
Emuli: Emulated Stimuli for
Wireless Sensor Network Experimentation

Thomas Clouser, Richie Thomas and Mikhail Nesterenko
Department of Computer Science

Kent State University
Kent, Ohio 44242-0001 USA

{tclouser,rthomas,mikhail}@cs.kent.edu

Technical report: TR-KSU-CS-2007-04, Kent State University

April 23, 2007

Abstract

We describe Emuli — a method of effectively substituting
sensor data by synthetic data on physical wireless nodes
(motes). The sensor application is oblivious to this sub-
stitution. Emuli generates data on demand from the appli-
cation. The replies are based on the sensor model which
is driven by the data pre-loaded to the mote before the ex-
periment. Since the preloaded data is an approximation
of the sensor behavior rather than raw sensor readings,
it is rather compact. This allows Emuli to drive sophis-
ticated experiments. The emulated stimuli can be syn-
chronized and coordinated across multiple motes which
allows to experiment with distributed events. Emuli ab-
stracts the sensing component of a complete application
and allows the experimenter to focus only on processing
and transport function of a wireless sensor networks. We
demonstrate statistical and deterministic sensor models.
We showcase the use of Emuli in a light measurement and
a target tracking experiment.

1 Introduction

Wireless sensor networking is rapidly moving from a
promising engineering novelty to a technology of choice
for a variety of applications. Sensor networks is an at-
tractive platform as it enables the applications outside
the realm of traditional computing. An individual sensor

node is inexpensive due to its limited computing, com-
munication and power resources. This permits the de-
ployment of hundreds and possibly tens of thousands of
them. Such massive networks allow gathering of infor-
mation about the environment with unprecedented reso-
lution. The sensor networks are used for environmental
monitoring [4, 24], habitat monitoring [12, 14] and mili-
tary surveillance [1,3,7]. Berkeley prototype sensor nodes
(motes) [9] proved to be the most widely accepted ex-
perimentation and development platform due to their ease
of operation and flexibility. Motes run TinyOS operating
system [8] which is specifically designed for operation on
such resource constrained devices.

Wireless sensor networks proved to be rather difficult
to experiment with. A field experiment is an ultimate
test of operation of a sensor network. However, experi-
ments in the field are not well-suited for software devel-
opment and debugging. The limited resources of each in-
dividual node and the distributed nature of sensing appli-
cations make examining and controlling the processes in
the network challenging. For example, due to changing
weather conditions it is difficult to repeat or even ascer-
tain the inputs of the environment monitoring network.
In addition, the logistics of deploying a large number of
sensors render field testing a supplemental rather than the
main means of experimentation. Hence, a sensor net-
work simulator [5, 6, 11, 17–23, 26] emerged as a major
research tool. Simulators range widely in the degree of
fidelity of representation of the sensor architecture. On

1

the one end of the this range there are high-level simula-
tors like MATLAB-based Prowler [20] which focuses on
abstract distributed algorithms for sensor networks. On
the other — instruction level emulators like Avrora [23]
and ATEMU [19]. However, fidelity of a simulation can-
not always match the physical devices. To increase sim-
ulation fidelity, hardware-in-the-loop or hybrid simula-
tors [6, 22, 26] execute some of the functions on real sen-
sor nodes. A popular approach to achieve high-fidelity in
experiments is to use a sensor testbed [2, 25, 27, 28]. A
stationary array of sensor nodes is placed in an environ-
ment where their behavior can be controlled and studied.
Besides saving the deployment effort, a testbed, due to
stationary sensors and controlled setting, allows for a cer-
tain predictability of the experimental environment.

Even though testbeds are quite useful to study the data
transport and processing functions of the network, the
sensing function is more difficult to reproduce. For ex-
ample, to provide authentic sensor stimuli for a tracking
application, the testbed has to be outfitted with targets, the
mechanism to determine the exact track and velocity of
the target movement as well as means of controlling and
repeating such movement. Besides increasing the costs
of a testbed, such approach limits the experimentation to
one particular application. Yet, as the sensing function
of a wireless sensor network is inextricably linked to the
other functions, the utility of a testbed diminishes. Hence
the need to consider effective sensing emulation.

Related literature. Several prior projects focused on
sensing emulation. Park and Chou [16] consider replac-
ing a sensor with a device that supplies the sensor node
with readings that the experimenter programs. While this
method of sensor emulation has the potential to be quite
accurate, the cost and possible lack of flexibility may limit
its use. Jia, Krogh and Wong [10] describe TOSHILT:
a tool that allows the application to replay previously
recorded or synthetic sensor readings. The readings are
loaded in advance and stored in sensor nodes’ EEPROM
memory. Luo et al [13] further enhance the concept of
this direct playback by providing a markup language and
a compiler that allows the programmer to specify which
particular data points need to be recorded and then re-
played. This approach of direct sensor emulation has two
limitations. The length of the experiment is limited by the
EEPROM memory size. TOSHILT allows to repeat the

playback when the end of the recording is reached. How-
ever, this kind of extension may not be flexible enough for
some applications. Another limitation lies in the necessity
to adjust the timing of the requested sensor reading to the
timing of the recorded one. Specifically, direct recorded
sensor readings state the value of the measured parame-
ter at the time of the recording — a spot measurement.
Assume that that this parameter is quickly changing with
time. If the timing of the sensor request deviates from the
recording time, due for example to jitter or interrupt pro-
cessing interference, the played back value will diverge
from the expected one.

In this paper we describe Emuli: a method of emulating
sensor stimuli of sensors. Emuli implements a model of
a sensor behavior. In contrast to the earlier presented ap-
proaches, does not record and play back spot measure-
ments. Instead, Emuli stores the model parameters. This
results in a rather compact data memory footprint and a
convenient and flexible sensor model. Emuli is designed
to increase the capability of sensor testbeds and other de-
ployments to experiment with environment sensing and
monitoring.

2 Emuli Description

2.1 Architecture

Emuli is designed to operate on motes [9] running TinyOS
[8]. In TinyOS the application is merged with the operat-
ing system into a single hierarchy of components. Each
component provides functionality for the upper compo-
nents and utilizes the services of lower components. The
hardware blocks such as a timer or an analog-to-digital
converter (ADC) are represented as the lowest compo-
nents. The component interaction is carried out through a
well defined interface of commands and events. An event
is signaled by the lower component and consumed by the
upper one. A command is called by the upper component
to the lower one. Ultimately, the events are hardware in-
terrupts initiated by hardware. The synchronous work is
thus done by TinyOS components servicing an interrupt.

In a TinyOS application, periodic data sensing is typi-
cally done as follows. TinyOS configures timer interrupts
to occur at desired sampling rate. When timer event oc-

2

curs, the application components request the sensor com-
ponent to do the measurement. The sensor sample is dig-
itized by the ADC asynchronously. When the ADC read-
ing is ready, the ADC component posts an interrupt which
is interpreted as an event by the upper components. Emuli
replaces the sensor component by its own component that
simulates its operation. The objective is to model the out-
put of the sensor with sufficient accuracy.

mote readings
id actual Emuli
1 900.68 ± 0.92 900.69 ± 0.21
2 882.76 ± 1.04 882.76 ± 0.24
3 859.53 ± 1.47 859.55 ± 0.34
4 916.88 ± 0.61 916.87 ± 0.14
5 868.56 ± 1.02 868.57 ± 0.24
6 952.73 ± 0.56 952.73 ± 0.13
7 957.78 ± 0.5 957.78 ± 0.12
8 943.59 ± 0.52 943.61 ± 0.12
9 940.42 ± 0.61 940.44 ± 0.14
10 952.97 ± 0.54 952.96 ± 0.13
11 915.81 ± 0.63 915.77 ± 0.15
12 951.42 ± 0.47 951.36 ± 0.11
13 927.75 ± 0.8 927.73 ± 0.19
14 957.78 ± 0.46 957.78 ± 0.11

Table 1: Average actual and Emuli-generated light sensor
readings with 95% confidence interval.

2.2 Light Sensor Emulation

The simulation of a light sensor demonstrates how a sta-
tistical model can be effectively used to represent environ-
mental sensing. We implemented a simple light-sensor
data collection application. To instantiate our model we
collected light sensor data from 14 motes mounted on
benches in a lab and equipped with MTS300 sensor board.
For each node we collected 60 light measurements over an
hour (one sample per minute) with the overhead fluores-
cent lights on. Surprisingly, the values and their distribu-
tion differed significantly between the motes. However,
there was no discernable pattern in the readings. Left col-
umn of Table 1 shows the average readings for all motes.
Left column of Figure 2 shows histograms of the readings

of representative nodes. We ran a similar experiment with
lights off but the readings were not conducive to statisti-
cal model instantiation: most motes constantly. reported
a single value.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

fr
eq

ue
nc

y

value

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

909908906905904903902901900899898897896895894893

fr
eq

ue
nc

y

value

Figure 1: Light measurement frequency histogram
and corresponding cumulative distribution function for
mote 1.

On the basis of the experimental data readings we cre-
ated a model or personality for each mote. The proba-
bility that Emuli reports a certain value x was made pro-
portional to the number of times x was reported in the
actual experiment. The experimental histogram and the
corresponding cumulative distribution function for mote 1
is shown in Figure 1. This distribution function was
stored in tabular form in the flash memory to be loaded
at boot-time. We used RandomMLCG component from
contrib directory of TinyOS distribution for random
number generation. The initialization seed was left de-
fault.

For each individual mote we replaced the light-sensor
component in our application with an Emuli component
configured with a unique personality and run the experi-
ments with this model for 1000 samples. The results are
shown in Table 1 and Figure 2. The results indicate that
Emuli data closely matches the experimental data in both
average, standard deviation and distribution.

2.3 Range Sensor Emulation and
Target Tracking

Range Sensor Emulation. We used Emuli to simulate
a range sensor reading of target following a pre-defined
track. A range sensor determines the distance from the
mote to the target within its range. For this experiment the
sensor range was set to 32 meters. The target moved in a
zigzag pattern with speed of 3 meters per second across a

3

actual Emuli

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

mote 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

mote 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 840 860 880 900 920 940 960

fr
eq

ue
nc

y

sensor value

mote 10

Figure 2: Sample measurement frequency histograms for
light sensor readings.

plane surface. We used 5 motes in the experiment. The
modeled track of the target and mote positions are shown
in Figure 3.

To report the position of the target, each mote stored
the information about the segment of the target track that
was within the range of its sensor. Refer to Figure 4 for
illustration. To optimize the calculations and storage, the
segment is always represented by two points: the closest
to the mote and the furthest sensed (i.e. the intersection
of the track and the sensor range). Note that the track of
the target through the sensing field of individual mote may
have to be represented by multiple segments. This is espe-
cially so if the target changes direction within the sensing
rage. To synchronize the target readings between motes,
Emuli runs the FTSP time synchronization protocol [15].

For the track segment |A,B0|, the mote stored the fol-

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

0 7 9 11 16 23 30 32 34 410 7 9 11 16 23 30 32 34 41

sensors
target movement

time (sec)

Figure 3: Simulated track presented by Emuli to the track-
ing application.

lowing data: times ta and tb0 when the target was at the
endpoints of the segment, target speed s, and distances
a2 = |C,B|2 and b0. Note that if ta < tb0 then the target
moved from A to B0. Assume that this is so. Times were
stored as integers, distance and speed – as floating point
numbers. To computer distance c of the target at time t,
the Emuli component first determined whether t is within
the time interval of this segment. If it was, Emuli com-
puted the distance b = (t − ta)/s. The actual distance c
to the target was computed as c =

√
a2 + b2. Emuli also

handles special cases for the target passing exactly over
the mote or just touching the sensing range.

Figure 4: Target distance computation with Emuli

Target tracking and evaluation. To demonstrate the op-
eration of range sensing simulation with Emuli, we im-
plemented a simple trilateration application. The trilat-
eration requires target distance measurements from three

4

motes (see Figure 5). The measurements are assumed to
be simultaneous. We computed intersection points of the
circles whose radius are these measurements. We selected
two arbitrary pairs of intersection points and draw lines
through them. The target location was at the intersection
of these two lines. In our triangulation application, motes
reported their timestamped target distance measurement
to the base station. Offline, for each distance measure-
ments, we selected two other closest in time measure-
ments and computed the target location.

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

C

A

B

Figure 5: Trilateration with Emuli

To showcase Emuli, we varied the sampling rate of our
application. The results are shown in Figure 6.

The precise track simulated by Emuli was known. This
allowed us to compare the results computed by tracking
application to this simulated “ground truth”. In essence
this comparison evaluates the performance of the Emuli-
modeled range sensor. The analysis is shown in Figure 7.
Figure 7 (a) shows the difference in distance returned by
range sensor of Emuli and the actual distance of the sim-
ulated target from the mote at the time the measurement
is taken. This difference stays roughly the same across
sampling rates. The error can be attributed to time syn-
chronization error and floating point rounding errors. Fig-
ure 7(b) shows the time differences between the three dis-
tance measurements used for trilateration. Recall that our
trilateration algorithm selects three measurements at sep-
arate motes that are the closest in time. As the sampling
rate increases, the time between measurements at separate
motes decreases.

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

.25 samples/sec .5 samples/sec

 0

 20

 40

 60

 80

 0 20 40 60 80
m

et
er

s
meters

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

1 sample/sec 2 samples/sec

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

 0

 20

 40

 60

 80

 0 20 40 60 80

m
et

er
s

meters

4 samples/sec 8 samples/sec

Figure 6: Tracking of simulated target at various sam-
pling rates. Crosses mark the target location and black
diamonds are motes.

 0

 0.5

 1

 1.5

 2

84210.50.25

di
st

an
ce

 e
rr

or
 (

m
et

er
s)

samples per second

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

84210.50.25

tim
e

di
ffe

re
nc

e
ra

ng
e

(s
ec

on
ds

)

samples per second

a) b)

Figure 7: Analysis of tracking measurements: a) distance
difference between reported by Emuli and the simulated
distance, b) time difference between measurements used
for trilateration.

5

3 Towards Comprehensive
Sensor Emulation

In this article we described how sensors can be modeled
with Emuli. We illustrated the method using light sen-
sor and range sensor modeling. Even though both sensor
models are rather basic, these models can be readily ex-
tended to more realistic ones. For example, a range sen-
sor may return values according to distance and statistical
distribution. A alight sensor may emulate “digital sun-
set”: an environmental quantity that follows a statistical
distribution and gradually changes over time.

There are several directions to further expand the re-
alism of emulated sensors. Note that the data required
to instantiate the Emuli sensor model easily fit into flash
program memory of a mote. A more sophisticated model
may not fit there. Hence, the data for such model needs to
be read and possibly buffered from EEPROM. Note also
that Emuli does not simulate the time delay incurred by
sensor sampling and ADC operation. This can be incor-
porated in future versions of Emuli. Certainly the greatest
asset for Emuli would be a library of emulated sensors that
wireless sensor network designers can experiment with.

References
[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani,

H. Zhang, V. Naik, V. Mittal, H. Cao, M. Gouda,
Y. Choi, T. Herman, S. Kulkarni, U. Arumugam,
M. Nesterenko, A. Vora, and M. Miyashita. A line
in the sand: a wireless sensor networking for tar-
get detection, classification, and tracking. Computer
Networks, Special Issue on Future Advances in Mil-
itary Communication and Technology, 46(5):605–
634, December 2004.

[2] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and
W. Leal. Kansei: A high-fidelity sensing testbed.
IEEE Internet Computing, 10(2):35–47, 2006.

[3] A. Arora, R. Ramnath, P. Sinha, E. Ertin, S. Bapat,
V. Naik, V. Kulathumani, H. Zhang, M. Sridharan,
S. Kumar, H. Cao, N. Seddon, C. Anderson, T. Her-
man, C. Zhang, N. Trivedi, M.G. Gouda, Y.-R. Choi,
M. Nesterenko, R. Shah, S.S. Kulkarni, M. Ara-
mugam, L. Wang, D.E. Culler, P. Dutta, C. Sharp,

G. Tolle, M. Grimmer, B. Ferriera, and K. Parker.
Project exscal (short abstract). In Proceedings
of Distributed Computing in Sensor Systems, First
IEEE International Conference, (DCOSS), volume
3560 of Lecture Notes in Computer Science, pages
393–394, Marina del Rey, CA, USA, June 2005.
Springer.

[4] M.A. Batalin, M.H. Rahimi, Y. Yu, D. Liu,
A. Kansal, G.S. Sukhatme, W.J. Kaiser, M. Hansen,
G.J. Pottie, M.B. Srivastava, and D. Estrin. Call
and response: Experiments in sampling the envi-
ronment. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Sys-
tems, (SenSys), pages 25–38, Baltimore, MD, USA,
November 2004. ACM.

[5] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ra-
manathan, and D. Estrin. EmStar: a software envi-
ronment for developing and deploying wireless sen-
sor networks. In Proceedings of USENIX 04, pages
283–296, 2004.

[6] L. Girod, T. Stathopoulos, N. Ramanathan, J. El-
son, D. Estrin, E. Osterweil, and T. Schoellhammer.
A system for simulation, emulation, and deploy-
ment of heterogeneous sensor networks. In Proceed-
ings of the 2nd International Conference on Embed-
ded Networked Sensor Systems (SenSys), pages 201–
213, Baltimore, MD, USA, November 2004. ACM.

[7] T. He, S. Krishnamurthy, J.A. Stankovic, T.F. Ab-
delzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui,
and B.H. Krogh. Energy-efficient surveillance sys-
tem using wireless sensor networks. In Proceedings
of the International Convference on Mobile Systems,
Appications and Services (MobiSys). USENIX, June
2004.

[8] J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hol-
lar, and K. Pister. System architecture directions
for networked sensors. ACM SIGPLAN Notices,
35(11):93–104, November 2000.

[9] J.L. Hill and D.E. Culler. Mica: A wireless plat-
form for deeply embedded networks. IEEE Micro,
22(6):12–24, November/December 2002.

6

[10] D. Jia, B.H. Krogh, and C. Wong. TOSHILT: Mid-
dleware for hardware-in-the-loop testing of wireless
sensor networks, 2005.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire tinyos ap-
plications. In Proceedings of the first international
conference on embedded networked sensor systems,
pages 126–137. ACM Press, 2003.

[12] T. Liu, C.M. Sadler, P. Zhang, and M. Martonosi.
Implementing software on resource-constrained mo-
bile sensors: Experiences with Impala and Ze-
braNet. In Proceeding of the 2nd international con-
ference on mobile systems, applications and services
(MobiSys), pages 256–269, New York, NY, USA,
2004. USENIX.

[13] L. Luo, T. He, G. Zhou, L. Gu, T.F. Abdelzaher,
and J.A. Stakovic. Achieving repeatability of asyn-
chronous events in wireless sensor networks with
envirolog. In 25th Annual Joint Conference of the
IEEE Computer and Communications Societies (IN-
FOCOM). IEEE, 2006.

[14] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habi-
tat monitoring. In Proceedings of the First ACM In-
ternational Workshop on Wireless Sensor Networks
and Applications (WSNA), pages 88–97, New York,
NY, USA, September 2002. ACM Press.

[15] M. Maróti, B. Kusy, G.Simon, and Á. Lédeczi. The
flooding time synchronization protocol. In Proceed-
ings of the 2nd International Conference on Embed-
ded Networked Sensor Systems, (SenSys), pages 39–
49, Baltimore, MD, USA, November 2004.

[16] C. Park and P.H. Chou. Empro: An environ-
ment/energy emulation and profiling platform for
wireless sensor networks. In 3rd Annual IEEE Com-
munications Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON), vol-
ume 1, pages 158–167. IEEE, June 2006.

[17] S. Park, A. Savvides, and M.B. Srivastava. Sensor-
Sim: A simulation framework for sensor networks.
In Proceedings of MSWiM, August 2000.

[18] L.F. Perrone and D.M. Nicol. A scalable simulator
for TinyOS applications. In Winter Simulation Con-
ference, 2002.

[19] J. Polley, D. Blazakis, J. McGee, D. Rusk, J.S.
Baras, and M. Karir. ATEMU: A fine-grained sensor
network simulator. In Proceedings of the First IEEE
Communications Society Conference on Sensor and
Ad Hoc Communications and Networks (SECON),
Santa Clara, CA, USA, October 2004.

[20] G. Simon, P. Völgyesi, M. Maróti, and A. Lédeczi.
Simulation-based optimization of communication
protocols for large-scale wireless sensor networks.
In IEEE Aerospace Conference, 2003.

[21] A. Sobeih, W.-P. Chen, J.C. Hou, L.-C. Kung, N. Li,
H. Lim, H.-Y. Tyan, and H. Zhang. J-sim: A sim-
ulation environment for wireless sensor networks.
In Annual Simulation Symposium, pages 175–187.
IEEE Computer Society, 2005.

[22] S. Sundresh, W. Kim, and G. Agha. SENS: A sensor,
environment, and network simulator. In The 37th
Annual Symposium on Simulation (ANSS), Washing-
ton, DC, USA, April 2004.

[23] B. Titzer, D.K. Lee, and J. Palsberg. Avrora: Scal-
able sensor network simulation with precise timing.
In Proceedings of the International Conference on
Information Processing in Sensor Networks (IPSN),
pages 477–482. IEEE, 2005.

[24] G. Tolle, J. Polastre, R. Szewczyk, D.E. Culler,
N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buon-
adonna, D. Gay, and W. Hong. A macroscope in
the redwoods. In Proceedings of the 3rd Interna-
tional Conference on Embedded Networked Sensor
Systems, (SenSys), pages 51–63, Sand Diego, Cali-
fornia, USA, November 2005. ACM.

[25] Tutornet: A tiered wireless sensor net-
work testbed. http://enl.usc.
edu/projects/tutornet/.

[26] D. Watson and M. Nesterenko. Mule: A hybrid sim-
ulator for testing and debugging wireless sensor net-
works. In Second International Workshop on Sen-
sor and Actor Network Protocols and Applications,
pages 67–71, August 2004.

7

[27] E. Welsh, W. Fish, and P. Frantz. GNOMES: a
testbed for low power heterogeneous wireless sen-
sor networks. In IEEE International Symposium
on Circuits and Systems (ISCAS), pages 836–389,
Bangkok, Thailand, May 2003.

[28] G. Werner-Allen, P. Swieskowski, and M. Welsh.
Motelab: A wireless sensor network testbed. In Pro-
ceedings of the Fourth Intrnational Conference on
Information Processing in Sensor Networks (IPSN),
Los Angeles, CA, USA, April 2005.

8

