
Bounds on Topology Discovery in

the Presence of Byzantine Faults ?

Mikhail Nesterenko1?? and Sébastien Tixeuil2? ? ?

1 Computer Science Department, Kent State University Kent, OH, 44242, USA,
mikhail@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large
Université Paris Sud, France, tixeuil@lri.fr

Abstract. This report is a companion to another technical report [3] to
present the formal proofs that could not fit into the conference proceed-
ings of this article [4] due to space limitations.

In this report we revisit the problem of Byzantine-robust topology
discovery. We formally state the weak and strong versions of the problem.
We focus on non-cryptographic solutions to these problems and explore
their bounds. We prove that the weak topology discovery problem is
solvable only if the connectivity of the network exceeds the number of
faults in the system. Similarly, we show that the strong version of the
problem is solvable only if the network connectivity is more than twice
the number of faults.

April 13, 2006
Technical Report TR-KSU-CS-2006-1

1 Introduction

We state two variants of the topology discovery problem: weak and strong. In
the former — either each non-faulty node learns the topology of the network or
one of them detects a fault; in the latter — each non-faulty node has to learn
the topology of the network regardless of the presence of faults.

We show that any solution to the weak topology discovery problem can not
ascertain the presence of an edge between two faulty nodes. Similarly, any so-
lution to the strong variant can not determine the presence of a edge between

? An abbreviated version of these results was presented in [4].
?? This author was supported in part by DARPA contract OSU-RF#F33615-01-C-1901

and by NSF CAREER Award 0347485.
? ? ? This author was supported in part by the FNS grants FRAGILE and SR2I from

ACI “Sécurité et Informatique”.



a pair of nodes at least one of which is faulty. Moreover, the solution to the
weak variant requires the network to be at least (k + 1)-connected. In case of
the strong variant the network must be at least (2k + 1)-connected.

2 Notation, Definitions and Assumptions

Graphs. A distributed system (or program) consists of a set of processes and
a neighbor relation between them. This relation is the system topology. The
topology forms a graph G. Denote n and e to be the number of nodes3 and edges
in G respectively. Two processes are neighbors if there is an edge in G connecting
them. A set P of neighbors of process p is neighborhood of p. In the sequel we use
small letters to denote singleton variables and capital letters to denote sets. In
particular, we use a small letter for a process and a matching capital one for this
process’ neighborhood. Since the topology is symmetric, if q ∈ P then p ∈ Q.
Denote δ to be the maximum number of nodes in a neighborhood.

A node-cut of a graph is the set of nodes U such that G \ U is disconnected
or trivial. A node-connectivity (or just connectivity) of a graph is the minimum
cardinality of a node-cut of this graph. In this paper we make use of the following
fact about graph connectivity that follows from Menger’s theorem (see [5]): if a
graph is k-connected then for every two vertices u and v there exists at least k

internally node-disjoint paths connecting u and v in this graph.

Program model. A process contains a set of variables. When it is clear from
the context, we refer to a variable var of process p as var.p. Every variable ranges
over a fixed domain of values. For each variable, certain values are initial. Each
pair of neighbor processes share a pair of special variables called channels. We
denote Ch.b.c the channel from process b to process c. Process b is the sender

and c is the receiver. The value for a channel variable is chosen from the domain
of (potentially infinite) sequences of messages.

A state of the program is the assignment of a value to every variable of each
process from its corresponding domain. A state is initial if every variable has
initial value. Each process contains a set of actions. An action has the form
〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean predicate over the vari-
ables of the process. A command is sequence of assignment and branching state-
ments. A guard may be a receive-statement that accesses the incoming channel.
A command may contain a send-statement that modifies the outgoing channel.
A parameter is used to define a set of actions as one parameterized action. For
example, let j be a parameter ranging over values 2, 5 and 9; then a parameter-
ized action ac.j defines the set of actions ac.(j = 2) ][ ac.(j = 5) ][ ac.(j = 9).
Either guard or command can contain quantified constructs [1] of the form:
(〈quantifier〉〈bound variables〉 : 〈range〉 : 〈term〉), where range and term are
boolean constructs.

Semantics. An action of a process of the program is enabled in a certain state

3 We use terms process and node interchangeably.

2



if its guard evaluates to true. An action containing receive-statement is enabled
when appropriate message is at the head of the incoming channel. The execution
of the command of an action updates variables of the process. The execution of
an action containing receive-statement removes the received message from the
head of the incoming channel and inserts the value the message contains into
the specified variables. The execution of send-statement appends the specified
message to the tail of the outgoing message.

A computation of the program is a maximal fair sequence of states of the
program such that the first state s0 is initial and for each state si the state si+1

is obtained by executing the command of an action whose state is enabled in
si. That is, we assume that the action execution is atomic. The maximality of
a computation means that the computation is either infinite or it terminates
in a state where none of the actions are enabled. The fairness means that if
an action is enabled in all but finitely many states of an infinite computation
then this action is executed infinitely often. That is, we assume weak fairness

of action execution. Notice that we define the receive statement to appear as a
standalone guard of an action. This means, that if a message of the appropriate
type is at the head of the incoming channel, the receive action is enabled. Due
to weak fairness assumption, this leads to fair message receipt assumption: each
message in the channel is eventually received. Observe that our definition of a
computation considers asynchronous computations.

To reason about program behavior we define boolean predicates on program
states. A program invariant is a predicate that is true in every initial state of the
program and if the predicate holds before the execution of the program action,
it also holds afterwards. Notice that by this definition a program invariant holds
in each state of every program computation.

Faults. Throughout a computation, a process may be either Byzantine (faulty)
or non-faulty. A Byzantine process contains an action that assigns to each lo-
cal variable an arbitrary value from its domain. This action is always enabled.
Observe that this allows a faulty node to send arbitrary messages. We assume,
however, that messages sent by such node conform to the format specified by the
algorithm: each message carries the specified number of values, and the values
are drawn from appropriate domains. This assumption is not difficult to imple-
ment as message syntax checking logic can be incorporated in receive-action of
each process. We assume oral record [2] of message transmission: the receiver
can always correctly identify the message sender. The channels are reliable: the
messages are delivered in FIFO order and without loss or corruption.

Graph exploration. The processes discover the topology of system by ex-
changing messages. Each message contains the identifier of the process and its
neighborhood. Process p explored process q if p received a message with (q, Q).
When it is clear from the context, we omit the mention of p. An explored sub-
graph of a graph contains only explored processes. A Byzantine process may
potentially circulate information about the processes that do not exist in the

3



system altogether. A process is fake if it does not exist in the system, a process
is real otherwise.

3 Topology Discovery Problem: Statement and Solution

Bounds

Problem statement.

Definition 1 (Weak Topology Discovery Problem). A program is a so-
lution to the weak topology discovery problem if each of the program’s com-
putation satisfies the following properties: termination — either all non-faulty
processes determine the system topology or at least one process detects a fault;
safety — for each non-faulty process, the determined topology is a subset of the
actual system topology; validity — the fault is detected only if there are faulty
processes in the system.

Definition 2 (Strong Topology Discovery Problem). A program is a so-
lution to the strong topology discovery problem if each of the program’s compu-
tation satisfies the following properties: termination — all non-faulty processes
determine the system topology; safety — the determined topology is a subset of
the actual system topology.

According to the safety property of both problem definitions each non-faulty
process is only required to discover a subset of the actual system topology. How-
ever, the desired objective is for each node to discover as much of it as possible.
The following definitions capture this idea. A solution to a topology discovery
problem is complete if every non-faulty process always discovers the complete
topology of the system. A solution to the problem is node-complete if every
non-faulty process discovers all nodes of the system. A solution is adjacent-edge

complete if every non-faulty node discovers each edge adjacent to at least one
non-faulty node. A solution is two-adjacent-edge complete if every non-faulty
node discovers each edge adjacent to two non-faulty nodes.

Solution bounds. To simplify the presentation of the negative results in this
section we assume more restrictive execution semantics. Each channel contains at
most one message. The computation is synchronous and proceeds in rounds. In
a single round, each process consumes all messages in its incoming channels and
outputs its own messages into the outgoing channels. Notice that the negative
results established for this semantics apply for the more general semantics used
in the rest of the paper.

Theorem 1. There does not exist a complete solution to the weak topology
discovery problem.

Proof: Assume there exists a complete solution to the problem. Consider
k ≥ 2 and topology G1 that is not completely connected. Let none of the nodes

4



in G1 be faulty. By the validity property, none of the nodes may detect a fault
in such topology. Consider a computation s1 of the solution program where each
node discovers G1. Let p ∈ G1, q 6= p, and r 6= p be three nodes in G1, with q

and r being non-neighbor nodes in G1. Since G1 is not completely connected we
can always find two such nodes.

We form topology G2 by connecting q and r in G1. Let q and r be faulty
in G2. We construct a computation s2 which is identical to s1. That is, q and
r, being faulty, in every round output the same messages as in s1. Since s2 is
otherwise identical to s1, process p determines that the topology of the system
is G1 6= G2. Thus, the assumed solution is not complete. 2

Theorem 2. There exists no node- and adjacent-edge complete solution to the
weak topology problem if the connectivity of the graph is lower or equal to the
total number of faults k.

Proof: Assume the opposite. Let there be a node- and adjacent-edge complete
program that solves the problem for graphs whose connectivity is k or less. Let
G1 and G2 be two graphs of connectivity k.

This means that G1 and G2 contain the respective cut node sets A1 and
A2 whose cardinality is k. Rename the processes in G2 such that A1 = A2. By
definition A1 separates G1 into two disconnected sets B1 and C1. Similarly, A2

separates G2 into B2 and C2. Assume that B1 6⊆ B2. Since A1 = A2 we can form
graph G3 as A1 ∪ B2 ∪ C1.

Let s1 be any computation of the assumed program in the system of topology
G1 and no faulty nodes. Since the program solves the weak topology problem, the
computation has to comply with all the properties of the problem. By validity
property, no fault is detected in s1. By termination property, each node in G1,
including some node p ∈ C1, eventually discovers the system topology.

By safety property the topology discovered by p is a subset of G1. Since
the solution is complete the discovered topology is G1 exactly. Let s2 be any
computation of the assumed program in the system of topology G2 and no
faulty nodes. Again, none of the nodes detects a fault and all of them discover
the complete topology of G2 in s2.

We construct a new computation s3 of the assumed program as follows. The
system topology for s3 is G3 where all nodes in A1 are faulty. Each faulty node
q ∈ A1 behaves as follows. In the channels connecting q to the nodes of C1 ⊂ G3,
each round q outputs the messages as in s1. Similarly, in the channels connecting
q to the nodes of B2 ⊂ G3, q outputs the messages as in s2. The non-faulty nodes
of B2 and C1 behave as in s1 and s2 respectively.

Observe that for the nodes of B2, the topology and communication is indis-
tinguishable from that of s2. Similarly, for the nodes of C1 the topology and
communication is indistinguishable from that of s1. Notice that this means that
none of the non-faulty nodes detect a fault in the system. Moreover, node p ∈ C1

decides that the system topology is the subset of G1. Yet, by construction,
G1 6= G3. Specifically, B1 6⊆ B2. Moreover, none of the nodes in B2 are faulty. If

5



this is the case then either s3 violates the safety property of the problem or the
assumed solution is not adjacent-edge complete. The theorem follows. 2

Observe that for (k+1)-connected graphs an adjacent-edge complete solution
is also node complete.

Theorem 3. There does not exist an adjacent-edge complete solution to the
strong topology discovery problem.

Proof: Assume such a solution exists. Consider system graph G1 that is not
completely connected. Let p ∈ G1 be an arbitrary node. Let q 6= p and r 6= p be
two non-neighbor nodes of G1. We form topology G2 by connecting q and r in
G1.

We construct computations s1 and s2 as follows. Let s1 and s2 be executed
on G1 and G2 respectively. And let q be faulty in s1 and r be faulty in s2. Set
the output of q in each round to be identical in s1 and s2. Similarly, set the
output of r to be identical in both computations as well. Since the output of q

and r in both computations is identical, we construct the behavior of the rest of
the nodes in s1 and s2 to be the same.

Due to termination property, p has to decide on the system topology in both
computations. Due to the safety property, in s1 process p has to determine that
the topology of the graph is a subset of G1. However, since the behavior of p in
s2 is identical to that in s1, p decides that the topology of the system graph is
G1 in s2 as well. This means p does not include the edge between q and r to the
explored topology in s2. Yet, one of the nodes adjacent to this edge, namely q,
is not faulty. An adjacent-edge complete program should include such edges in
the discovered topology. Therefore, the assumed program is not adjacent-edge
complete. 2

Theorem 4. There exists no node- and two-adjacent-edge complete solution to
the strong topology problem if the connectivity of the graph is less than or equal
to twice the total number of faults k.

Proof: Assume that there is a program that solves the problem for graphs
whose connectivity is 2k or less. Let G1 and G2 be two different graphs whose
connectivity is 2k. Similar to the the proof of Theorem 2, we assume that G1 =
A1 ∪B1 ∪C1 and G2 = A2 ∪B2 ∪C2 where the cardinality of A1 and A2 are 2k,
A1 = A2, B1 ∩ C1 =

�
, B2 ∩ C2 =

�
, and B1 6⊆ B2. Form G3 = A1 ∪ B2 ∪ C1.

Divide A1 into two subsets A′

1 and A′′

1 of the same number of nodes.
Construct a computation s1 with system topology G1 where all nodes in

A′

1 are faulty; and another computation s3 with system topology G3 where all
nodes in A′′

1 are faulty. The faulty nodes in s1 in the channels connecting A′

1

to C1 communicate as the (non-faulty) nodes of A′

1 in s3. Similarly, the faulty
nodes in s3 in the channels connecting A′′

1 to C1 communicate as the nodes
of A′′

1 in s1. Observe that s1 and s3 are indistinguishable to the nodes in C1.
Let the nodes in C1, including p ∈ C1 behave identically in both computations.
According to the termination property of the strong topology discovery problem

6



every node, including p has to determine the system topology in both s1 and s3.
Due to safety, the topology that p determines in s1 is a subset of G1. However,
p behaves identically in s3.

This means that p decides that the system topology in s3 is also a subset of
G1. Since G1 6= G3 (specifically, B1 6⊆ B2), and that none of the nodes in B2 are
faulty, this implies that either s3 violates the safety property of the problem or
the assumed solution is not adjacent-edge complete. The theorem follows. 2

References

1. Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Seman-
tics. Springer-Verlag, Berlin, 1990.

2. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982.

3. Mikhail Nesterenko and Sébastien Tixeuil. Discovering network topology in the pres-
ence of byzantine faults. Technical Report TR-KSU-CS-2005-01, Dept. of Computer
Science, Kent State University, 2005. http://www.cs.kent.edu/techreps/TR-KSU-
CS-2005-01.pdf.

4. Mikhail Nesterenko and Sébastien Tixeuil. Discovering network topology in the
presence of byzantine faults. In 3th Colloquium on Structural Information and
Communication Complexity (SIROCCO 2006), to appear, July 2006.

5. Jay Yellen and Jonathan L. Gross. Graph Theory & Its Applications. CRC Press,
1998. ISBN: 0–849–33982–0.

7


