
Tiara: A Self-Stabilizing Deterministic Skip List

Thomas Clouser, Mikhail Nesterenko Christian Scheideler
Department of Computer Science Institute of Computer Science

Kent State University Technical University of Munich
Kent, OH, USA Garching, Germany

{mikhail,tclouser}@cs.kent.edu scheideler@in.tum.de

July 10, 2008

Abstract

We present Tiara — a self-stabilizing peer-to-peer network maintenance algorithm. Tiara is truly
deterministic which allows it to achieve exact performance bounds. Tiara allows logarithmic searches
and updates and it stabilizes in linear time. It is based on sparse 0-1 skip list. We rigorously prove the
algorithm correct in the shared register model. We then describe its refinement to the message passing
model, extension to a ring and incorporation of crash resistance.

Department of Computer Science
Kent State University

Technical Report: TR-KSU-CS-2008-04

1



1 Introduction

Due to the rise in popularity of peer-to-peer systems, dynamic overlay networks have recently received a lot
of attention. An overlay network is a logical network formed by its participants across a wired or wireless
domain. In open peer-to-peer systems, participants may frequently enter and leave the overlay network either
voluntarily or due to failure. As peer-to-peer systems can contain millions of users, faults and inconsistencies
should be regarded as the norm rather than an exception. Hence, overlay networks require mechanisms that
continuously counter such disturbances. Simplistic ad hoc approaches that handle individual fault conditions
do not adequately perform in case of unanticipated, complex or systemic failures. In practice many peer-to-
peer systems, such as KaZaA, Bittorrent, Kademlia, use heuristic methods in order to maintain their topology.
Moreover, solutions presented in research publications focus on constructing scalable and well-structured
overlay networks in an efficient manner [2, 3, 5, 6, 16, 19, 24, 25, 27] while offering only ad hoc solutions to
fault tolerance. For the overlay networks that are based on a sorted list or ring (e.g., [3, 5, 16, 27]), recovery
can be achieved as long as this base structure can be maintained. However, jointly maintaining such list and
the complete structure is rather tricky.

One can argue that if nodes are randomly distributed, a sorted list or ring with a sufficient number of
redundant connections will not disintegrate with high probability. However, it is not clear whether practical
systems always satisfy such randomization assumption. In addition, the problem of generating high-quality
trusted random numbers in a peer-to-peer systems is far from trivial. Moreover, it is known that an adversary
can quickly degrade the randomness of the peer-to-peer system even if perfectly random numbers are reliably
generated [4]. Thus, some researchers [1, 22] argue that overlay network architects need to consider holistic
approaches to fault tolerance and recovery, such as self-stabilization. In this paper we present Tiara. To the
best of our knowledge, Tiara is the first self-stabilizing skip-list based overlay network algorithm that supports
logarithmic searches and updates.

Related literature. Several algorithms presented in the literature focus on stabilizing parts of overlay net-
works. Onus et al. [22] present several high-atomicity solutions to linearizing an overlay network. Shaker
and Reeves [26] describe a distributed algorithm for forming a directed ring network topology. Hérault et
al. [18] describe a spanning tree formation algorithm for overlay networks. Cramer and Fuhrmann [11] show
that ISPRP — a ring-based overlay network is, in certain cases, self-stabilizing. Caron et al. [8] describe a
snap-stabilizing prefix tree for peer-to-peer systems. Bianchi et al. [7] present a stabilizing search tree for
overlay networks optimized for content filters.

Several randomized overlay network algorithms have also been proposed. Dolev and Kat [14] introduce
the HyperTree and use it as a basis for their self-stabilizing peer-to-peer system. Dolev et al. [13] describe a
self-stabilizing intrusion-tolerant overlay network.

Pugh [23] introduce skip lists as an alternative to balanced tree structures. Munro et al. [20] describe
a deterministic algorithm for skip list construction. Awerbuch and Scheideler [5], Aspnes and Shah [3], and
Harvey et al. [16] extend the randomized skip list to distributed environments. Harvey and Munro [17] present
a deterministic distributed skip list.

Our contribution. In this paper we present Tiara. It stabilizes a novel 0-1 distributed skip list. We rig-
orously prove the core of Tiara correct in an asynchronous communication-register based model. We then
describe how to refine it to lower atomicity models including message-passing. More specifically, we start
with presenting a self-stabilizing algorithm for a sorted list and then show how to extend it to a self-stabilizing
algorithm for a skip list. Tiara can construct these structures without any knowledge of global network pa-
rameters such as the number of nodes in the system, each node utilizes only the information available to its
immediate neighbors. Moreover, Tiara preserves network connectivity so long as the initial network is con-
nected. That is Tiara reconstructs the connectivity of the base sorted list on the basis of skip list links. We

2



describe how crash resistance can be incorporated in Tiara.

Organization of the paper. First, we introduce our computational model. Then, we describe a self-stabilizing
algorithm for the sorted list and formally prove it correct. We then extend it to a self-stabilizing algorithm
for Tiara and discuss various extensions and efficiency improvements. We complete the paper with future
research directions and open problems.

2 Model

A peer-to-peer system consists of a set N of processes. Each process has a unique integer identifier. A
process contains a set of variables and actions. An action has the form 〈name〉 : 〈guard〉 −→ 〈command〉.
name is a label, guard is a Boolean predicate over the variables of the process and command is a sequence
assigning new values to the variables of the process. For each pair of processes a and b, we define a Boolean
variable (a, b) that is shared among them. Two processes a and b are neighbors if this variable is true.
The neighborhood of a process a is defined as the set of all of its neighbors and denoted a.NB . The right
neighborhood of a, denoted a.R, is the set of neighbors of a with identifiers larger than a. That is, a.R ≡
{b : b ∈ a.NB : b > a}. Similarly, the left neighborhood of a, denoted a.L, are a’s neighbors with smaller
identifiers. That is, a.L ≡ {b : b ∈ b.NB : b < a}. Naturally, the union of a.R and a.L is a.NB .

When describing a link we always state the smaller identifier first. That is, a is less than b in (a, b).
Two processes a and b are consequent if there is no process c whose identifier is between a and b. That is,
cnsq(a, b) ≡ (∀c :: (c < a) ∨ (b < c). The length of a link (a, b) is the number of processes c such that
a < c < b. Note that by this definition the length of a link that connects consequent processes is zero.

A system state is an assignment of a value to the variables of each process. An action is enabled in some
state if its guard is true at this state. A computation is a maximal fair sequence of states such that for each
state si, the next state si+1 is obtained by executing the command of an action that is enabled in si. Note that
this disallows the overlap of action execution. That is, action execution is atomic. The execution of a single
action is a step. Maximality of a computation means that the computation is infinite or it terminates in a state
where none of the actions are enabled. Such state is a fixpoint. In a computation the action execution is weakly
fair. That is, if an action is enabled in all but finitely many states of an infinite computation then this action is
executed infinitely often. Note that this defines an asynchronous program execution model.

A state conforms to a predicate if this predicate is true in this state; otherwise the state violates the
predicate. By this definition every state conforms to predicate true and none conforms to false. Let T and U
be predicates over the state of the program. Predicate T is closed with respect to the program actions if every
state of the computation that starts in a state conforming to T also conforms to T . Predicate T converges to U
if T and U are closed and any computation starting from a state conforming to T contains a state conforming
to U . The program stabilizes to T if true converges to T . Since we will focus on self-stabilizing algorithms
for overlay networks, and self-stabilization is only possible for overlay networks that are initially connected,
we identify with true any state where the graph is connected.

While most of our program model is fairly conventional, we would like to draw the reader’s
attention to our way of modelling overlay network link management. If one process updates its
neighborhood, the change affects the neighbors of other processes. For example, if process a
adds b to its neighborhood by creating a link (a, b), this also means that a is atomically added
to b’s neighborhood. On the other hand, if a removes b from its neighborhood, then also a is
removed from b’s neighborhood.

3



process u
variables

u.0.NB — set of neighbor processes of u.
shortcuts

u.0.L ≡ {z : z ∈ u.0.NB : z < u}, u.0.R ≡ {z : z ∈ u.0.NB : z > u}
actions
grow right: (s ∈ u.0.R) ∧ (t ∈ s.0.L) ∧ (t 6∈ u.0.NB) −→

u.0.NB := u.0.NB ∪ {t}
trim right: (s, t ∈ u.0.R) ∧ (t ∈ s.0.L) ∧ (∀z : z ∈ u.0.R : z ≤ s) ∧ (∀z : z ∈ s.0.L : z ≥ u) −→

u.0.NB := u.0.NB/{s}
grow left and trim left are similar

Figure 1: The bottom component of Tiara (b-Tiara).

3 Core Tiara Description, Correctness Proof and Complexity Estimate

In its core, Tiara contains two components: the bottom component (b-Tiara) that maintains the processes at
the lowest level in sorted order and the skip-list component (s-Tiara) that constructs the higher levels of Tiara.
These components are interdependent. s-Tiara relies on b-Tiara to sort the lowest level, while s-Tiara may
append links to the bottom level to preserve the connectivity of the system.

We present the components and prove them correct bottom up starting with b-Tiara. However the pre-
sentation of b-Tiara is divided into two parts: the growing and trimming. We prove the stabilization of the
growing part first as the stabilization of s-Tiara depends on its correct operation. We prove the stabilization of
the trimming part last as it depends on the stabilization of s-Tiara.

3.1 The Bottom Component of Tiara (b-Tiara) and Stabilization of Grow

Description. The objective of b-Tiara is to transform the system into a linear graph with the processes sorted
according to their identifiers. The algorithm for b-Tiara is shown in Figure 1. The only variables that b-Tiara
manipulates are the neighbor sets for each process u — u.0.NB . The right neighborhood of u, denoted u.0.R
is a subset of u.0.NB with the identifiers greater than u. Since u.0.R can be computed from u.0.NB as
necessary, u.0.R is not an independent variable but a convenient shortcut. The left neighborhood u.0.L is
defined similarly.

Each process u has two pairs of actions: grow and trim that operate to the right and to the left of u. Action
grow right is enabled if u discovers that its right neighbor s has a left neighbor t that is not a neighbor of u.
In this case u adds t to its neighborhood. That is, u adds a link (u, t) to the graph. Note that even though u is
the left neighbor of s, t may be either to the left or to the right of u. That is t < u or t > u. Regardless of this
relation, u connects to t. Action grow left operates similarly in the opposite direction.

Action trim right eliminates extraneous links from the graph. This action removes link (u, s) if u has
a neighbor s that satisfies the following properties. The guard for trim right stipulates that there has to be
another process t that is a neighbor of both u and s. Hence, if (u, s) is removed the connectivity of the graph
is preserved. Also, all right neighbors of u must be smaller than or equal to s and all left neighbors of s are
greater than or equal to u. The latter condition is necessary to break symmetry and prevent continuous growing
and trimming of the same link. Action trim left operates similarly in the reverse direction. The operation of
b-Tiara is best understood with an example We show an example operation of b-Tiara in Figure 2.

Correctness proof. Denote B(N) the graph that is induced by the processes of the system and the links of
b-Tiara. We define the following predicate: GI ≡ (∀a, b ∈ N :: cnsq(a, b) ⇒ ∃(a, b)). That is, GI states
that two consequent processes are also neighbors.

4



•a •b •c •d •e

(a) grow right is enabled at c and
d. The execution of either adds
(c, d).

•a •b •c •d •e

(b) trim right is enabled at c and
trim left is enabled at e. They re-
move (c, e).

•a •b •c •d •e

(c) grow right is enabled at b and
c. It adds (b, c).

•a •b •c •d •e

(d) trim right is enabled at b and
trim left is enabled at d. They re-
move (b, d)

•a •b •c •d •e

(e) grow right is enabled at a and
b. It adds (a, b).

•a •b •c •d •e

(f) trim left at a or trim right at c
removes (a, c) and brings the sys-
tem to the legitimate state.

Figure 2: Example computation of b-Tiara. The processes are listed in increasing order of their identifiers.

Lemma 1 If a computation of b-Tiara starts from a state where B(N) is connected, it is connected in every
state of this computation.

Proof: Observe that the actions of b-Tiara do not disconnect B(N). Indeed, the actions that remove links
are trim right and trim left. Consider trim right. It removes a link (a, b) if there exists a node c such that there
are links (a, c) and (c, b). Thus, the removal of (a, b) does not disconnect the graph. The argument for trim
left is similar. �

Lemma 2 If a computation of b-Tiara starts from a state where B(N) is connected, b-Tiara stabilizes to GI.

Proof: To prove the lemma we need to show that (i) GI is closed under the execution of the actions of b-
Tiara and (ii) regardless of the initial state, every computation contains a state satisfying GI. Let us consider
closure first. The grow actions may not violate GI as they only add links. The trim action may affect GI
by disconnecting two processes a and b. However, trim right, which removes link (a, b), is only enabled at
process a if there is a process c such that a < c < b. Therefore, if a and b are consequent, trim right is
disabled. The reasoning is similar for trim left. Hence the closure.

To show convergence, let us assume that there are two consequent processes a and b that are not neighbors.
That is b 6∈ a.0.NB . Since the graph itself is connected, there is a path ρ between a and b. If there are multiple
paths, we shall consider the shortest one. Let the length of ρ be the sum of the lengths of its constituent links.
Observe that the execution of a trim action does not change the length of ρ. Note that the execution of any of
the grow actions does not increase the length of ρ. Path ρ must contain at least one segment d, e, f such that
both d and f are either smaller than e or larger than e. In this case grow right, or respectively, grow left, is
enabled in both d and f . The execution of this action decreases the length of the path. Hence, throughout the
computation, the length of ρ decreases until it is zero and a and b are neighbors. The lemma follows. �

3.2 The Skip List Component of Tiara (s-Tiara)

Description. The objective of s-Tiara is to establish a skip list on top of the linearized graph created by
b-Tiara. The structure maintained by s-Tiara is a sparse 0-1 skip list. At each level i, node u maintains a set
of neighbors u.i.NB . Out of this set, the rightmost and leftmost neighbors are defined as right and left skip
links: u.i.rs and u.i.ls. Note that a node may not have a right or left skip link at some level if it is on either
end of the list.

We denote right and left skip list neighbors of u at level i− 1 as v and x respectively. Nodes w and y are
respectively right and left neighbors of v and x at the same level. We illustrate this notation in Figure 3 as we
will be using it extensively throughout the correctness proof of the algorithm.

If both nodes u and v exist at level i and u.i.rs = v then this link is 0-skip link. If u and w exist at level
i and u.i.rs = w, then this link is a 1-skip link. A process that exists at level i − 1 is up if it also exists at

5



i

i− 1 •y •x

•u

•u •v •w

Figure 3: Aliases for neighbors of u in s-Tiara. v ≡ u.(i − 1).rs, w ≡ v.(i − 1).rs, x ≡ u.(i − 1).ls, and
y ≡ x.(i− 1).ls, where u.i.rs and u.i.ls are right and left skip-list neighbors of u at level i, respectively.

level i, it is down otherwise. If a process that 1-skip link spans is down it is a cage. For example u, v and w
form a cage if u.i.rs links to w and v is down. The middle process is inside the cage. Refer to Figure 4 for
the illustration of the concept of a cage. The sparse 0-1 skip list has two rules of organization. First, all links
are either 0 or 1 skip links. Second, if a node is on level i and it is not on the end of the list on level i− 1 then
at least one of its links is a 1 skip link.

i

i− 1

•y

•y •x

•u

•u

(a) u is adjacent
to the cage on the
left.

i

i− 1

•x

•x •u

•v

•v

(b) u is inside the
cage.

i

i− 1

•u

•u •v

•w

•w

(c) u is adjacent
to the cage on the
right.

Figure 4: Possible cages with respect to node u.

The the algorithm is shown in Figure 5. At each level i, each process maintains a neighborhood set
u.i.NB . As before, to simplify the presentation we introduce a few shortcuts. Sets u.i.R and u.i.L are the
subsets of u.i.NB that contain the identifiers of u’s neighbors with respectively higher and lower identifiers
than u. We define u.i.rs to be the neighbor with the link of the smallest length among u.i.R. To put another
way, u.i.rs connects to u’s right neighbor with the smallest identifier. Note that u.i.rs is ⊥ if u.i.R is empty.
Shortcut u.i.ls is defined similarly.

Predicate exists(z, i) is true if node z is present at all and if z.i.NB is not empty. Note that node u may
read only its immediate neighbor states. Thus, u may only invoke exists on its neighbors and itself. Note also
that exists is defined to return false if it is invoked on a non-existent node. For example, if u is at the right
end of the list at level i and u invokes exists(u.i.rs, i). In this case exists(u.i.rs, i) returns false. Predicate
valid(u, i) captures the correct state of the system. Specifically, it states that if u exists at level i then the
length of the skip links should not be more than 1 and either x or v does not exist at level i. The latter
condition guarantees that at least one link of u is a 1 skip link.

The actions of s-Tiara are as follows. Action upgrade right establishes a link to w at level i if v is not up.
That is, this link is a 1 skip link. Note that if u is not up, upgrade right brings u up to level i. Action upgrade
left operates similarly in the opposite direction. Actions bridge right and left establish 0 skip links if both
nodes being connected are up. Action prune eliminates the links other than u.i.rs and u.i.ls from u.i.NB.
In case the links are not 0 or 1 skip, action downgrade right completely removes the right neighborhood of u.
Action downgrade left operates similarly. And the last action downgrade center eliminates three consecutive
up nodes. This ensures that there could not be two consecutive 0 skip links. An example computation of
s-Tiara is shown in Figure 6.

Correctness proof. Our proof proceeds as follows. We state five predicates on the level i of s-Tiara. In the
sequence of lemmas we show that if the lower levels of s-Tiara have stabilized, then level i of s-Tiara stabilizes
to these predicates. The conjunction of these predicates implies the stabilization of level i of s-Tiara. We then
use this fact as an inductive step in the convergence proof of stabilization of s-Tiara.

Before proceeding with the proof, we introduce notation and terminology we are going to use. Denote
S(N) the graph induced by the processes of the system as well as the links of b-Tiara and s-Tiara. Throughout

6



process u
parameter i ≥ 0: integer — level of the skip list
variables

u.i.NB — set of neighbor processes of u at level i
shortcuts

v ≡ u.(i− 1).rs, w ≡ v.(i− 1).rs, x ≡ u.(i− 1).ls, y ≡ x.(i− 1).ls
u.i.R ≡ {z : z ∈ u.i.NB : z > u}, u.i.L ≡ {z : z ∈ u.i.NB : z < u}

u.i.rs ≡
{

(s : s ∈ u.R : (∀t : t ∈ u.R : t ≥ y)), if u.R 6= ∅
⊥, otherwise

u.i.ls is defined similarly
exists(z, i) ≡ ((z 6= ⊥) ∧ (z.i.NB 6= ∅))
valid(u, i) ≡ ((((u.i.ls = y) ∨ (u.i.ls = x) ∨ (u.i.ls = ⊥)) ∧ (u.i.rs = w)) ∨

(((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) ∧ (u.i.ls = y)) ∨
((u.i.ls = ⊥) ∧ (u.i.rs = ⊥)) ∨ ¬(exists(x, i) ∧ exists(u, i) ∧ exists(v, i)))

actions for i > 0
upgrade right: valid(u, i) ∧ ¬exists(v, i) ∧ (v 6= ⊥) ∧ (w 6= ⊥) ∧ (u.i.rs 6= w) −→

u.i.NB := u.i.NB ∪ {w}
upgrade left is similar
bridge right: valid(u, i) ∧ exists(u, i) ∧ exists(v, i) ∧ (u.i.rs 6= v) −→

u.i.NB := u.i.NB ∪ {v}
bridge left is similar
prune: valid(u, i) ∧ exists(u, i) ∧ (u.i.NB 6= {u.i.rs, u.i.ls}) −→

u.0.NB := u.0.NB ∪ u.i.NB/{u.i.rs, u.i.ls},
u.i.NB := {u.i.rs, u.i.ls}

downgrade right: ¬valid(u, i) ∧ ¬((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥)) −→
u.0.NB := u.0.NB ∪ u.i.R,
u.i.R := ∅

downgrade left is similar
downgrade center: ¬valid(u, i) ∧ exists(x, i) ∧ exists(u, i) ∧ exists(v, i) −→

u.0.NB := u.0.NB ∪ u.i.NB ,
u.i.NB := ∅

Figure 5: The skip list component of Tiara (s-Tiara).

the discussion we consider process u and its neighbors as defined in the description of s-Tiara. A node u
is middle at level i if it has both left and right neighbors as well at least one two hop neighbor. That is,
middle(u, i) ≡ (exists(v, i− 1) ∧ exists(x, i− 1) ∧ (exists(y, i− 1) ∨ exists(w, i− 1))).

Below are the predicates to which s-Tiara stabilizes. Predicate good links.i states that process u connects
to processes at most two hops away. Predicate one links.i enforces the rules of 0-1 skip list. Specifically,
it stipulates that u should either be inside the cage or should have adjacent cages to the left or to the right.
Predicates zero left links.i zero left links.i ensure that the 0-links are in place. That is, the processes that
are consequent at level i− 1 and are up, are also connected at level i. Predicate only good links.i states that
the neighborhood of u does not have links other than rs and ls.

7



3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •f •i

•a •b •e •f

•e •f

(a) Level 1. downgrade right is
enabled at f , downgrade left is
enabled at i and upgrade left is
enabled at e. These actions re-
move (f, i) and add (e, c).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •b •c •e

•a •b •e •f

•e •f

(b) Level 1. downgrade center
is enabled at b, upgrade right is
enabled f and upgrade left is en-
abled at h. These actions remove
(a, b) and add (f, h).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•c •e •f •h

•a •b •e •f

•e •f

(c) Level 1. upgrade right is en-
abled at a, upgrade left is en-
abled at c, bridge right is enabled
at e and bridge left is enabled at
f . These actions add (a, c) and
(e, f).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •b •e •f

•e •f

(d) Level 2. downgrade right is
enabled at a and downgrade left
is enabled at b. These actions re-
move (a, b).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•e •f

•e •f

(e) Level 2. upgrade right is en-
abled at a and upgrade left is en-
abled at e. These actions add
(a, e).

3

2

1

0 •a •b •c •d •e •f •g •h •i

•a •c •e •f •h

•a •e •f

•e •f

(f) The system has reached a le-
gitimate state.

Figure 6: s-Tiara. We list the processes in the increasing order of their identifiers. b-Tiara has stabilized to
GI. In each state we only mention the enabled actions that are relevant to the discussion. We do not illustrate
the operation of prune.

good links.i ≡ (∀u :: ¬exists(u.i) ∨
((u.i.rs = v) ∨ (u.i.rs = w) ∨ (u.i.rs = ⊥) ∧
((u.i.ls = y) ∨ (u.i.rs = x) ∨ (u.i.ls = ⊥))

one links.i ≡ (∀u : middle(u, i) :
(¬exists(u, i) ∧ (x.i.rs = v) ∧ (v.i.ls = x)) ∨
(¬exists(v, i) ∧ (¬exists(w, i− 1) ∨ (u.i.rs = w))) ∨
(¬exists(x, i) ∧ (¬exists(y, i− 1) ∨ (u.i.ls = y))))

zero right links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(v.i) ∨ (u.i.rs = v))
zero left links.i ≡ (∀u :: ¬exists(u.i) ∨ ¬exists(x.i) ∨ (u.i.ls = x))
only good links.i ≡ (∀u :: ¬exists(u.i) ∨ (u.i.NB = {u.i.rs, u.i.ls}))

Lemma 3 Assuming that neighbor relations at level i−1 do not change throughout the computation, s-Tiara
stabilizes to good links.i

Proof: In proving this and consequent lemmas we show a stronger property of closure and convergence of
the predicate for a particular process u. This implies the stabilization of the predicate for all u at the specified
level.

Let us show closure first. Observe that the topology at level i − 1 does not change. Hence once u.i.rs
points to one or two hop neighbors v or w, the neighbor’s relative positions do not change. Similar argument
applies to u.i.ls. Let us consider the actions and how they affect good links.i. Let us start with the actions
of u. Actions upgrade right and bridge right do not violate the predicate since they set u.i.rs to respectively
w and v. Similar argument applies to upgrade left and bridge left. Action prune does not affect the predicate
since it does not modify either u.i.rs or u.i.ls. Neither do downgrade right and downgrade left since they
respectively set u.i.rs and u.i.ls to ⊥. Action downgrade center removes u from level i altogether and hence

8



cannot violate the predicate. Note that the nodes further than two hops away never connect to u. Hence the
actions of other nodes cannot violate the predicate either.

Let us now address convergence. Observe that the predicate can be violated only if u is up. It is violated if
either u.i.rs or u.i.ls points to a node other than u’s one or two-hop neighbors. In this case either downgrade
right or downgrade left are enabled that bring the links in compliance with the predicate. �

Lemma 4 Assuming that neighbor relations at level i − 1 do not change throughout the computation and
good links.i is satisfied, s-Tiara stabilizes to one links.i

Proof: As a first step, we would like to make the following observation: once a cage is formed, it is never
destroyed. For example, assume that u, v and w form a cage. The actions of u, and, similarly, w do not affect
this link. Also, if v is down, the only actions it can use to come up is upgrade right or upgrade left. However,
both are disabled since u and v are up. Note that this observation guarantees the closure of one links.i.

Let us discuss convergence. Assume that u is down. We consider two cases: u is initially down and u is
initially up and never goes down. If u is down, the only way, u can come up is through execution of upgrade
right or upgrade left at u, w or y. In all cases cages adjacent to u are formed and the predicate is satisfied.
Note that if u is down, then upgrade right is enabled in x and upgrade left in v. Thus if u does not come up,
then x or v execute these upgrade actions. In which case a cage is formed with u inside. This satisfies the
predicate as well.

Assume that u is up. If it ever goes down, the foregoing discussion applies. The only remaining case is
if u stays up for the remainder of the computation. Observe that throughout a computation of b-Tiara a node
can come up only once. Indeed, a node comes up only if it forms a cage. Since a cage is never destroyed,
the node never goes down. This means that a node can go down only once. Let us consider the state of the
computation where u’s neighbors x and v do not change their up and down position. Observe that both x and
v cannot be simultaneously up in this state, as it enables downgrade center at u. The execution of this action
brings u down. However, we assumed that u stays up for the remainder of the computation. Thus, either x or
v are down. Assume, without loss of generality, that v is down. If w does not exist at level i− 1, one links.i
is satisfied. Assume that w exists. If link u.i.rs = w is present, one links.i is also satisfied. However, if it is
not present, then upgrade right is enabled in u. Its execution establishes the link, forms a cage and satisfies
the predicate. �

Lemma 5 Assuming that neighbor relations at level i − 1 do not change throughout the computation and
good links.i as well as one links.i are satisfied, s-Tiara stabilizes to zero left links.i and zero right links.i

Proof: We prove the lemma for zero right links.i only. The proof for the other predicate is similar. Let
us argue closure. Observe that if one links.i is satisfied processes do not go up or down. Thus, the only
actions that can be enabled are bridge and prune. The execution of either action maintains the validity of
zero left links.i. Hence the closure.

Let us address convergence. Note that the predicate is violated only if the neighbor processes u and v are
both up and they do not have a link at level i. Note that if one links.i is satisfied, u forms a cage to its left,
while v forms a cage to its right. Recall that the cages are never destroyed. Observe that in this case u has
bridge right while v has bridge left enabled. When either action is executed the predicate is satisfied. �

Lemma 6 Assuming that neighbor relation at level i − 1 does not change throughout the computation and
good links.i, one links.i, zero right links.i as well as zero left links.i are satisfied, s-Tiara stabilizes to
only good links.i

Proof: (outline) Observe that the satisfaction of good links.i, one links.i, zero right links.i and
zero left links.i leaves only one possible action enabled — prune. In this case there are links in u.i.NB
besides u.i.rs and u.i.ls and they are moved to u.0.NB. �

9



Lemma 7 If a computation of Tiara starts from a state where S(N) is connected, this computation contains
a state where B(N) is connected.

Proof: The non-trivial case is where S(N) is connected while B(N) is not. That is, the overall graph
connectivity is achieved through the links at the higher levels of Tiara. Let X and Y be two graph components
of B(N) such that they are connected in S(N). Let i > 0 be the lowest level where X and Y are connected.
Assume, without loss of generality that there is a pair of processes a ∈ X and b ∈ Y , such that a.i.rs = b.
Observe that in this case downgrade right is enabled at a. The execution of downgrade right connects X And
Y in B(N). The lemma follows. �

Define

SI ≡ (∀i : i > 0 : good links.i ∧ one links.i ∧ zero right links.i ∧ zero left links.i ∧ only good links.i)

Lemma 8 Tiara stabilizes to SI.

Proof: According to Lemma 7, every computation contains a state where B(N) is connected. Due to
Lemma 2, if B(N) is connected, b-Tiara stabilizes to GI. The remainder of the proof is by induction on the
levels of s-Tiara. Observe that if B(N) is connected and GI is satisfied the topology of the level 0 does not
change. Hence, the requisite five predicates are vacuously satisfied. Assume that these predicates are satisfied
for all levels i− 1. Note that once the predicates are satisfied, none of the actions for processes at level i− 1
are enabled. This means that the topology at this level does not change. Applying Lemmas 3, 4 5 and 6 in
sequence we establish that the five predicates are satisfied at level i. Hence the lemma. �

3.3 Stabilization of Trim in b-Tiara

Link (a, b) is independent if there exists no link (c, d) different from (a, b) such that c ≤ a and b ≤ d.
Consider an arrangement where the nodes are positioned in the increasing order of their identifiers.

Lemma 9 If a computation of b-Tiara that starts in a state where the graph is connected and contains an
independent link of non-zero length, this computation also contains a suffix of states without this link.

Proof: Let (a, b) be an independent link of non-zero length. Observe that none of the grow actions create
independent links. The only action that makes a link independent is a trim of another independent link. Thus,
if an independent link is deleted, it is never added. Thus, to prove the lemma it is sufficient to show that (a, b)
is eventually deleted.

Link (a, b) is non-zero length. This means that the node c consequent to a is not the same as b. In other
words a < c < b. Note that b-Tiara stabilizes to GI which ensures that a and c are connected. If c and
b are not connected, both of them have a grow action enabled that connects them. Observe that (a, b) is
independent. This means that all the right neighbors of a are to the left of b and all the left neighbors of b are
to the right of a. Moreover, we just showed that there exists a node c such that a < c < b and there are links
c ∈ a.R and c ∈ b.L. This means that trim right is enabled at a and trim left is enabled at b. The execution of
either action deletes (a, b). �

We define the following predicate: T I ≡ (∀a, b ∈ N :: ∃(a, b) ⇒ cnsq(a, b))

Lemma 10 If Tiara starts in a state where it satisfies GI and SI, then it stabilizes to T I

Proof: (outline) Observe that the conjunct of GI and T I is closed under the execution of b-Tiara. Note
also that if GI and SI are satisfied, then the actions s-Tiara are disabled. Hence the closure of T I.

10



Let us consider convergence. Note that since the actions of s-Tiara are disabled, they do not add links to
B(N). Observe that if T I does not hold, then there is at least one independent link of non-zero length. Note
that if the graph is connected the grow actions never create an independent link. Consider a computation of
b-Tiara that starts in an illegitimate state. Let l be the length of the longest independent link. Note that since
the state is not legitimate, l > 0. According to previous discussion, new links of length l do not appear. Let
(a, b) be the independent link of length l. According to Lemma 9, (a, b) is eventually removed. Thus, all links
of length l are eventually removed. The lemma can be easily proven by induction on l. �

The discussion in this section culminates in the following theorem.

Theorem 1 Tiara stabilizes to the conjunction of GI, SI and T I.

3.4 Tiara Stabilization Complexity Estimate

Note that in our communication model, causally independent steps are serialized. In practice, these steps are
carried out concurrently. Thus, the algorithm’s complexity cannot be computed by just counting the steps of a
computation. Instead the worst case complexity is calculated as the longest chain of causally dependent steps.
In parallel processing such measure is called critical path.

Examining the proof of Lemma 7, we observe that every two components X and Y of B(N) that are
connected through S(N) are merged in constant number of steps. Thus, B(N) is connected in at most N − 1
steps. Once B(N) is connected, according to the proof of Lemma 2, any two adjacent processes become
neighbors in O(|N |) steps. That is b-Tiara stabilizes to GI in that many steps. Observe that each node u
takes a constant number of actions before it satisfies all the five predicates used in the correctness proof of
s-Tiara. That is, it takes O(i) actions to stabilize each level i of s-Tiara after the underlying levels are stable.
Note that each level i contains at most 2/3 as many nodes as i − 1. Hence, s-Tiara stabilizes in O(|N |) as
well. Once Tiara conforms to GI and SI the only remaining actions are the removal of extra links by b-Tiara.
Note that an independent link is removed in a constant number of steps. The removal of an independent link
exposes independent links whose length is at least one less. Thus, all links will be removed in O(|N |) steps.
Therefore, Tiara stabilizes in O(|N |) steps.

4 Tiara Usage, Implementation and Extensions

Searches. Note that Tiara maintains a skip list [23, 20] which is equivalent to a distributed balanced search
tree. Hence the searches in Tiara proceed similar to searches such trees. Let b be a right neighbor of a at some
level i of Tiara. The right interval of a, denoted [a, b), is the range of identifiers between a and b. Left interval
is defined similarly. If a does not have a right neighbor, its interval is not finite. That is, a’s interval contains
all process identifiers greater than a. Similarly, if a lacks left neighbor it’s interval is infinite on the left. Thus
in any level, the collection of intervals contains the complete range of identifiers.

Suppose a, c and b are consequent at level i − 1 of Tiara and a and b are consequent at level i. That is
c is in the cage. Since the identifiers are sorted, c belongs to the interval [a, b). Note also that if a node is
down, then one if its neighbors is up. Thus a client process that has a pointer to a node in Tiara and wishing
to advance up the skip list only needs to examine the node’s neighbors.

Assuming that a client process connects to an arbitrary node in Tiara, the search proceeds first upward
then downward the skip list. In the upward phase, the client is moving up the list looking for the node whose
interval contains the identity. Since every level contains the complete id-range, this phase terminates. Once
the range is found, the client advances downward evaluating the cages it encounters to narrow the search
range. This procedure continues until the desired node x is located or it is established that x belongs to the
interval of the consequent nodes at the bottom level. The latter case means that x is not present in the system.

11



Note that there are O(log|N |) levels in Tiara. Thus, the upward and the downward phases take O(log|N |)
number of steps.

Joins and leaves. We assume that each process has two read-only Boolean variables maintained by the
environment: join and leave. Note that since the variables are read-only, stabilization of their operation is
the responsibility of the environment. Let us consider join operation first. The joining node x connects to an
arbitrary node of the network. The variable join is set to true. We assume that the environment may only set
join to false after the node successfully inserts itself at the bottom level of Tiara. The joining node executes
a search to find the bottom level interval [a, b) to which it belongs. Then, x makes a and b its right and left
neighbors respectively. After a and b discover the presence of a node whose join is set to true, they remove
link (a, b). Then, the upper levels of Tiara adjust. Observe that the insertion of the node at the bottom level
entails at most a constant number of steps at each level of Tiara. Since the search takes at most O(log|N |)
steps, the total number of steps required for node join is also in O(log|N |).

Let us discuss the leave operation. The environment sets leave to true to indicate that the node x requests
disconnect. Note that we assume that leave cannot be set when join is set and it cannot be set back to false
until the node disconnects. When the right and left neighbors of x notice that the leave of x is set to true, the
neighbors add a link bypassing x at the bottom level. Node x can then disconnect. The higher levels of Tiara
execute the regular Tiara actions to accommodate the missing node. Observe that at most a constant number
of adjustment steps is required at each level. Hence the total number of steps required for the node to leave
Tiara is in O(log|N |).

Crash resistance. Observe that Tiara can be separated into disconnected components by the crash of even
a single process. Tiara can be fortified against separation due to crashes in the following manner. At the
bottom, each process maintains a crash-redundancy link to its right neighbor’s neighbor. That is, the bottom
level list becomes doubly connected. Thus, it can tolerate a single crash. The crash tolerance can be further
improved by adding similar links to more distant processes. Since these links only span a fixed number of
processes, their construction does not affect the asymptotic complexity of stabilization of Tiara. Note that in
an asynchronous model there is no reliable way to distinguish a crashed process from a slow one [15]. Thus,
to accomplish this, the processes need to be equipped with failure detectors [9, 10]. A failure detector alerts
the process if its neighbor crashes. Then, Tiara stabilizes to a legitimate state corresponding to the system
without the crashed process.

Extension to ring. Tiara can be extended to a ring structure similar to Chord [27]. The idea is as follows. For
b-Tiara, as well as for each level of s-Tiara, the lowest id-process needs to add a special wraparound link to
the highest-id process. This wraparound link maintenance is carried out by the process without left neighbors.
After b-Tiara and s-Tiara stabilize, the lowest-id process at each level is the only such process. Note that the
highest-id process at each level is the only process without right neighbors.

Once the process determines that it has no left neighbors it starts positioning the wraparound link. Essen-
tially, the process continues to move the link to a right neighbor of the destination of the link. Note that this
movement stops once the wraparound link reaches the highest-id process at that level. If the maintainer of the
wraparound link determines that it has left neighbors, it destroys its wraparound link. Note that this link can
be established in O(|N |) steps. Hence, the stabilization of the ring extension to Tiara is still linear.

Implementation in lower atomicity and message passing. Note that we present Tiara in a relatively high
atomicity model. The atomicity can be refined by using a stabilizing solution to dining philosophers. A solu-
tion to dining philosophers problem synchronizes the execution of high atomicity actions such that the actions
of neighbor processes are not executed concurrently. Such execution is equivalent to sequential execution of

12



high atomicity actions. Note that if a dining philosophers program is self-stabilizing, regardless of the initial
state, it eventually starts operating correctly. Which then allows Tiara to stabilize and perform correctly.

There is a large number of dining philosopher programs described in the literature. Refer to this recent
article [12] for a comprehensive list of references to self-stabilizing dining philosophers programs. For ex-
ample, Nesterenko and Arora [21] demonstrate a dining philosophers program that refines atomicity from a
model similar to the one we use. Specifically, the program refines the model where a process can atomically
read its neighbors variables and update its own to the model where a process can either read the variables
of one of its neighbors or update its own. The authors describe how the solution can be further refined into
message-passing system.

Other efficiency improvements. There is a number of modifications to Tiara that make its implementation
operate more efficiently and be useful in wider areas of application.

Note that at each level of Tiara, up to two out of three nodes may be promoted to the next level. Although
the number of levels is logarithmic with respect to the system size, it may still be relatively large. The number
of levels may be decreased by modifying Tiara to promote fewer nodes. For example, we can allow the nodes
at level i to skip up to two or three neighbors at level i − 1. Note that this would require for each node to
maintain data about its extended neighborhood.

Observe that the grow operation of b-Tiara may force a process to acquire up to O(|N |) neighbors during
stabilization. This may require devoting extensive memory resources of each node to neighborhood mainte-
nance. A simple way to mitigate it is to execute trim operations before grow. That is, if a process finds that it
has both trim and grow actions enabled. It executes trim. Note that care must be taken to ensure that action
execution is still weakly fair.

5 Future Work

We presented Tiara — a first deterministic self-stabilizing peer-to-peer system with a logarithmic diameter. It
provides a blueprint for a realistic system that is ready to be implemented. We envision several directions of
extending this work: further efficiency improvements, such as keeping the runtime and the degree of the self-
stabilization process low, and adding features required by practical systems. One interesting area to explore
designing self-stabilizing algorithms for overlay networks that are guaranteed to have both small diameter
and high expansion. This task is far from trivial as the known non-stabilizing algorithms that satisfy these
properties (e.g., [5, 6]) appear to require complicated self-stabilization mechanisms. A desirable scalability
property of peer-to-peer networks is low congestion — the ability to handle multiple concurrent search re-
quests. Another important property is resistance to churn — continuous leaving and joining of nodes. Thus,
lowering Tiara’s congestion and improving its resistance to churn is a significant avenue of future research.

13



References

[1] Luc Onana Alima, Seif Haridi, Ali Ghodsi, Sameh El-Ansary, and Per Brand. Position paper: Self-
.properties in distributed k-ary structured overlay networks. In Proceedings of SELF-STAR: Interna-
tional Workshop on Self-* Properties in Complex Information Systems, volume 3460 of Lecture Notes in
Computer Science. Springer, May 2004.

[2] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Resilient overlay networks.
In SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems principles, pages
131–145, New York, NY, USA, 2001. ACM.

[3] James Aspnes and Gauri Shah. Skip graphs. In SODA ’03: Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 384–393, Philadelphia, PA, USA, 2003. Society for
Industrial and Applied Mathematics.

[4] B. Awerbuch and C. Scheideler. Group Spreading: A protocol for provably secure distributed name
service. In Proc. of the 31st International Colloquium on Automata, Languages and Programming
(ICALP), 2004.

[5] Baruch Awerbuch and Christian Scheideler. The hyperring: a low-congestion deterministic data structure
for distributed environments. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 318–327, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[6] Ankur Bhargava, Kishore Kothapalli, Chris Riley, Christian Scheideler, and Mark Thober. Pagoda: a
dynamic overlay network for routing, data management, and multicasting. In SPAA ’04: Proceedings of
the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, pages 170–179,
New York, NY, USA, 2004. ACM.

[7] Silvia Bianchi, Ajoy Datta, Pascal Felber, and Maria Gradinariu. Stabilizing peer-to-peer spatial filters.
In ICDCS ’07: Proceedings of the 27th International Conference on Distributed Computing Systems,
page 27, Washington, DC, USA, 2007. IEEE Computer Society.

[8] Eddy Caron, Frédéric Desprez, Franck Petit, and Cédric Tedeschi. Snap-stabilizing prefix tree for peer-
to-peer systems. In Toshimitsu Masuzawa and Sébastien Tixeuil, editors, Stabilization, Safety, and
Security of Distributed Systems, 9th International Symposium, SSS 2007, Paris, France, November 14-
16, 2007, Proceedings, volume 4838 of Lecture Notes in Computer Science, pages 82–96. Springer,
2007.

[9] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685–722, 1996.

[10] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Communica-
tions of the ACM, 43(2):225–267, 1996.

[11] Curt Cramer and Thomas Fuhrmann. Isprp: a message-efficient protocol for initializing structured p2p
networks. In IPCCC 2005: Proceedings of the 24th IEEE International Performance Computing and
Communications Conference, pages 365–370. IEEE, April 2005.

[12] P. Danturi, M. Nesterenko, and S. Tixeuil. Self-stabilizing philosophers with generic conflicts. In
Proceedings of the 8th International Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 213–230, Dallas, TX, November 2006.

14



[13] Danny Dolev, Ezra Hoch, and Robbert van Renesse. Self-stabilizing and byzantine-tolerant overlay
network. In OPODIS 2007: Proceedings of the 11th International Conference on the Principles of
Distributed Systems, volume 4878 of Lecture Notes in Computer Science, pages 343–357. Springer,
December 2007.

[14] Shlomi Dolev and Ronen I. Kat. Hypertree for self-stabilizing peer-to-peer systems. Distributed Com-
puting, 20(5):375–388, 2008.

[15] M.J. Fischer, N.A. Lynch, and M.S. Patterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, April 1985.

[16] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skipnet:
a scalable overlay network with practical locality properties. In USITS’03: Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and Systems, pages 9–9, Berkeley, CA,
USA, 2003. USENIX Association.

[17] Nicholas J. A. Harvey and J. Ian Munro. Deterministic skipnet. Inf. Process. Lett., 90(4):205–208, 2004.

[18] Thomas Hérault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, and Joffroy Beauquier. Brief an-
nouncement: Self-stabilizing spanning tree algorithm for large scale systems. In SSS 2006: Proceedings
of the 8th International Symposium on Stabilization, Safety, and Security of Distributed Systems, volume
4280 of Lecture Notes in Computer Science, pages 574–575. Springer, November 2006.

[19] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic emulation of the
butterfly. In PODC ’02: Proceedings of the twenty-first annual symposium on Principles of distributed
computing, pages 183–192, New York, NY, USA, 2002. ACM.

[20] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic skip lists. In SODA ’92: Pro-
ceedings of the third annual ACM-SIAM symposium on Discrete algorithms, pages 367–375, Philadel-
phia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[21] M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement. Journal of Parallel and
Distributed Computing, 62(5):766–791, 2002.

[22] Melih Onus, Andréa W. Richa, and Christian Scheideler. Linearization: Locally self-stabilizing sorting
in graphs. In ALENEX 2007: Proceedings of the Workshop on Algorithm Engineering and Experiments.
SIAM, January 2007.

[23] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33(6):668–676,
1990.

[24] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scalable content-
addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 161–172, New York, NY, USA,
2001. ACM.

[25] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Rachid Guerraoui, editor, Middleware 2001, IFIP/ACM Inter-
national Conference on Distributed Systems Platforms Heidelberg, Germany, November 12-16, 2001,
Proceedings, volume 2218 of Lecture Notes in Computer Science, pages 329–350. Springer, 2001.

15



[26] Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology p2p systems. In P2P
’05: Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing, pages 39–46,
Washington, DC, USA, 2005. IEEE Computer Society.

[27] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, and
Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw., 11(1):17–32, 2003.

6 Appendix

6.1 Ring Component of Tiara (r-Tiara)

process u
variables

u.0.NB , set of neighbor processes of u.
u.0.WA, wraparound link set

shortcuts
u.0.L ≡ {s : s ∈ u.NB : s < u}, u.0.R ≡ {s : s ∈ u.NB : s > u}

actions
wrap: (u.0.L = ∅) ∧ (u.0.WA = ∅) ∧ (u.0.R 6= ∅) −→

u.0.WA := {s|s ∈ u.0.R : (∀z : z ∈ u.0.R : z ≤ s)}
extend: (u.0.L = ∅) ∧ (t ∈ u.0.WA ∪ u.0.R) ∧ (s, t : (s ∈ t.0.R ∪ u.0.R) : (∀z : z ∈ u.0.WA : s > z)) −→

u.0.WA := u.0.WA ∪ {s}
purge: (u.0.L = ∅) ∧ (s : s ∈ u.0.WA : (∃z : z ∈ u.0.WA : u < s < t)) −→

u.0.NB := u.0.NB ∪ {s},
u.0.WA := u.0.WA/{s}

expunge: (u.0.L 6= ∅) ∧ (s : s ∈ u.0.WA : s > u) −→
u.0.NB := u.0.NB ∪ {s},
u.0.WA := u.0.WA/{s}

Figure 7: The ring component of Tiara (r-Tiara)

Description. We describe the operation of r-Tiara at the bottom level, although it would execute on all levels.
The objective of r-Tiara is to construct a ring on the level. This ring is established by connecting the lowest-id
process on the level to the highest-id process on the level, which is respectively min(N) and max(N) on the
bottom level. The code for r-Tiara is shown in Figure 7. In addition to the neighbor set, r-Tiara maintains a
wraparound set (u.0.WA). Each process u has four actions: wrap, extend, purge and expunge. Action wrap
is enabled at the lowest-id process. Specifically, wrap is enabled if u does not have left neighbors, has a right
neighbor, and currently is not participating in a wraparound link. In this case, u adds the rightmost process it
has in its neighborhood to a wraparound variable. Action extend grows the wraparound link towards max(N)
on the bottom level. This action adds to the wraparound set a neighbor of u or a neighbor of a neighbor of u
that has an identifier greater than any process id already in the wraparound set. When superfluous links exist
in the wraparound variable, they are removed by the purge action. In the case where u gains a left neighbor
and is currently maintaining the wraparound variable, action expunge removes all links to the right of u from
the wraparound variable. Note that both purge and expunge move links to the neighbor variable to prevent the
possibility of partitioning the graph. The operation of r-Tiara on the bottom level is illustrated in Figure 8.

Correctness proof. We denote R(N) the graph induced by the processes, the b-Tiara links (the level 0 s-Tiara

16



•a •b •c •d •e

(a) wrap is enabled at a and
grow right is enabled at c. The
wraparound link (a, c) is estab-
lished and link (c, d) is added.

•a •b •c •d •e

(b) expunge is enabled at d, trim
right is enabled at c, trim left at e
and grow left is enabled at c. The
wraparound link (d, e) is moved to
d.0.NB . Link (c, e) is removed.
Link (b, c) is added.

•a •b •c •d •e

(c) extend is enabled at a, trim
right is enabled at a and trim left is
enabled at c. The wraparound link
is extended to d and link (a, c) is
removed.

•a •b •c •d •e

(d) extend is enabled at a, which
extends the wraparound link to e.

•a •b •c •d •e

(e) purge is enabled at a. Links
(a, c) and (a, d) are moved to
a.0.NB .

•a •b •c •d •e

(f) The system has reached
a legitimate state with only
one wraparound link and
min(N).0.WA = max(N).

Figure 8: Example computation of r-Tiara. The processes are listed in increasing order of their identifiers.
Note that not all enabled actions are listed.

links) and the wraparound links. We define the following predicate

RI ≡ (min(N).0.WA = max(N)) ∧
(∀a ∈ N : (a 6= min(N)) ∧ (a 6= max(N))) : a.0.WA = ∅)

That is, RI states that the only wraparound link that the bottom level has connects the nodes with the largest
and smallest identifiers.

Lemma 11 If a computation of b-Tiara, s-Tiara and r-Tiara starts from a state where B(N) is connected, it
stabilizes to GI ∧ SI ∧ RI.

Proof: Let us address the closure first. Note that we have to consider the influence of the actions of r-Tiara
on GI since some of them modify the variables of b-Tiara. Fortunately, purge and expunge are the only such
actions. Moreover, they cannot invalidate GI since they only add links to the neighborhood of a node and
do not remove them. The actions of r-Tiara do not influence SI. Let us attend to the closure of RI. Note
that if GI ∧ SI ∧ RI is satisfied, the only node on the bottom level that has an empty left neighborhood
is a = min(N). Thus, only a may have wrap and extend enabled. Yet, RI stipulates that the wraparound
variable of a is not empty. Thus, wrap is disabled whenRI holds. Note also that ifRI holds, the wraparound
link connects a and b = max(N). Node b has an empty right neighborhood (b.0.R). Thus, extend is also
disabled at a. Let us discuss expunge. If RI holds, b is the only node whose left neighborhood is not empty
yet b.0.WA 6= ∅. However, for b, b.0.WA = a which is less than b. Hence, expunge is disabled as well.
Action purge is disabled by definition if RI holds.

Let us now address the convergence of the predicates. Note that r-Tiara does not affect the convergence
of GI or SI as it can only add links to a node’s neighborhood but not remove them. Thus, we can prove the
convergence ofRI while GI∧SI is satisfied. Observe that if a = min(N) on the bottom level does not have
a wraparound link, wrap is enabled. The execution of wrap creates this link. No other wraparound links can be
created. That is, if a computation starts from a state where a has a wraparound link, the number of wraparound
links in the states of this computation can only decrease. Consider a wraparound link whose left (smaller)
incident link is not a. Observe that expunge is enabled at this node. The execution of expunge removes such
link. That is, each computation contains a suffix where a is incident to the only existing wraparound link.
Note that if b = max(N) on the bottom level is not incident to this link, extend is enabled at a. Note that if

17



extend is executed the identifier of the right incident node increases. Thus, the computation contains a state
where b is incident to this link. If b ∈ a.0.WA and a.0.WA 6= b, then purge is enabled at a. When executed
only b will remain in a.0.WA.

That is, if GI ∧ SI is satisfied, a computation of r-Tiara contains a suffix where in each state there is a
single wraparound link that connects processes with the minimum and maximum ids on the level. That is
r-Tiara converges to RI. �

Lemma 12 If a computation of b-Tiara, s-Tiara and r-Tiara starts from a state where R(N) is connected,
this computation contains a state where B(N) and S(N) are connected.

Proof: (outline) The only non-trivial case is where the computation of b-Tiara, s-Tiara and r-Tiara start
from a state in which R(N) is connected while B(N) and S(N) are not. That is, the overall graph connectivity
is achieved via wraparound links.

Let X and Y be two disconnected graph components of B(N) and S(N) such that there is a pair of
processes a ∈ X and b ∈ Y and a.0.WA = b. Let us consider each component as a separate system.
According to Lemma 11, r-Tiara arrives at a state where the only existing wraparound link connects the
processes with the smallest and largest identifiers in each component. That is link (a, b) is no longer a
wraparound link. Note that r-Tiara does not delete the wraparound links. Instead, it moves them to B(N).
Thus, the computation contains a state where the (a, b) link belongs to B(N). That is, the graph components
X and Y are connected. The lemma follows. �

Lemmas 11 and 12 combined yield the following lemma

Lemma 13 If a computation of b-Tiara and s-Tiara with r-Tiara starts from a state where R(N) is connected,
it stabilizes to GI ∧ SI ∧ RI.

18


