistent with the problem of highly reliatld-
graph discovery, we denote the frequencyofbeing cohesive as
ft[Vs]. In addition, themaximal frequent cohesive set (MFCS)
problem identifies all frequent cohesive setdinfor which none
of their supersets are cohesive. In the aforementioned |sagap-
proach, the first step is the key, and it is needed to solve thREM
problem. Specifically, the datasBt consists ofN; graphs (Step
1 in the sampling approach), and the generation of the apmrabei
setS corresponds to the discovery of all frequent cohesive sets i
D; with minimum suppor = a — ¢. Once we have determined
'S, we only need to determine whether each of the vertex sefis-is
quently cohesive in the new sampling dataBet (Step2). Since
connectivity can be checked for each induced subgraph eatin
time [20], this can be done rather quickly. Due to the simifyliof
the second step, we omit further discussion and focus on rte fi
step of discovering all frequent cohesive sets in a grapabdete.

Interestingly, to the best of our knowledge, this problera hat
been studied before. The closest is Y&ral's work [36] on min-
ing closed frequent subgraphs with connectivity constsairmhe
main difference is that in our problem, there is no isomasphte-
quirement on the induced subgraphs, a fact which can bedgedr
towards more efficient algorithm design. In the next sectioa
will introduce an efficient method for mining all the FCS inaade
graph database. Finally, we note that it is possible to gdizerthe
cohesive set with additional connectivity constraintsaimanner
similar to [36]. For instance, each induced subgraph mayntyt
be connected, bui-connected as well. Our algorithm can be gen-
eralized to handle such constraints as well. However, $iigyond
the scope of the present work.

4. MINING FREQUENT COHESIVE SETS

The frequent cohesive set problem is similar to the highly re
liable subgraph problem, in that it also lacks the downwddd ¢
sure property (Lemma 1). This creates an algorithmic chghe
for the pattern mining process. In order to address thislehgé,
we develop a novel two-stage mining algorithm. In the firagst
a novel top-dowrpeelingprocess is employed to iteratively refine
patterns to make them converge into maximal frequent cebesi
sets (MFCS) (Subsections 4.1 and 4.2). In the second stage, w
perform a DFS mining process which utilizes the MFCS as the
boundary to prune the search space for discovering all the no
maximal frequent cohesive sets (Subsection 4.3). We will de-
scribe these different stages.

4.1 Peeling Algorithm for MFCS

In this subsection, we describe a novel and efficient algarit
for mining the maximal frequent cohesive sets (MFCS). Werref
to our approach as theeelingalgorithm, because we work from
supersets to subsetkiring pattern discovery, as patterns are be-
ing iteratively refined (or peeled). Clearly, a successkélpg ap-
proach requires two main propertieG@) We need to dicover the
initial patterns containing all the MFC$#1) We need an effective
peeling approach in order to converge to the correct MFC$én
following, we address these two key issues and provide Idedéi
the peeling algorithm.

Relaxation Approach: In order to discover the initial patterns
which contain all the maximal frequent cohesive sets (MFG®)
relax thecohesivecondition on a vertex set by allowing connectiv-
ity through vertices outside the set. This relaxed problésa turns
out to be easier to solve because it satisfies the downwasdrelo
property. Specifically, we introduce thmaximal frequent linked
sets(MFLS) problem, which allows connectivity of a vertex set no
just through the induced subgraph itself, but other vesteewell.

DEFINITION 4. (Maximal Frequent Linked Set Problem) A
subset of vertice¥; C V[G] in graph G is said to be dinked
setif it belongs to a connected componentGh Given a graph
databaseD = {G1,G2, -+ ,Gn} with V(G1) V(G2) =
-+ = V(Gn) = V and a minimum support threshol a sub-
set of verticed/; C V is referred to as drequent linked set, if it
is a linked set in at leagt - N graphs.

The frequency of/; being linked inD is denoted af{L[VS].
Themaximal frequent linked set problem tries to identify all the
frequent linked sets iD, such that any superset of these sets is
not frequently linked. A frequent linked set relaxes the esite
constraint by not requiring the set to be connected onlyutincthe
vertices (and edges) of the induced subgraph. It is easyetthse
any frequent cohesive set must be a frequent linked setgthtine
reverse is not necessarily true. Consequeriftly; is a maximal
frequent cohesive set (MFCS), then there must be a maximal fr
quent linked set (MFLS)/, such that’, D V5. Thus, the set of all
MFLS can naturally serve as the initial pattern set whicimf®ian
“upper bound” on all MFCS. Furthermore, unlike the FCS peoi)
the relaxed MFLS problem has tli®wn-closure propertywhich
allows efficient discovery.

Discovering all MFLS is surprisingly simple, because we can
reduce it to the classical maximal frequent itemset probj&d),
for which many efficient algorithms are available. Speclficahe
transformatiorprocedure which converts the graph datab@seto
a transactional databa%eis as follows:

For each graphG; € D, find all its connected components, i.e.,
Gi = Ci1 UCi2 U---UCCiy. Output the vertex set of each
connected component as an independent transaction,Ti.e=

T U {V[Cd], V[Cm], cee V[Clk]} (T =0 Inltla”y)

LEMMA 4. The set of all maximal frequent itemsets (MFIYIn
with minimum suppor® is equivalent to maximal frequent linked
sets (MFLS) inD with the same minimum support level.

Note that the transformation process can be achieved véekigu
[20], since it has linear computational complexity withpest to
the size of the graph database. Thus, the question is how mve ca
refine these MFLS to produce the final set of all maximal freque
cohesive itemsets (MFCS). Next, we discuss how this irsgatan
be peeled.
Naive Peeling: The basic idea of peeling is as follows. For each
initially discovered maximal frequent linked set (MFL8)in D,
we keep refining it in order to convert it to a (maximal) freque
cohesive set (FCS). Specificallyyif is not a frequent cohesive set,
we first effectively peel the graph database so that it costanly
vertices inm. In other words, to refinen, we only work on the
partial graph databas®[m| = {Gi[m],G2[m], -+ ,Gn[m]},
which contains only the induced subgraphreffor each graph in
D. Note that once we peel the graphs so that they contain only
vertex setn, they may become disconnected (since they are likely
to be linked through other vertices in the graph). Then, we ca
discover all the maximal frequent linked sets (MFLS) on the-p
tial graph databas®[m] using the earlier method. Thus, we can

recursively perform this process until all maximal frequénked
sets (MFLS) converge into the frequent cohesive sets.

Algorithm 1 Peeling(D, m fls, MFCS)

Parameter: D: the graph database = {G1,G2 -+ ,Gn};
Parameter: m fls: the intermediate maximal frequent linked sets;
Parameter: M F'C'S: the final maximal frequent cohesive sets;
1: for each m € mfls do
if R[m|D[m]] > 6 {if m is afrequent cohesive seifien
if #m’ € MFCS Am’ O mthen
MFCS «— prune(MFCS U {m}); {maximal patterns}
end if
else
T — transform(D[m]) {transform graph database to transac-
tional database};
mfls' — MFI(T,0) {maximal frequent itemsets};
Peelingd D, mfls', MFCS);
10: endif
11: end for

Algorithm 1 sketches the peeling process. The input is thiain
MFLS discovered using the aforementioned MFI mining apghoa
Then, we invoke th@eelingalgorithm. In the loop (Lines to 13),
we iteratively visit each maximal frequent linked setin m fls.
If m is indeed a frequent cohesive s&[¢n|D[m]] > 6), we try
to add it in the result set/ F'C'S (Lines 3 to 5) where theprune
procedure enforces the maximal constraint. If not, we perfthe
refinement process described in lires- 10. In other words, we
discover the maximal frequent linked sets/ifm]. We recursively
perform peeling for all newly discovered MFLS (Lirié).

THEOREM 2. (Correctness of Peeliny ThePeelingalgorithm
(Algorithm 1) can discover all maximal frequent cohesivs f®m
graph databaseD with minimum supporg.

The proof of the theorem is omitted for simplicity. Note that
the peeling process requires us to recursively invoke thtempa
discovery algorithm on smaller sets. It is important to rember
that later invocations of the MFI procedure are typicallytoans-
actions ofmuchsmaller length. This is therefore typically very
fast at lower levels of the recursion. Furthermore, the tmsbm-
puteR[m|D[m]] and transform a graph database to a transactional
database requires a simple DFS scagf:] [20], which is a com-
paratively very small overhead to MFI mining. Neverthe|ebe
naive peeling algorithm may redundantly re-examine theesiam
termediate frequent linked sets (MFLS) multiple times. Egf
ample, when two MFLS overlap along a large number of vertices
then their individual peeling processes may produce theesam
termediate MFLS. The recursion could then create a conmibimalt
explosion, the bulk of which is redundant processing. Thisds to
be controlled in order to enable more efficient and practiedlern
discovery. In the following, we will present a number of elag
methods to avoid duplicate work, and significantly speedhe t
peeling algorithm.

4.2 Fast Peeling Algorithm

In order to speed up vertex pattern generation, we use thie-met
ods oflayered peelingandtransaction reductionWe discuss them
below.

Layered Peeling: This technigue focuses on reducing the process-
ing of redundant intermediate patterns. The basic ideaasith
stead of performing the recursive peeling of each individioger-
mediate pattern, we employlayered peelingtrategy. For an ini-
tial set of patterns in the first layer, we peel them all togetto
produce another set of intermediate patterns in the secyet.|

We then perform the same peeling process for the new set of in-
termediate patterns. If the new patterns (frequent linletd)sare
frequent cohesive sets, we remove them from the new layere Mo
importantly,each layer is composed of only maximal patteifisis

is based on the following observation:

LEMMA 5. Given two frequent linked sets andm/’, if m C
m/, then the maximal frequent cohesive sets (MFCS) contaiped b
m, denoted as\/ FC'S(m), must be contained id/ FC'S(m’).
Furthermore, assuming a patteffiis already known to be a FCS,
then in the new layer, if it contains an intermediate pattetmnich
is the subset of’, then, the intermediate pattern can be pruned
without missing any MFCS.

This property ensures that it is sufficient to work only withax
mal linked sets without losing information. This allows bamique
intermediate pattern to be peeled only once when it is nacg$sr
new maximal frequent cohesive set discovery. In additionttie
latter statement, ifn is such an intermediate pattemn C T, then
m cannot produce any new MFCS. Using our running example in
Figure 1 with100 sampling graphs antl= 0.5, we need three lay-
ers to discover all the MFCS. In the first layer which includéls
the initial MFLS inG, we have four{a, b, c,d, f}, {a,c,d, f, g},
{c,d,e, f,g}, and{a,c,d, f,e}. Then, in the second layer, we
have three MFCSc, d, ¢, f}, {a, ¢, d, f}, and{a, b}, and two in-
termediate patterns (MFLS), e, f, g} and{c, d, f,¢}. Finally,
in the third layer, from the last two intermediate pattems,found
one MFCS{e, g} and two new intermediate patterfis d, f} and
{d,e, f}. Since we already kneWa, c,d, f} is a MFCS, we can
prune{c, d, f} from the new layer. Similarly, we can prufé, e, 1}
because ofd, e, f, g}. Thus, the third layer becomes empty and
we already have found all the MFLS.

Transaction Reduction: In the method discussed above, we en-
sure that patterns in a given layer do not contain one andttaw-
ever, this does not account for the fact that patterns whietpeo-
duced in lower layers may be subsets of those produced ireearl
layers. Therefore, in order to further speed up the peeligg-a
rithm, we would like to prevent such non-maximal patterrerir
being generated in the first place. The following lemma miesi
an important tool for achieving this.

LEMMA 6. Let us assume that the patterns in the current layer
L are visited sequentially. Ld? C L include those patterns which
have already been visited (peeled) at any given time pogttlL;
be the vertex set of a connected compor@ntin G;[m], where
m € L has not been peeled. If there is another pattern (frequent
linked setsyn’ which has been processed (peeled) (€ P) and
Vi; € m, then we can safely drdg;; in the transactional database
transformed fromD[m] without losing any potential maximal fre-
guent cohesive sets iD.

The same dropping condition can be applied for any discovere
(maximal) frequent cohesive setsiin If any transaction is a subset
of a (maximal) frequent cohesive setiin we can also safely drop
it. This is because transactions suctgscannot contribute to any
new MFCS, and can only help generate patterns which are tsubse
of patterns which have already been visited. Thus, droppirah
transactions in the first place can help prevent the geerafiun-
necessary patterns. In addition, such transaction remtuctin also
help reduce the computational cost, because it results imaflex
database for MFI.

Overall Algorithm: Algorithm 2 depicts the fast peeling process.
Initially, L contains all the maximal frequent linked setdir(Line

1). Then we iteratively visit each element of L in decreasing or-
der of pattern size. This order is chosen in order to maxirfieeef-
ficiency of search space pruning. This is based on Lemma 6ry\e t
to add those frequent cohesive patterns into the resulGEC S
(line 6 to 10), whereprune maintains the maximal constraint for
MFCS. For those that are not frequent cohesive sets)sRe-

Clearly, this may significantly increase the number of times
need to scan the graphs, and invoke the maximal frequent item
set mining algorithm. The speedup techniques of Lemma 5 and
6 are also not directly applicable in this case. The key goest

is whether we can leverage our knowledge of the maximal #agu
cohesive sets in order to enable discovery of the non-mdxines.

duc produces and reduces the transactions which are contajned b In the following, we provide a positive answer to this questby

patterns inP or M FC'S (Line 11) according to Lemma 6. This
reduced databasg is used to generate the intermediate patterns
mfls’ (Line 13). These are merged infd by thepruneprocedure

to maintain the maximal constraint(Lind). Finally, the new layer
will be processed (Lind7) until there are no new patterns to be
generated.

Algorithm 2 FastPeeling(D))

Parameter: D: the graph databasP = {G1,G2--- ,Gn}; {Step 1:
generating initial patterns}

1: L — MFI(transform[D],0) { L: existing layer};

2: L' — Q{L" new layer}; M FCS « { {the result set},

3: while L # 0 do

4: P « () {already peeled patterns ih}

5: for eachm € L {decreasing order of the pattern sizeé$

6: if R[m|D[m]] > 6 {if m is a frequent cohesive setfien

7 if 7im’ € MFCS Am’ D mthen

8: MFCS — prune(MFCS U{m});

9: end if

10: else

11: T — transReduce(D[m], P U M FCS) {Lemma 6}

12: mfls’ — MFI(T,0) {maximal frequent itemsets};

13: L' — prune(L' Umfls’); {Lemma 5: maximal patterns}

14: end if

15: P — PuU{m};

16: end for

170 L« prune(L’ UMFCS)\ MFCS {Lemma5: pruning using
FCS}, L' — 0

18: end while

The computational complexity of our algorithm is dominabsd
the cost of mining Maximal Frequent Itemsets (MFI). Let tlostc
of mining MFI in the transformed transactional databasenftbe
entire graph databage be O(M F'Ip) (Line 1). Fori-th layerL,
we can break it into the minimal numberof batches, such that the
patterns are all disjoint with one another in each batch. sTke
can see the overall cost of each layer is bounde@by, M FIp).

If there are a total ok layers, then the total computational com-
plexity is O((Z,’f:1 ¢i)M FIp). However, since the transactional
database in each batch is typically much smaller than thetrfwss-
actional database (LinB, the total cost of mining MFI for all lay-
ers is generally even smaller than the cost of MFI mining cattce
the start (Linel). We note the number of total layers is typically
quite small in practice. For example, in all our experimeritss
number was less than 5. Therefore, the total computaticmal ¢
plexity of the peeling approach is proportional to a singlecation

of MFIp (or O(MFIp)). As we will show from the experimen-
tal results in Section 5, the overall computational timeetlng is
no higher thar2 times that of mining MFI in the first round.

4.3 DFS Mining for Non-Maximal FCS

While the previous section provides a way to discover makima
patterns, we also need to discover all non-maximal freqoehée-
sive sets. A naive approach would be to directly apply thdinpge
algorithm to further discover the remaining sets. To do,thatcan
explicitly remove each vertex from the (maximal) frequenhe-
sive set to produce the intermediate patterns for furthelipg. For
instance, for a (maximal) pattefm, b, ¢, d}, we can generate new
intermediate pattern$b, ¢, d}, {a,c,d}, {a,b,d}, and{a,b,c}.

amortizing the discovery across different maximal patern

The basic idea of our mining algorithm is that we perform a DFS
traversal ong to enumerate angonnected vertex seits V' which
are contained by at least one MFCS being covered in the geelin
algorithm. Then, for each of these vertex sets, we perforraffin
cient test to determine whether they are frequently cokesince
there is a standard method for enumerating connected vsetsx
along the lines of enumerating cliques [23, 8], the maindssu
how we can efficiently control the enumeration boundary.a@ye
we may simply test whether each discovered vertex set isowd
by a MFCS, but such a test can be rather costly [37]. Thergfege
next discuss how to speed up this test.

Fast Subset Checking:Each MFCS is assigned a unique ID, and
each vertex in the uncertain graph is associated with aHat t
records the IDs of each MFCS containing it. Furthermoreheac
enumerating vertex set maintains a list which is the intgise of
the lists from its individual vertices. In other words, tl& Fecords
all the MFCS which contain the vertex set. Importantly, tisiscan

be maintained in an incremental fashion. We also note thanwh
the list for a vertex set is empty, it is implied that no MFC ®itzins

it.

Fast Connectivity Test: In order to test whether a vertex Sét is
frequently cohesive, the straightforward method would dalit
rectly check the connectivity of each induced subgraphV;],
G2[V4], --+ ,Gn[Vs]. An observation which enables convenient
speedup is as followdor a fully connected induced subgraph, if a
new vertex is added and it is adjacent to at least one vertéixan
subgraph, then the new subgraph is also connected.

This implies that we can use a binary vector to record whether
each induced subgraph of the current vertex set is conneatetl
then we can apply it to test whether its immediate expansyamie
vertex is connected. It is only when the induced subgraptois n
fully connected that we need to traverse its immediate esiparn
order to determine its connectivity.

Algorithm Description: Algorithm 3 describes a DFS mining pro-
cedure in order to discover all non-maximal frequent colesets.
First, we note that parametersV;, N andEz are the standard pa-
rameters for enumerating the connected vertex sets in dgi2®,

8]: v is the newly expanded vertex in the current connected ver-
tex setV in uncertain graply; N records all the neighbors 6f;,
which can be possibly added int¢; and Ex is the exclusion list
of vertices which should not be added irito (a basic mechanism
to avoid the redundant enumeration of the same connecteéexver
set in a graph).Ez typically records those vertices visited earlier
in the DFS enumeration order. The paramdtéxis for the afore-
mentioned boundary test and vecfésn is for the fast connectivity
test.

For each newly expanded vertex 3&t(to which vertexv was
newly added), Algorithm 3 first checks whether it is a FCS gsin
thefast connectivity teqi.ines 1 to 10). Then, no matter whether
the vertex set is a FCS or not, each of its neighbors excegetho
in the exclusion list (avoid redundant enumeration) willMigted
(Line 11). This is a typical way for recursively enumerating the
connected vertex set. Specifically))’ is the list recording all the
IDs of those MFCS containing; U {w} and itis maintained incre-
mentally (Line12). Once a vertexw is visited, we put it immedi-

Algorithm 3 MiningNonMaximal(v, Vs, ID,Con, N, Ex)

v {the newly added edge-vertex i}

Vs {the current vertex sets}

1D {the IDs of maximal cohesive sets containifhg}
Con {the binary vector for connectivity}
Parameter: N {the neighbors of//s}

Parameter: Ex {exclusion list of vertices (already expanded)}
1: foreach G; € D do

2. if Conl[i] then

: Con'[i] < (Neighbor(v|G;) N'Vs) # 0;
I else

: Con'[i] < Connected(G;[Vs));

o endif

Parameter:
Parameter:
Parameter:
Parameter:

3
4
5
6
7: end for
8: if R[Vs] > 6 {using Con’ to computejthen

FCS «— FCS U{Vs} {non-maximal frequent cohesive sets}

10: end if
11: for eachw € N\Ez do

©

12: ID’' «— ID N ID[w]; {MFCS containingVs}

13: Ez «— EzU{w};

14: if |ID'| > 1V ([ID'| =1 AV; U{v} # MFCSiInID’) then

15: MiningNonMaximal (w, Vs U {v}, ID’, Con/,
Neighbor(w|G) U N, Ex);

16: endif

17: end for

Procedure Main

1: Ex «— 0;

2: for eachw € V\ Ex do

3. Ez+« ExU{w};

4: MiningNonMaximal (w, {w}, I D[w], 0, Neighbor(w|G), Ex);
5: end for

ately in the exclusion list so that the latter iteration widit visit it
again (Linel3). For each newly expanded vertex set, when either
its list 1D’ is contained by at least two MFCS or is a strict subset of
the only MFCS [TD’| = 1), we know it has not reached the bound-
ary yet and cannot be considered a candidate for non-maxi@al
(Lines14 — 15).

Note that the worst case computational complexity of this al
gorithm is determined by the total number of connected werte

Table 1: 3(%) vs varying ¢ (6 = 0.01, a = 0.99)
[€=0.030] ¢ =0.035] ¢ =0.040] ¢ =0.045] ¢ =0.050

Yeast 55.92 54.26 53.63 53.55 49.54
Fly 57.86 56.90 52.40 52.57 52.62

Mouse 98.65 99.10 99.10 99.10 99.10
Rat 100.00 100.00 100.00 100.00 100.00

DBLP 73.90 70.28 70.01 68.60 65.11

Table 2: 3(%) vs varying ¢ (€ = 0.05, a = 0.99)
[$=0.01 | 5=0.008 | 6=0.006 | 3=0.004 6=0.002

Yeast | 46.78 46.72 49.66 49.30 48.76
Fly 50.76 51.46 51.46 52.23 52.91
Mouse | 99.10 99.10 99.10 99.10 99.10
Rat 100.00 | 100.00 | 100.00 | 100.00 | 100.00
DBLP | 65.49 66.73 67.42 65.32 66.23

remaining Non-Maximal FCS. Given this, we would like to unde
stand how the computational time is distributed betweepsS(e)
and (2), and a quantification of the efficiency advantagestffeel-
ing over the naive approach. Step (2) can be implemented much
more efficiently, because it requires us to only check mesibpr
on Ds.

All algorithms were implemented using C++ and the Standard
Template Library (STL), and were conducted on a 2.0GHz Dual
Core AMD Opteron CPU with 4.0GB RAM running Linux.

5.1 Experimental Results on Real Datasets

In this subsection, we report our experimental results anriaal
datasets: four protein-protein interaction (PPI) undergraphs
and one coauthor graph. The PPI datasets are integratedBirom
OoGRID database and STRING databases, and are provided by the
author in [39]. The coauthorship network is derived from OBL
and is extracted from the dataset provided by the author 0. [3
The summary of those datasets are listed in Figure 2, where th
last columnavg(pe) indicates the average edge probability in the
uncertain graph.

In the first three groups of experiments, we focus on studying

subsets which are bounded by MFCS. For each connected vertexOW the accuracy indicataf is affected by the three user-defined

set, we need to traverse each of its induced subgraphs indpé g
database. This has linear cost.

5. EXPERIMENTAL EVALUATION

In this section, we present experimental results studyiegaic-
curacy and efficiency of our method. Specifically, we arergdted
in the following two questions:
1. Accuracy: How well does the sampling approach approximate
the set of highly reliable subgrapl$s,? Recall that we utilize two
setsS andS (S O S) to approximateS,,, and these two sets are
designed to measure recall and precision respectively. rvite
two sets are similar, they can provide accurate estimaticimeoS.,
according to Theorem 1. In such cases, the precision and azea
both high. It is easy to see that the fractiGn= % provides a

good indicator for the accuracy of the sampling approachefor
perimental evaluation.

2. Efficiency: What is the performance in terms of overall running
time? As we mentioned before, the sampling approach censist
two steps for (1) sampling datasBt and for (2) sampling dataset
Ds.

In step (1), we need to discover all frequent cohesive s&@S|F
from D;. Specifically, step (1) contains two stages: in the first
stage, we apply peeling (naive or fast) algorithms to discal
maximal frequent cohesive set (MFCS); and in the seconcestag
we utilize a DFS mining process using MFCS to discover all the

parameters, the reliability threshotd the confidence level, and

e which directly relates t@ (Section 3).

Varying e: In this experiment, we fix the reliability threshotd

and the confidence levél with o = 0.99 andd = 0.01 (99%
confidence), and we vary thefrom 0.03 to 0.05. Table 1 reports
the variation of the accuracy indicatgr with ¢ on each dataset.
First, it is evident thaf3 is always at least0%, and in3 out of 5
datasets (Mouse, Rat, and DBLB)is generally much higher than
65%. The lowest values gf were obtained for the Yeast and Fly
data sets, but were still above or very close508. TakingS as

the example, this simply suggests that at least half of theodered
subgraphs irf are guaranteed to be highly reliable @ = 0.99),

and the expected fraction of HRS being missedSbis no more
than1%. The best performance was obtained on Mouse and Rat,
for which 3 was very close to 1. A detailed analysis shows that
most of the subgraphs discovered from these two datasetepre
small and their number is also small. They also seem to form a

Table 3: 5(%) vs varying « (e = 0.05,5 = 0.01)
[2=0.99] =0.97] a=0.95] a=0.93] a=0.90

Yeast | 48.64 9.25 5.25 52.94 80.92
Fly 51.27 41.87 30.92 52.77 63.69
Mouse | 99.10 92.36 86.42 94.24 96.04
Rat 100.00 | 100.00 | 100.00 | 98.00 97.13
DBLP | 65.51 53.82 45.64 68.13 83.84

[VI] TET | agv(pe) 1. /
Yeast | 162 | 300 | 0.148 $ /
Fly | 3751| 7384| 0.456 -
Mouse | 199 | 286 0.413 L S— -
Rat | 130 | 178 [0.374 S I—
DBLP | 1000 | 2356 [0.560 ot = : - |

600 500
Fpeel ——

Fpeel ——

Npeel —x—
FpeclDES . 40

Npeel -
FpeelDFS-—=-
500 NpeelDFS - 200

NpeelDFS -

350

400 /
300 e
300 250 /

/
200 i
200 e

Running Time (Seconds)
Running Time (Seconds)

150
100 100
50

_ (a) Time vs.|V|
Figure 2: datasets summary

o
16 18 2 22 24 26 28 3 32 34
Density

(c) Time vs. Density

0
095 0955 096 0965 097 0975 098 0985 099
Reliabilty Threshold

(b) Time vs.«

Figure 3: Running Time vs. Random Block Model Graphs

Table 4: Execution time(seconds) for real datasetse(=
0.05,6 = 0.01, « = 0.99)

NpeelDFS FpeelDFS
Step 1-p| Step 1-d| Step2 | Step 1-p| Step 1-d| Step 2
Yeast | 30.03 3.05 47.23 0.99 2.88 44,71
Fly 437.08 22.76 209.90| 23.28 19.22 180.95
Mouse [28.79 0.05 0.86 0.75 0.05 0.84
Rat 8.67 0.02 0.44 0.39 0.02 0.40
DBLP 368.67 63.60 26.64 26.58 61.77 28.52

few small components. Thus, these small components aréyhigh
reliable and are easily discovered without too many falsitpes.
Second, it is evident that increases for lower values ef This is
because reduced values ©ofead to higher sample sizes, and also
because smallerwould result in more accurate thresholds for the
hypothesis test. In other words;— € increases and -+ ¢ decreases.
Thus, S tends to reduce anfl tends to increase ageduces.

Varying ¢: In this experiment, we fix the reliability threshaldand
parameteke (o = 0.99 ande = 0.05), and we vary$ from 0.01 to
0.002, which correspond to very high levels of confidence. Table 2
reports the accuracy indicatGrwith respect to different values 6f

on each dataset. First, we can see that the overall accumdicator

(3 is consistent with the first experiment, because it is uguatfer
than50%. Second, we observe that@decreases (confidence level
1 — ¢ increases)g also tends to increase. However, the margin of
increase is relatively small. This is because the influericé an
sample size is proportional fa(1/5), whereas the influence ef

on sample size is proportional ig/c>. Therefore,§ has a much
smaller influence on the sample size. This also suggestdhbat
overall recall rate ofS is quite consistent, because of our earlier
observation that the expected false negative rate is

Varying «: In this experiment, we fix the confidence parameter
and parameter (6 = 0.01 ande = 0.05), and we vary the relia-
bility thresholda from 0.99 to 0.90. Table 3 reports the accuracy
indicator3 with respect to the different on each dataset. Interest-
ingly, we note that whewm reducesg first decreases and then in-
creases. This reduction jhis particularly noticeable for the Yeast
data set, though it is moderate for all other data sets. Tdsorefor
the decreasing-increasing trend seems related to thédistn of
highly reliable subgraphs. Whenis very high ¢ = 0.99), both

S andS are quite small and also close. Asslightly decreasess
(defined by threshold: + ¢) remains relatively stable, bist (with
thresholda — €) can grow rather quickly. This results in a decrease
in 3. However, whem further decreases, the sgtgrows faster
thanS. Therefore, the difference between them becomes smaller.
Execution Time: In this experiment, we study the computational
time of Stepsl and2, and compare the performance of naive peel-
ing and fast peeling. Specifically, we fix the parameter$ and

¢, and report the peeling time (discovering MFCS in St¢pthe
DFS mining time (discovering Non-maximal FCS in StBp and
the time in Ste®. We denote NpeelDFS to be the algorithm uti-

lizing the naive peeling (Algorithm 1) and FpeelDFS (Algbom

2) to the algorithm utilizing the fast peeling. We can sed tha
most of the cases, the peeling stage requires most of theutamp
tional time in NpeelDFS. The FpeelDFS algorithm is fastantthe
naive peeling approach by more than one order of magnituate. F
thermore, we observe that the overall computational tini€eps

1 and Step2 become comparable in the case of the fast peeling
approach. Since the processing in Skeig rather straightforward
(checking whether a given subgraph is a FCS on the largeselata
D), we do not consider further optimization of this step here.

5.2 Experimental Results on Synthetic Datasets

Here, we focus on studying the running time of our mining ap-
proach on synthetic datasets. Specifically, we utilize tloeks
random graph model [24], which can generate both the ErdéissiR
random graph and Scale-free random graph, along with a-speci
fied community structure. The edge existence probabilitynis
formly generated betweelhand1. We report the overall running
time of NpeelDFS and FpeelDFS, and their respective petlimeg
(Npeel and Fpeel) in Step The default parameters atie= 0.99,

0 = 0.01, ande = 0.05. Figure 3(a) reports the running time with
respect to the graph size as the the number of vertices clieomge
1000 to 3000 with the average edge density fixed@atFigure 3(b)
reports the running time with respect to the reliabilityesinold
varying from0.95 to 0.99 on an uncertain graph with 1000 nodes
and edge density fixed to 1.5. Figure 3(c) reports the runtimg
with respect to the edge density varying frdn to 3.5 on an un-
certain graph with 1000 nodes. Here, we can see that thratigho
these experiments, the overall running time of the fastipgélased
approach FpeelDFS is much faster than that of the naivengeel
approach NpeelDFS. In addition, in most of the cases, it sebe
peeling time (discovering MFCS) is also a major componethef
overall running time.

6. RELATED WORK

The work closest to ours is the most reliable subgraph prob-
lem [16, 17, 25, 18]. Given a set of vertices, this problerastri
to removeK edges from the original graph so that the remaining
subgraph can maximize the probability of these verticesrighg
to one connected component. Thus, the highly reliable sythgr
(HRS) problem can be viewed as a generalization of the mest re
liable subgraph problem, because no initial set of vertisepec-
ified. Furthermore, HRS also puts more constraints on veségx
reliability, because it requires all vertices in each salpgrto be
fully connected, whereas the most reliable problem onlyires
the targeted set of vertices in the subgraph to be conne@es.
cause of these differences, the methods developed for eicile
subgraph mining cannot be generalized to this new problem.

Mining uncertain graphs has recently attracted much attent
in the data mining and database research communities [33938
40]. Specifically, Zowet al. study mining frequent subgraphs [39]
and topk-cliques [40] in a single uncertain graph. Potamés

al. study the k-Nearest Neighbor problem in uncertain grapk [3

Yuanet al. study a new variant of the shortest path problem in an
uncertain graph [38], and Jiet al. study the distance-constraint

reachability problem, a generalization of the classic tewwninal
reliability problem [22].

The frequent cohesive set (FCS) discovery problem studied i

this work is closely related to frequent pattern mining [13}his
broad subfield has been extensively studied since its iimcept
the early nineties. However, the frequent cohesive set Jp&h-
lem has not been studied before. Furthermore, we deviateriai-
ural pattern mining approaches which focus on bottom-ugtestr
gies (level-wise or pattern-growth). Here, we introduceoxah
peeling approach which enables top-down pattern discovery

7. CONCLUSIONS AND SUMMARY

In this paper, we present a method for mining reliable sutigra
patterns in uncertain graphs. Such problems are extrentall ¢
lenging in the uncertain scenario and tend to#&-complete.
We present a probabilistic method for mining such reliabkgbs
which retains efficiency and also provides probabilistiads for

accuracy. A novel peeling approach reduces the computdtion

complexity by carefully pruning of large portions of the reag

search space during the pattern discovery and exploratimeeps.
We present experimental results illustrating the effestess and
efficiency of the method.

8. REFERENCES

[1] E. Adar and C. Re. Managing uncertainty in social netvgolEEE
Data Eng. Bull, 30(2):15-22, 2007.

[2] C.C. Aggarwal, editorManaging and Mining Uncertain Data
Advances in Database Systems. Springer, 2009.

[3] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Ritet
protein complex membership using probabilistic netwotlatslity.
Genome Red4(6):1170-1175, June 2004.

[4] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. ChaniniGa
confidence in high-throughput protein interaction netvgoNature
Biotechnology 22(1):78-85, December 2003.

[5] M. O. Ball. Computational complexity of network relidity
analysis: An overviemlEEE Transactions on Reliability
35:230-239, 1986.

[6] Y. Benjamini and Y. Hochberg. Controlling the false disery rate:
A practical and powerful approach to multiple testidgurnal of the
Royal Statistical Society. Series B (Methodological)(1):289-300,
1995.

[7] Y. Benjamini and D. Yekutieli. The Control of the FalsesBovery
Rate in Multiple Testing under Dependend)e Annals of Statistics
29(4):1165-1188, 2001.

[8] C. Chen, X. Yan, F. Zhu, and J. Han. gapprox: Mining fretjue
approximate patterns from a massive networkdGBM, pages
445-450, 2007.

[9] H. Chernoff. A measure of asymptotic efficiency for testa
hypothesis based on the sum of observatidinme Annals of
Mathematical Statistic23(4):493-507, 1952.

[10] C. J. ColbournThe Combinatorics of Network Reliabilit®xford
University Press, Inc., 1987.

[11] J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a Routing [erob
Within Probabilistic Graphs and its Application to Intettantly
Connected Networks. INFOCOM'07, pages 1721-1729, 2007.

[12] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Progagaf
trust and distrust. IWWW’'04 pages 403-412, 2004.

[13] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent PatterniMjn
Current Status and Future DirectioZata Mining and Knowledge
Discovery 14(1), 2007.

[14] J. Han, M. Kamber, and J. P&ata Mining: Concepts and
Techniques, Second Edition (The Morgan Kaufmann Seriegta D
Management Systemd$jorgan Kaufmann, 2nd edition, 2006.

[15] S. Hanhijarvi, K. Puolamaki, and G. C. Garriga. Mulégiypothesis
testing in pattern discovery, 2009. arXiv:0906.5263vat{$4L].

[16] P. Hintsanen. The most reliable subgraph problenPKiDD, pages
471-478, 2007.

[17] P. Hintsanen and H. Toivonen. Finding reliable subbsajpom large
probabilistic graphsData Min. Knowl. Discoy.17(1):3—-23, 2008.

[18] P. Hintsanen, H. Toivonen, and P. Sevon. Fast discoviergliable
subnetworks. INSONAM pages 104-111, 2010.

[19] W. Hoeffding. Probability inequalities for sums of bmled random
variables.Journal of the American Statistical Association
58(301):13-30, 1963.

[20] J. Hopcroft and R. Tarjan. Algorithm 447: efficient atigbms for
graph manipulationCommun. ACM16:372-378, June 1973.

[21] R.Jiang, Z. Tu, T. Chen, and F. Sun. Network motif idficdition in
stochastic network?NAS 103(25):9404-9409, June 2006.

[22] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-consttain
reachability computation in uncertain graphsPiroceedings of the
VLDB Endowmentvolume 4, 2011.

[23] R.Jin, S. McCallen, and E. Almaas. Trend motif: A grapimimy
approach for analysis of dynamic complex networkd@BM, pages
541-546, 2007.

[24] B. Karrer and M. E. J. Newman. Stochastic blockmodets an
community structure in network®hys. Rev. E83(1):016107, Jan
2011.

[25] M. Kasari, H. Toivonen, and P. Hintsanen. Fast discpeéreliable
k-terminal subgraphs. IRAKDD (2), pages 168-177, 2010.

[26] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing sipeead of
influence through a social network. KDD, pages 137-146, 2003.

[27] A. Kirsch, M. Mitzenmacher, A. Pietracaprina, G. Pyd€i Upfal,
and F. Vandin. An efficient rigorous approach for identifyin
statistically significant frequent itemsets.R©DS’'09 pages
117-126, 20009.

[28] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey ofaaithms
for dense subgraph discovery. In Charu C. Aggarwal and Haixu
Wang, editorsManaging and Mining Graph Datgpages 303—-336.
Springer US, 2010.

[29] V. Manfredi, R. Hancock, and J. Kurose. Robust routimglynamic
manets. IMnnual Conference of the International Technology
Alliance (ACITA) 2008.

[30] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-nest
neighbors in uncertain graph8VLDB, 3(1):997-1008, 2010.

[31] G. Rubino. Network reliability evaluation. INetwork performance
modeling and simulatigrpages 275-302. 1999.

[32] M. Stoer and F. Wagner. A simple min-cut algorithin ACM
44:585-591, July 1997.

[33] G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and BZkao.
Do social networks improve e-commerce?: a study on social
marketplaces. IWWOSP '08: Proceedings of the first workshop on
Online social networkspages 1-6, 2008.

[34] L. G. Valiant. The complexity of enumeration and rellip
problems.SIAM Journal on Computing(3):410-421, 1979.

[35] D.R. White and F. Harary. The cohesiveness of block®aicd
networks: Node connectivity and conditional dens8gciological
Methodology 31:305-359, 2001.

[36] X.Yan, X. J. Zhou, and J. Han. Mining closed relationgdjghs with
connectivity constraints. IKDD '05, 2005.

[37] D. M. Yellin. An algorithm for dynamic subset and intection
testing.Theoretical Computer Scienc&29(2):397-406, 1994.

[38] Y. Yuan, L. Chen, and G. Wang. Efficiently answering bty
threshold-based shortest path queries over uncertaigrap
DASFAA pages 155-170, 2010.

[39] Z. Zou, H. Gao, and J. Li. Discovering frequent subgsapter
uncertain graph databases under probabilistic semaie€DD,
pages 633-642, 2010.

[40] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maxirci@ues
in an uncertain graph. IICDE, pages 649-652, 2010.

[41] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent swpir
patterns from uncertain graph dalBEE Trans. on Knowl. and Data
Eng, 22(9), 2010.

