Logic and Proof

Argument

An argument is a sequence of statements.
All statements but the first one are called assumptions or hypothesis.
The final statement is called the conclusion.
An argument is valid if:
whenever all the assumptions are true, then the conclusion is true.

If today is Wednesday, then yesterday is Tuesday.
Today is Wednesday.
\therefore Yesterday is Tuesday.

Modus Ponens

	If p then q.
\therefore	p
\therefore	q

Modus ponens is Latin meaning "method of affirming".

Modus Tollens

$\begin{aligned} & \text { If } p \text { then } q \text {. } \\ & \sim \sim \sim \\ & \sim \sim \end{aligned}$

Modus tollens is Latin meaning "method of denying".

Equivalence

A student is trying to prove that propositions P, Q, and R are all true.
She proceeds as follows.
First, she proves three facts:

- Pimplies Q
- Q implies R
- R implies P.

Then she concludes,
' 'Thus P, Q, and R are all true.'

Proposed argument:

$$
(P \rightarrow Q),(Q \rightarrow R),(R \rightarrow P)
$$

Is it valid?

$$
P \wedge Q \wedge R
$$

Valid Argument?

Conclusion true whenever all assumptions are true.

To prove an argument is not valid, we just need to find a counterexample.

Valid Arguments?

$$
\begin{aligned}
& \text { If } p \text { then } q . \\
\therefore & q \\
\therefore & p
\end{aligned}
$$

If you are a fish, then you drink water. You drink water. You are a fish.

$$
\begin{aligned}
& \text { If } p \text { then } q . \\
& \sim p \\
\sim & \sim q
\end{aligned}
$$

If you are a fish, then you drink water.
You are not a fish.
You do not drink water.

Exercises

$$
\begin{aligned}
& p \\
& p \\
& \therefore p \wedge q \\
& p \wedge q \\
& \therefore p \\
& p \vee q \\
& \neg q \\
& \therefore p
\end{aligned}
$$

More Exercises

$$
\begin{aligned}
& \neg p \rightarrow q \\
& \neg q \\
& \neg p \rightarrow \neg q \\
& \therefore p \longrightarrow q \\
& \therefore p \\
& \neg p \rightarrow \neg q \\
& \therefore q \longrightarrow p \quad \therefore \text { Today is Tuesday. } \\
& \text { Valid argument } \nrightarrow \text { True conclusion } \\
& \text { True conclusion } \nrightarrow \text { Valid argument }
\end{aligned}
$$

Contradiction

$\neg p \rightarrow c$

$\therefore p$

If you can show that the assumption that the statement p is false leads logically to a contradiction, then you can conclude that p is true.

You are working as a clerk.
If you have won Mark 6, then you would not work as a clerk.
\therefore You have not won Mark 6 .

Arguments with Quantified Statements

Universal instantiation:

$$
\begin{aligned}
& \forall x, P(x) \\
& P(a)
\end{aligned}
$$

Universal modus ponens:

$$
\begin{aligned}
& \forall x, P(x) \rightarrow Q(x) \\
& P(a) \\
\therefore & Q(a)
\end{aligned}
$$

Universal modus tollens:

$$
\begin{aligned}
& \forall x, P(x) \rightarrow Q(x) \\
& \neg Q(a) \\
\therefore & \neg P(a)
\end{aligned}
$$

Universal Generalization

valid rule
 $$
\frac{A \rightarrow R(c)}{A \rightarrow \forall x . R(x)}
$$

providing c is independent of A
e.9. given any number $x, 2 x$ is an even number
\Rightarrow for all $x, 2 x$ is an even number.

Not Valid

$$
\forall z[Q(z) \vee P(z)] \rightarrow[\forall x \cdot Q(x) \vee \forall y \cdot P(y)]
$$

Proof: Give countermodel, where

$$
\begin{gathered}
\forall z[Q(z) \vee P(z)] \text { is true, } \\
\text { but } \forall x \cdot Q(x) \vee \forall y \cdot P(y) \text { is false. }
\end{gathered}
$$

Find a domain, and a predicate.

In this example, let domain be integers,
$Q(z)$ be true if z is an even number, i.e. $Q(z)=e v e n(z)$ $P(z)$ be true if z is an odd number, i.e. $P(z)=o d d(z)$

Validity

$$
\forall z[Q(z) \wedge P(z)] \rightarrow[\forall x \cdot Q(x) \wedge \forall y \cdot P(y)]
$$

> Proof strategy. We assume $\forall z[Q(z) \wedge P(z)]$ and prove $\forall x \cdot Q(x) \wedge \forall y \cdot P(y)$

Proof and Logic

We prove mathematical statement by using logic.

To prove something is true, we need to assume some axioms!

> This is invented by Euclid in 300 BC , who begins with 5 assumptions about geometry, and derive many theorems as logical consequences.
http://en.wikipedia.org/wiki/Euclidean_geometry

Proofs

Proving an Implication

Goal: If P, then Q. (P implies Q)

Method 1: Write assume P, then show that Q logically follows.

Claim: If $0 \leq x \leq 2$, then $-x^{3}+4 x+1>0$

Proving an Implication

$$
\text { Goal: If } P \text {, then } Q \text {. (} P \text { implies } Q \text {) }
$$

Method 1: Write assume P, then show that Q logically follows.

Claim: If r is irrational, then \sqrt{r} is irrational.

How to begin with?

What if I prove "If \sqrt{r} is rational, then r is rational", is it equivalent?

Yes, this is equivalent: proving "if P, then Q " is equivalent to proving "if not Q, then not P ".

Proving an Implication

Goal: If P, then Q. (implies Q)

Method 2: Prove the contrapositive, i.e. prove "not Q implies not P ".

Claim: If r is irrational, then $\sqrt{ } r$ is irrational.

Proving an "if and only if"

Goal: Prove that two statements P and Q are "logically equivalent", that is, one holds if and only if the other holds.

Example:
An integer is a multiple of 3 if and only if the sum of its digits is a multiple of 3.

Method 1: Prove P implies Q and Q implies P.
Method 1': Prove P implies Q and not P implies not Q.

Method 2: Construct a chain of if and only if statement.

Proof the Contrapositive

Statement: If m^{2} is even, then m is even

Try to prove directly.

Proof the Contrapositive

Statement: If m^{2} is even, then m is even Contrapositive: If m is odd, then m^{2} is odd.

Proof (the contrapositive):

Proof by Contradiction

$\bar{P} \rightarrow \mathrm{~F}$
 P

To prove P, you prove that not P would lead to ridiculous result, and so P must be true.

You are working as a clerk.
If you have won Mark 6, then you would not work as a clerk.
\therefore You have not won Mark 6 .

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof (by contradiction):

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof (by contradiction):

- Suppose $\sqrt{2}$ was rational.
- Choose m, n integers without common prime factors (always possible)

$$
\text { such that } \sqrt{2}=\frac{m}{n}
$$

- Show that m and n are both even, thus having a common factor 2, a contradiction!

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof (by contradiction):
Want to prove both m and n are even.

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof (by contradiction):
Want to prove both m and n are even.

$$
\sqrt{2}=\underline{m} \quad \text { so can assume } \quad m=2 l
$$

$$
\sqrt{2 n}=m
$$

$$
2 n^{2}=m^{2}
$$

so m is even.

$$
\begin{gathered}
m^{2}=4 l^{2} \\
2 n^{2}=4 l^{2} \\
n^{2}=2 l^{2} \\
\text { so } n \text { is even. }
\end{gathered}
$$

Proof by Cases

$$
\begin{aligned}
& p \vee q \\
& p \rightarrow r \\
& q \rightarrow r \\
& \therefore r
\end{aligned}
$$

e.g. want to prove a nonzero number always has a positive square.
x is positive or x is negative
if x is positive, then $x^{2}>0$.
if x is negative, then $x^{2}>0$.

- $x^{2}>0$.

Rational vs Irrational

Question: If a and b are irrational, can a^{b} be rational??

We know that $\sqrt{ } 2$ is irrational, what about $\sqrt{ } 2^{\sqrt{2}}$?
Case $1: \sqrt{2^{\sqrt{2}}}$ is rational

Case 2: $\sqrt{2^{2}} \sqrt{2}$ is irrational

So in either case there are a, b irrational and a^{b} be rational.

Extra

Power and Limits of Logic

Good news: Gödel's Completeness Theorem

Only need to know a few axioms \& rules, to prove all validities.

That is, starting from a few propositional \& simple predicate validities, every valid assertion can be proved using just universal generalization and modus ponens repeatedly!
modus ponens $\quad \frac{P \rightarrow Q, P}{Q}$

Power and Limits of Logic

> Thm 2, bad news:
> Given a set of axioms,
> there is no procedure that decides
> whether quantified assertions are valid. (unlike propositional formulas).

Power and Limits of Logic

Gödel's Incompleteness Theorem for Arithmetic

Thm 3, worse news:
For any "reasonable" theory that proves basic arithmetic truth, an arithmetic statement that is true, but not provable in the theory, can be constructed.

No hope to find a complete and consistent set of axioms!

An excellent project topic:

Application: Logic Programming

	1		6		7			4
	4	2						
8	7		3			6		
	8			7			2	
			8	9	3			
	3			6			1	
		8			6		4	5
						1	7	
4			9		8		6	

Other Applications

Digital logic:

Database system:
Making queries
Data mining

