
Propagation of Information with Feedback
on Trees:

The Proof of Ideal Stabilization

Mikhail Nesterenko1 and Sébastien Tixeuil2

1 Kent State University
2 Université Pierre et Marie Curie - Paris 6

Technical report TR-KSU-CS-2012-01, Kent State University

Abstract. We describe an program that implements propagation of in-
formation with feedback on rooted trees and prove it ideally and self-
stabilizing.

1 Algorithm Description

We describe a program PIF that ideally stabilizes to the propagation of informa-
tion with feedback [1, 3] specification. This description is meant as a companion
for the PIF presentation in the paper that introduced ideal stabilization [2].
Therein, the program was presented for chain topologies only. This paper ex-
pands the presentation and proof for arbitrary rooted trees. Refer to the original
paper [2] for motivation, terminology and notation used in this paper.

The program is designed for rooted trees. A root is an arbitrary distinguished
process in the tree. A non-root process with a single neighbor is leaf. Processes
that are neither roots nor leaves are intermediate. For each process u, all pro-
cesses that lie on the path from u to the root are ancestors of u. Process v is
a descendant of process u, if u is an ancestor of v. Observe that the root is the
ancestor of the all other nodes while all of them are the root’s descendants. A
parent of a process is its nearest ancestor. The height of a process is the distance
to this node’s farthest descendant. A child of a process is its nearest descendant.
A process may have only one parent but many children. A causality chain for
a leaf is the path of its ancestors to the root. For any two leaves the causality
chains have at least one process, the root, in common. Once we are reasoning
about a particular causality chain, we assume that it is laid out horizontally with
the root located on the left and the leaf on the right.

The tree is organized as follows. Each process has unique identifier through-
out the system. For each process, one neighbor’s identifier is designated as its
parent. This topological designation is constant and incorruptible. If there is no
parent, the process is the root. As a shorthand, we assume that the root just
has identifier root; a leaf’s identifier is leaf , each process u has set of neighbors
Ch.u that are its children and a constant parent.

Each process has a state variable st. In the intermediate processes, the vari-
able may hold one of the three values: i, rq, rp which stand respectively for idle,



requesting and replying. The root can only be idle or requesting while a leaf can
be either idle or replying.

The objective of the program is to send a signal from the root to the leaves
and, in return, receive an acknowledgment that matches this signal. Opera-
tionally, the program should ensure that after the root makes a request then
intermediate processes propagate this request in causally ordered steps along
each causality chain transitioning from idle to requesting. Afterwards, the in-
termediate processes propagate the replys from each leaf back to the root in
casually ordered steps transitioning from requesting to replying.

We define the following state predicates. For each causality chain whose
length is N , RP (k) are the specification states where all k processes on the
left are requesting (k = 1, N − 1) and the rest of the processes are replying.
RQ(l,m) are the specification states where all l processes on the left are request-
ing (l = 0, N − 1) and all m− l processes following them are idle (m = l +1, N),
while the remaining processes are replying. The two predicates are mutually
exclusive. Specification SPIF includes the sequences where, for each causality
chain, the system satisfies one of the predicates and transitions from one to the
other infinitely.

Observe that a step of the root moves the chain from RP to RQ while a
step of the leaf moves the chain back from RQ to RP . Since the root is present
in each causality chain, the transition from RP to RQ happens in all chains
simultaneously, the transition back to RP may differ for each individual chain.

Let us define another pair of predicates. Predicate RP ′(k) defines the states
where k processes on the left are requesting (k = 1, N − 1), the process k + 1 is
replying and the state of the other processes is arbitrary. Notice that RP (k) ⊂
RP ′(k). Predicate RQ′(l,m) are the states where all l processes on the left are
requesting (l = 0, N − 1), all m− 1 following them are idle (m = l + 1, N) and
the state of the other processes is arbitrary. Similarly, RQ(l,m) ⊂ RQ′(l, m).
Specification IPIF includes the sequences where the system always satisfies
either RP ′(k) or RQ′(l, m), each sequence has a sequence in SPIF as a suffix
and the transition from RQ′(l,m) is only to RP (k).

We now describe program PIF . It has only external variables. The mapping
between the program and specification states is identical. The actions of PIF
are shown in Figure 1.

2 Correctness Proof

Lemma 1. For any causality chain in the tree, predicate RQ(l,m) ∨ RP (k) is
closed in PIF .

Proof: (Sketch) Notice that the actions of the processes outside the partic-
ular causality chain do not have their variables in the predicate and, therefore,
cannot affect it. The closure can then be ascertained by examining the actions
of processes in the causality chain. If the program state conforms to RQ(l,m),
then the execution of any of the enabled action of a process in this chain moves
the system to a state that conforms to either RQ(l,m) or to RP (k). �

2



request : st.root = i ∧ (∀q ∈ Ch.root : st.q = i) −→ st.root := rq
clear : st.root = rq ∧ (∀q ∈ Ch.root : st.q = rp) −→ st.root := i
forward : st.parent = rq ∧ st.p = i ∧ (∀q ∈ Ch.p : st.q = i) −→ st.p := rq
back : st.parent = rq ∧ st.p = rq ∧ (∀q ∈ Ch.p : st.q = rp) −→ st.p := rp
stop : st.parent = i ∧ st.p 6= i −→ st.p := i
reflect : st.parent = rq ∧ st.leaf = i −→ st.leaf := rp
reset : st.parent = i ∧ st.leaf = rp −→ st.leaf := i

Fig. 1. PIF program actions. Actions request and clear belong to the root process;
actions forward, back, and stop – to an intermediate processes; actions reflect and reset
– to a leaf.

Lemma 2. For any causality chain, if a computation of PIF starts in a state
conforming to RQ(l,m), this computation also contains a state satisfying RP (k).

Proof: Suppose that initially the program state satisfies RQ(l,m). We show
that if l < N − 1, eventually both l and m are incremented. If m < N , stop
is enabled at process m + 1 in the causality chain. The execution of this action
increments m in RQ(l,m).

The case of l is a bit more involved. If l = 0, the root is idle. The children of
the root may or may not be idle. However, if there is a process q ∈ Ch.root such
that st.q 6= i, then stop is enabled in q. The execution of this action transitions q
to idle. Once all of the root’s children are idle, its request action is enabled. If it is
executed, root transitions to requesting state which increments l. Let us examine
the case of 0 < l < N − 1. If PQ(l,m) is satisfied, process pl+1 and its parent
are idle. Similar to the case of the root, if pl+1 is idle, stop is enabled in its each
child that is not idle. Once, every child executes stop, forward becomes enabled
in pl+1. If this action is executed, pl+1 becomes requesting and l is incremented.
That is, if a state of the causality chain satisfies RQ(l,m) both l and m are
eventually incremented.

If l = N − 1 and RQ(l,m) is satisfied, all processes in the causality chain
but the leaf are requesting while the leaf is idle. In this case reflect is enabled
in the leaf. The execution of this action moves the leaf to the replying state.
In this case, the causality chain satisfies RP (k) with k = N − 1. That is, the
computation that starts in a state that satisfies RQ(l,m) also contains the state
satisfying RP (k) �

Lemma 3. For any causality chain, if a computation of PIF starts in a state
conforming to RQ′(l,m), this computation also contains a state satisfying RP (k).

The proof of this lemma is similar to the proof of Lemma 2.

Lemma 4. For any causality chain in the tree, if a computation of PIF starts
in a state conforming to RP (k), it contains a state conforming to RQ(l,m).

Proof: We first demonstrate that if the computation starts in a state where
the causality chain satisfies RP (k) with k > 1, then it also contains a state where

3



k is decremented. We do it by strong induction on the height of all causality
chains in the tree. Specifically, we show that every causality chain of length N
reaches a state where the process whose distance from the leaf is N − k + 1 is
replying. The base case of the distance being zero, i.e. k = N − 1, means that
only leaf is replying. It follows from Lemma 2.

Let us assume that every process at height at least N − k is replying. Let us
consider a process p that is not replying and whose height N −k +1. The height
of all children of p is at most N − k. Due to the assumption, there is a state in
this computation where every child of p is replying. Since the chain conforms to
RP (k), both p and parent.p are requesting. replying. In this case, back action is
enabled in p. Once executed, p is replying. By induction this proves our claim.

From this claim, it follows that this computation contains a state where all
children of the root process are replying. Since this state conforms to RQ(k),
The root is requesting. In this case, action clear is enabled in the root process.
Once, executed, all causality chains of the system transition to RQ(0, 1). Hence,
the lemma. �

Lemma 5. For any causality chain in the tree, if a computation of PIF starts
in a state conforming to RP ′(k), it contains a state conforming to RQ(l,m)

The proof of this lemma is similar to the proof of Lemma 4

Theorem 1. PIF classically stabilizes to SPIF and ideally stabilizes to IPIF .

Proof: Specification SPIF requires that for every causality chain in the tree,
the solution should remain in the disjunction of the predicates RQ(l,m) and
RP (k) and infinitely transition from one to the other. According to Lemma 1, the
disjunction of predicates is closed in PIF . According to Lemmas 2 and 4, if the
computation starts in a state conforming to one of the predicates, it transitions
to the other. Hence, the disjunction of the predicates is the invariant of PIF
with respect to SPIF .

Observe that for every causality chain, the disjunction of predicates RQ′(l,m)∨
RP ′(k). That is, it contains the program and specification state space. According
to Lemma 3, if a computation of PIF starts in a state conforming to RQ′(l,m),
then it also contains a state satisfying RP (k). Similarly, due to Lemma 5, if
PIF starts from a state conforming to RP ′(k), it transitions to RQ(l,m).This
means that the program stabilizes to SPIF and ideally stabilizes to IPIF . �

References

1. Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general graphs.
IEEE Transactions on Software Engineering, 8(4):391–401, July 1982.

2. Mikhail Nesterenko and Sébastien Tixeuil. Ideal stabilization. In AINA, pages
224–231, March 2011.

3. A. Segall. Distributed network protocols. IEEE Transactions on Information The-
ory, IT-29(1):23–35, January 1983.

4


