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Abstract

We study distributed linearization or topological sorting in peer-to-peer networks. We define strict
and eventual versions of the problem and consider these problems with and without input identifiers
that do not exist in the system. None of these problems are solvable in the asynchronous message-
passing systems. We define a collection of oracles and prove which oracle combination is necessary to
enable a solution in the message-passing systems for each variant of the linearization problem. We then
present a linearization algorithm. We prove that this algorithm and a specific combination of oracles
solves each stated variant of the linearization problem.
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1 Introduction

Problem definition. Construction of structured peer-to-peer systems in asynchronous systems appears
to have fundamental limitations such as inability to connect a disconnected network or discard peer
identifiers that are not present in the system [17]. In this paper we endeavor to systematically study
these limits and delineate the impossible from the achievable. We pattern our work after the classic
impossibility of crash-robust consensus [10] and resolving it with failure detector oracles [4, 5].

We state the linearization (topological sort) problem requiring each process p to determine its two
peers whose identifiers are consequent to p. Similar to the relationship between consensus and agreement
problems, linearization is a basic task required for most popular peer-to-peer systems construction [1, 2,
14, 15, 16, 19, 20]. On the other hand, linearization is simple enough problem to see how the results
established for linearization are applicable of peer-to-peer systems in general.

Similar to consensus, we define two variants of the problem: strict linearization, where each process has
to output its consequent identifiers exactly once; and eventual linearization where a process may make a
finite number of mistakes in its output. We introduce a restriction that is specific to peer-to-peer systems:
the initial input may contain only process identifiers that exist in the system. We study the linearization
problems with and without this restriction, i.e. we consider four different linearization problem variants.
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Our contribution. We show that none of the four variants of the linearization problem are solvable
in the asynchronous message-passing systems. Analogous to the consensus problem, we use the concept
of oracles that encapsulate the impossible. We define the weak connectivity oracle that detects that
the system is disconnected and restores its connectivity. We show that this oracle is necessary to solve
all four variants of the problem. We define the participant detector oracle that removes non-existent
identifiers from the system. We then show that this oracle is necessary to solve the linearization problem
that allows non-existent identifier input. We define the oracle property of subset splittability. Intuitively,
a subset splittability oracle does not provide information about the state of the outside system to a
particular subset of processes. We then prove that non-subset splittable oracle is necessary to solve strict
linearization.

On the constructive side, we present a linearization algorithm and show that it solves each variant
of the linearization problem with a particular combination of oracles. Specifically, our algorithm solves
eventual linearization problem with existent identifiers using only weak connectivity oracle; the addition
of participant detector oracle enables solution to the problem with non-existent identifiers. Taken together
with the necessary results, this demonstrates that the particular combinations of oracles are necessary
and sufficient to solve the variants of the linearization problem with existing identifiers. We define the
consequent detector oracle, a specific non-subset splittable oracle that can output consequent identifier
once the process stores it in its memory. We then show that using the consequent detector oracle our
algorithm solves the strict linearization problem. These results are summarized in Figure 2.

Related literature. Onus et al [18] recognize the importance of linearization as a fundamental problem
in peer-to-peer system construction and study it in the context of self-stabilization [7, 21]. Gall et al [11]
consider linearization performance bounds. In the impossibility part of their work, Mohd Nor et al [17]
outline the limits of solvability of peer-to-peer problems in the message-passing systems. Emek et al [9]
study various definitions of connectivity for overlay networks. There are several studies on participant
detectors [3, 13] for consensus.

2 Notation and Execution Model

Peer-to-peer systems. A peer-to-peer overlay system consists of a set N of processes with unique
identifiers. When it is clear from the context we refer to a process and its identifier interchangeably. A
process stores other process identifiers in its local memory. Once the peer identifier is stored, the process is
able to communicate with its peer by sending messages to it. Message routing is handled by the underlying
network. We thus assume that the peers are connected by a communication channel. Processes may store
identifiers of peers that do not exist in the system. If a message is sent to such non-existent identifier it
is discarded. A process a forwards identifier b to process c, if a sends message containing identifier b to
process c and erases b from its memory.

The peer identifiers are assumed to be totally ordered, i.e. for any two distinct identifiers a and b,
either a < b or a > b. Two processes a and b of set N are consequent, denoted cnsq(a, b) if any other
process that belongs to N is either less than a or greater than b. Negative infinity is consequent with
the smallest process of N and positive infinity is consequent with the largest process. Note that the total
order of identifiers implies that if two non-identical sets are merged, the consequent process changes for
at least one process in each set.

Graph terminology helps in reasoning about peer-to-peer systems. A link, denoted (a, b), between a
pair of identifiers a and b is defined as follows: either message message(b) carrying identifier b is in the
incoming channel of process a, or process a stores identifier b in its local memory. Thus defined link is
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directed. When referring to link (a, b), we always state the predecessor process first and the successor
process second.

A channel connectivity multigraph CC includes both locally stored and message-based links. Self-
loop links are not considered. Links to non-existent identifiers are not considered. Note that besides
the processes CC may contain two nodes +∞ and −∞ and the corresponding links to them. Graph
CC reflects the connectivity data that is stored in the process memory and, implicitly, in communication
channels messages.

Computation model. Each process contains a set of variables and actions. A channel is a special kind
of variable whose values are sets of messages. That is, we consider non-FIFO channels. The channels
may contain an arbitrary number of messages, i.e. the channels are unbounded. We assume that the only
information any message can carry is process identifiers. We further assume that each message carries
only one identifier. Message loss is not considered. Since message order is unimportant we consider all
messages sent to a particular process as belonging to the single incoming channel of this process.

An action has the form 〈guard〉 −→ 〈command〉. guard is either a predicate over the process variables
or the incoming channel or true. In the latter case the predicate and its action are timeout. command
is a sequence of statements assigning new values to the variables of the process or sending messages to
other processes.

Program state is an assignment of a value to every variable of each process and messages to each
channel. An action is enabled in some program state if its guard is true in this state. The action is
disabled otherwise. A timeout action is always enabled.

A computation on a set N of processes is an fair sequence of states such that for each state si, the next
state si+1 is obtained by executing the command of an action the the processes of N that is enabled in si.
This disallows the overlap in action execution. That is, the action execution is atomic. The computation
is either infinite or it ends in a state where no actions are enabled. This execution semantics is called
interleaving semantics or central demon [8]. We assume two kinds of fairness: weak fairness of action
execution of fairness of message receipt. Weak fairness of action execution means that if an action is
enabled in all but finitely many states of the computation, then this action is executed infinitely often.
Fair message receipt means that if the computation contains a state where there is a message in the
channel, this computation contains a later state where this message is no longer in the channel. Besides
the fairness, our computation model places no bounds on message propagation delay or relative process
execution speed, i.e. we consider fully asynchronous computations.

Computation suffix is the sequence of computation states past a particular state of this computation.
In other words the suffix of the computation is obtained by removing the initial state and finitely many
subsequent states. Note that a computation suffix is also a computation.

We consider algorithms that do not manipulate the internals of process identifiers. Specifically, an
algorithm is copy-store-forward if the only operations that it does with process identifiers is comparing
them, storing them in local process memory and sending them in a message. That is, operations on
identifiers such as addition, radix computation, hashing, etc. are not used. In a copy-store-forward
algorithm, if a process does not store an identifier in its local memory, the process may learn this identifier
only by receiving it in a message. A copy-store-forward algorithm can not introduce new identifiers to the
system, it can only operate on the ids that are already there. If a computation of a copy-store-forward
algorithm starts from a state where every identifier is existing, each state of this computation contains
only existing identifiers.

Oracles. An oracle is a specialized set of actions used to abstract a problem in distributed computing.
The actions of a single oracle may be defined in multiple processes. An oracle action of a process may
mention the state of variables of other processes and even the global state of the whole system.
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An oracle is subset splittable for a linearization algorithm A if there exists two non-intersecting set
of processes S1 and S2 as well as a computation σ1 on S1 of A and state s2 of processes in S2 with the
following property. If an oracle is enabled in some state s1 of processes of S1 of σ1, this oracle is also
enabled in s1∪s2. That is, if the processes of S2 in state s2 are added to s1, the oracle still remains enabled.
An oracle is just subset splittable, if it is subset splittable for any linearization algorithm. Intuitively,
subset splittability prevents a subset of processes from learning about the state of the rest of the system
on the basis of an oracle. Subset splittable and not-subset splittable oracles are respectively denoted as
SS and NSS.

A linearization algorithm is proper if it satisfies the following requirements.

• If a process a has identifiers b and c, such that a < b < c then process a forwards c to b. The
requirement is similar in the opposite direction. That is, process forwards identifier closer to its
destination.

• A process that does not contain identifiers to its right or left is orphan. A process does not orphan
itself. That is, the process does not discard its only single left, or single right, identifier. Note that
oracle actions may still orphan the process.

3 The Linearization Problem and Solution Oracles

Linearization problem statement. The linearization problem is stated as follows. Each process p of
a given set N of processes, is input a left l and a right r neighbor such that l < p and r > p. These values
may be −∞ and +∞ respectively. The communication channels are empty. In the solution, each process
should output two identifiers: cl and cr such that each is consequent with p. The smallest process should
output negative infinity as its left neighbor while the largest process should output positive infinity as it
right neighbor.

Depending on the certainty of the output, the problem has two variants. The strict linearization
problem SL requires each process to output its neighbors exactly once and allows only correct output.
The eventual linearization problem EL states that each computation contains a suffix where the output
of each process is correct. That is, each process is allowed to make a finite number of mistakes. The
problem statement also depends on whether non-existent identifiers may be present in the initial state.
Non-existing identifier variant NID allows such identifiers while existing-only identifiers variant EID
prohibits them.

The combination of these conditions defines four different linearization problem statements. When
we refer to the specific linearization problem, we state the particular conditions. For example, strict
linearization problem with non-existing identifiers is referred to as SL+NID.

Oracles. The oracle actions are shown in Figure 1. An oracle may have one or two actions. The two
actions operate on the right and left variable of the process and have respective subscripts r and l.

We define the following oracles to be used in solving the linearization problem. Weak connectivity
oracle WC has a single action that selects a pair of processes p and q such that they are disconnected in
the channel connectivity graph CC and adds q to the incoming channel of p connecting them. Participant
detector PD oracle removes a non-existent identifier stored in p. The actions of neighbor output oracle
NO just output identifiers stored in left and right variables of p. In fact, NO is not a true oracle. It is
trivially built from scratch as it uses only local variables of p. However, for ease of exposition NO actions
are described among oracles. The actions of consequent process detector CD are similar to the actions of
NO in effect. However, each action of CD outputs the stored identifier only if it is consequent with p.
That is, unlike NO, the guard of CD mentions all the identifiers of the system.
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process p

constants and global variables
N, // set of processes in the system
CC // system channel connectivity graph

shortcuts
cnsq(a, b) ≡ (∀c : c ∈ N : (c < a) ∨ (b < c))

local variables
r, l, // input, right (> p) and left (< p) neighbors
cl, cr // output, right and left consequent process, initially ⊥

oracle actions
WC: CC contains disconnected components C1 and C2 such that

(p ∈ C1) ∧ (q ∈ C2) −→
send message(q) to p

PDl: l 6∈ N −→ l := −∞
PDr: r 6∈ N −→ r := +∞

NOl: cl 6= l −→ cl := l
NOr: cr 6= r −→ cr := r

CDl: (cl 6= l) ∧ cnsq(l, p) −→ cl := l
CDr: (cr 6= r) ∧ cnsq(p, r) −→ cr := r

Figure 1: Linearization algorithm oracles.

Lemma 1 Oracles NO, PD and WC are subset splittable while CD is not.

Proof: Indeed, NO is trivially subset splittable since its guards only mention local variables. To see
why PD is subset splittable, consider a set of processes S1 and a computation σ1 of some algorithm A
on this set. We form another set of processes S2 such that it does not intersect with S1 and does not
contain any of the non-existing identifiers appearing in σ1. Let s2 be an arbitrary state of processes of
S2. If some identifier nid is non-existent in a state s1 of σ1 it remains non-existent if processes in state
s1 ∩ s2. Hence, if an action of PD is enabled in s1, is enabled in s1 ∪ s2 as well.

Let us now consider WC. Again, let S1 be a set of processes and σ1 be a computation of some
algorithm A on it. Let S2 be a set of processes that does not intersect with S1. Let state s2 of processes
S2 be such that none of these processes stores identifiers from S1. Let us consider a state that is formed
by merging some state s1 of σ1 and s2. If channel connectivity graph CC is disconnected in s1, it remains
disconnected in s1 ∪ s2. Hence, if an action of WC is enabled in s1, it is also enabled in s1 ∪ s2. That is,
WC is subset splittable.

Let us discuss CD. Consider an arbitrary set of processes S1 and a computation σ1 of some linearization
algorithm A on it. Each process of a linearization algorithm has to output process identifiers consequent
with itself. If a process stores consequent identifiers, its CD actions are enabled. However, since the
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identifier space is totally ordered, regardless of the composition of S2, if S2 is added to S1, at least one
process in S1 changes its consequent process. This disables an action of CD. Hence, CD is not subset
splittable. �

4 Necessary Conditions

Lemma 2 If a computation of a copy-store-forward algorithm starts in an arbitrary state where the
channel connectivity graph CC is disconnected. Either the graph remains disconnected for the rest of the
computation or the computation contains an execution of a weak connectivity oracle action.

Proof: Let us consider the computation σ that contains a state where the channel connectivity graph
CC is at least weakly connected. Let s2 be the first such state. Assume, without loss of generality, that in
s2 process a has a link to process b in CC while in all previous states, including the state s1 that directly
precedes s2, the two processes are disconnected. The link may be due to the action of the algorithm or
an oracle. Let us consider the possibility of algorithm action first.

Since processes in the message passing system do not share local memory, an algorithm action may
create link (a, b) in CC only by adding process b to the incoming channel of a. That is, some process c
sends a message carrying b to a. This message transmission moves the system from s1 to s2. To send a
message to a, process c needs to hold the identifier of a in state s1. That is, c has to be connected to a
in s1. Also, c sends identifier b to a. That is, c is connected to b in s1. This means that for this message
transmission, a and b need to be weakly connected in s1. However, we assumed that s2 is the first state
where a and b are connected.

Hence, the action that moves the system from s1 to s2 has to be an oracle action. This action connects
two disconnected processes. That is, it has to be the action of the weak connectivity oracle. �

Theorem 1 Every solution to the linearization problem requires a weak connectivity oracle.

Proof: Let A be a linearization algorithm. Let us consider the set of processes to be linearized.
Let us further consider a computation of A that starts in a state where this set is separated into two
arbitrary subsets S1 and S2. Since process identifiers are totally ordered, there has to be at least two
consequent processes p1 ∈ S1 and p2 ∈ S2. Since A is a linearization algorithm, p1 has to eventually
output p2. According to Lemma 2, this may only happen if the computation contains the actions of the
weak connectivity oracle. �

Theorem 2 A solution to the strict linearization problem requires a non-subset splittable oracle.

Proof: Assume the opposite. Let there be an algorithm A that solves the strict linearization problem
with only subset splittable oracle O. Since O is subset splittable, there are two non-intersecting sets of
processes S1 and S2 as well as a computation σ1 of A on S1 and a state s2 of S2 such that the addition
of s2 to every state of σ1 keeps the actions of O in processes of S1 enabled.

We construct a computation σ3 of A on S1∪S2 as follows. The computation starts with the initial state
of σ1 merged with s2. We then consider the first action of σ1, if the action is non-oracle, since processes of
S1 in σ3 have the same initial state as in σ1, the action is enabled and can be executed. If the first action
is an oracle O action, since the oracle is subset splittable, this action is enabled and can be executed. We
proceed building σ3 by sequentially executing the actions of σ1. Computation σ1 is produced by A that,
by assumption, is a solution to the strict linearization problem. By the statement of the problem, during
σ1, every process has to output the identifier of its consequent process exactly once. We stop adding the
actions of σ1 to σ3 once every process of S1 does so. We conclude the construction of σ3 by executing the
actions of A and O in an arbitrary fair manner. Thus constructed, σ3 is a computation of A.
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Let us examine σ3. By construction, every process p1 in S1 outputs an identifier that p1 is consequent
with in S1. Since the identifier state space is totally ordered, the consequent identifiers of at least one
process of S1 differ if S2 is added to S1. This means that this process outputs incorrect identifier in σ3
that is executed on S1 ∪ S2. However, this violates the requirements of the strict linearization problem.
This means that, contrary to our initial assumption, A is not a solution to SL and the strict linearization
problem indeed requires a non-subset splittable oracle. �

Theorem 3 A proper solution to the linearization problem that allows non-existing identifiers requires a
participant detector oracle.

Proof: Assume the opposite. Let A be a proper algorithm that solves a linearization problem with
non-existing identifiers and does not use PD. That is, oracles used by the the algorithm do not remove
non-existing identifiers.

Let us construct a computation σ on some set of processes. We select the initial state of σ as follows.
Processes do not have links to existing identifiers. That is, each process is disconnected from all other
processes. Each process stores exactly two non-existing identifiers. For any two neighbor processes p1
and p2 such that p1 < p2, the non-existing identifier np1 stored at p1 is such that p1 < np1 < p2, the non-
existing identifier np2 stored at p2 is p1 < np2 < p2. That is, the non-existing ids are between neighbors.
If the process has the largest, or smallest identifier in the set, this process contains respectively lower and
higher non-existing identifier. Note that since A is proper, processes do not orphan themselves. Hence,
they cannot remove the non-existing identifiers. Since A does not use participant detector oracle, the
oracles that it does use cannot remove the non-existing identifiers either. Thus, the only identifier action
that the oracles can do is adding identifiers.

Since A is proper, a process cannot orphan itself. Hence, the actions of the algorithm cannot remove
the non-existent identifiers from this initial state. Since A is copy-store-forward, the actions cannot add
new identifiers to the system. That is, the only possible actions that affect the topology of the system are
oracle actions. We construct σ as follows. We execute an enabled oracle action. The oracle may add an
identifier id1 to some process p1. Assume, without loss of generality, id > p1. Process p1 already holds
np1 > p1. There may be two cases. In the first case, id1 is greater than np1. Since A is proper, id1
is forwarded to np1. Since np1 is non-existing, id1 is lost and the system remains disconnected. Let us
consider the case where id1 is less than np1. In this case id1 is non-existing. Since A is proper, p1 keeps
id1 and forwards np1 to id1. That is np1 is discarded. The system, however, remains disconnected.

The resultant state resembles the initial state of σ in the sense that the only actions that may be
enabled are the actions of an id-adding oracle. In similar manner, we continue constructing σ by executing
an enabled oracle action and then letting the algorithm handle the added identifier. We proceed with this
construction until there are no more enabled oracle actions or indefinitely.

In this computation, no process has the identifier of its consequent process. Hence, the process may
not output the neighbor’s identifiers in σ. That is, contrary to our assumptions, A is not a solution to
the linearization problem with non-existing identifiers. �

The theorems of this section specify the oracles that are necessary to solve each variant of the lin-
earization problem. These requirements are summarized in Figure 2(a).

5 Linearization Solutions

Algorithm description. The linearization algorithm L contains to actions: REC and T O. The actions
are shown in Figure 3. The first is a message receipt action REC. This action is enabled if the incoming
channel of process p contains a message bearing some identifier id. If the received id is greater than the
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EL SL
EID WC WC+NSS
NID WC+PD WC+PD+NSS

(a) Necessary oracles.

EL SL
EID L+WC+NO L+WC+CD
NID L+WC+NO+PD L++WC+CD+PD
(b) Solution algorithm and oracles sufficient for solution.

Figure 2: Necessary and sufficient conditions for a linearization problem solution.

left neighbor r of p, p forwards this identifier to p to process. If id is between p and r, then p, selects id
to be its new right neighbor and forwards the old neighbor for r to handle. Process p handles received
id smaller than its own in a similar manner. If p receives its own identifier, p discards it. The second
action is a timeout action T O. It is always enabled. This means that the correction of the algorithm
does not depend on the timing of the action execution, which is left up to the implementer. The action
sends identifier p to its right and left neighbor provided they exist. Note that the linearization algorithm
is proper.

Lemma 3 If channel connectivity graph contains only existing identifiers, the operation of the lineariza-
tion algorithm L in combination with any of the oracles does not disconnect any pair of processes in the
channel connectivity graph CC.

Proof: Let us consider the actions of the oracles first. The actions of WC may only add identifiers to
CC. Hence it does not disconnect the processes in CC. Since there are no non-existent identifiers, the
actions of PD are disabled. Oracles NO and CD only copy the identifiers in the same process. Hence,
they do not affect CC either.

Let us now consider the action of L. The operation of receive action REC action depends on the
value of the received identifier id. If id is the same as p, it is discarded. However, since self-loops are not
considered in CC, this discarding of the identifier does not change CC. Let us consider the case p > id. If
id > r, then p forwards id to r to deal with. That is, the link (p, id) in CC is replaced by the path (p, r),
(r, id). If p > id ≥ r, process p replaced its right neighbor with p and forwards its old right neighbor to
id. That is, the link (p, id) is preserved in CC while (p, r) is replaced by (p, id), (id, r). In either case no
path in CC is disconnected. The case of p < id is similar. The timeout action T O only adds links to CC
so it does not disconnect it. �

Lemma 4 Starting from an arbitrary state that contains only existing identifiers, the linearization algo-
rithm L in combination with any of the oracles, arrives at a state where the channel connectivity graph
CC is connected.

Proof: Indeed, if CC is disconnected, actions of WC are enabled in the processes of the disconnected
components. Once such action is executed, the two components are connected. According to Lemma 3,
the components are not disconnected again regardless of used oracles. Hence, CC is eventually connected
in every computation of the linearization algorithm where WC is used. �

Lemma 5 Any computation of the linearization algorithm L in combination with participant detector
oracle PD and any other oracles has a suffix with only existing identifiers.

Proof: Observe that none of the oracles introduce new non-existing identifiers. Since, linearization
algorithm is copy-store-send, it does not create new identifiers either. Hence, to prove the lemma we need
to show that all non-existent identifiers present in the initial state are removed.

Note that each process of the linearization algorithm either keeps an identifier or forwards it to its
neighbors. That is, processes of L do not duplicate non-existent identifiers. Moreover, the identifier is
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process p

local variables
r, l // input, right (> p) and left (< p) neighbors

algorithm action
REC: message(id) is in the coming channel of p −→

receive message(id)
if id > p then

if id < r then
if r < +∞ then

send message(r) to id
r := id

else
send message(id) to r

if id < p then
if id > l then

if l > −∞ then
send message(l) to id

l := id
else

send message(id) to l

T O: true −→
if l > −∞ then

send message(p) to l
if r < +∞ then

send message(p) to r

Figure 3: Linearization algorithm actions.

forwarded only in one direction: either to the left or to the right. This means that during the computation
each identifier will be forwarded a finite number of times. Let us consider process p that holds non-existent
identifier nid and does not forward it. Since nid is non-existent, an action of participant detector PD is
enabled at p. Since nid is not forwarded, the action remains enabled until executed. Once executed, the
action removes the non-existent identifier. That is, every non-existent identifier is eventually removed. �

Lemma 6 Starting from an arbitrary state where CC is connected and only existing identifiers are
present, the linearization algorithm combined with the timeout oracle and regardless of the operation
of other oracles contains a suffix where the variables r and l of each process p hold identifiers consequent
with p.

The proof of Lemma 6 is in the appendix.

Theorem 4 The linearization algorithm combined with neighbor output, and weak connectivity oracles
solves eventual linearization with existing identifiers problem. The linearization algorithm combined with
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consequent process detector and weak connectivity oracles solves strict linearization with existing identifiers
problem.

The addition of participant detector enables the solution to the non-existent identifier variants of these
problems.

The specific oracles sufficient for each problem solution as stated in Theorem 4 are summarized in
Figure 2(b).

Proof: Let us first address the case of existing identifiers only. According to Lemma 6, if a computation
starts in an arbitrary state where CC is connected, this computation contains a suffix where each process
p stores its consequent identifiers in r and l. The argument differs depending on whether NO or CD is
being used.

In case NO is used, if p stores different identifiers in r and cr, then NOr is enabled. Once executed,
the identifier stored in r is output. That is, if there is a suffix of a computation containing consequent
right identifier in r of p, there is a suffix that contains this identifier cr. Similar argument applies to the
left identifier of p. That is, every computation of L+NO+WC contains a suffix where consequent left and
right neighbors are output. In other words, this combination of the linearization algorithm and oracles
solves EL+EID.

Let us consider the case of CD. Note that consequent process detector oracle outputs the identifier if
and only if it is consequent. However, every computation of the algorithm contains a suffix where each
process stores its consequent identifiers. If the process holds its consequent identifier, CD is enabled. Once
CD is executed, the correct identifier is output. That is, every computation of L+CD+WC every process
outputs its consequent identifiers exactly once. In other words, this combination of the linearization
algorithm and oracles solves SL+EID.

Let us address the case of non-existing identifiers. According to Lemma 5, participant process detector
oracle PD eventually removes non-existent identifiers from the system. That is, very computation contains
a suffix with only existing identifiers. In this case NO eventually outputs correct identifiers that satisfies
the conditions of eventual linearization problem.

By its specification, consequent process detector oracle CD never outputs non-existent identifiers. That
is, the presence of non-existent identifiers does not compromise the solution to the strict linearization
problem if CD is used.

Hence, the addition of PD enables the solution of the non-existing identifier variants of the linearization
problems. �

6 Oracle Implementation and Optimality

Oracle nature and implementation. The three oracles required to solve the linearization problem
variants described in this paper are weak connectivity, participant process detector and consequent process
detector. None of them are implementable in the computation model we consider. Nonetheless, let us
discuss possible approaches to their construction.

Oracle WC, that repairs the network disconnections, is an encapsulation of bootstrap service [6]
commonly found in peer-to-peer systems. One possible implementation of such oracle is as follows.
One bootstrap process b is always present in the system. This identifier may be part of the oracle
implementation and, as such, not visible to the application program using the oracle. The responsibility
of this process is to maintain the greatest and smallest identifier of the system. All other processes are
supplied with b’s identifier. If a regular system process p does not have a left or right neighbor, it assumes
that its own identifier the greatest or, respectively, smallest. Process p then sends its identifier to b.
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Process b then either confirms this assumption or sends p, its current smallest or greatest identifier. This
way, if the system is disconnected, the weak connectivity is restored.

Oracle PD encapsulates the limits between relative process speeds and maximum message propagation
delay. This oracle may be implemented using a heartbeat protocol [12]. For example, if process p contains
an identifier q, p sends q a heartbeat message requesting a reply. If p does not receive this reply after the
time above the maximum network delay, p considers q non-existent and discards it.

Oracle CD may be the most difficult to implement. It appears that to implement CD one has to solve
the strict linearization problem itself. In this sense, CD serves to illustrate the difficulty of the strict
linearization problem rather than encode any particular oracle implementation.

Oracle optimality. This paper states the necessary and sufficient conditions for both strict and eventual
linearization problem. The conditions for the eventual linearization are sharp as we use the necessary
oracles to provide the algorithmic solution for the problem. For the strict linearization, there is a gap
between these conditions. Specifically, our algorithmic solutions relies on CD, which is a specific kind of the
necessary non-subset splittable detector. Narrowing the gap between necessary and sufficient conditions
for the solutions to the strict linearizability problem remains to be addressed in the future.
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[8] Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-stabilization. Technical Report 1110.0334,
ArXiv eprint, October 2011.

[9] Yuval Emek, Pierre Fraigniaud, Amos Korman, Shay Kutten, and David Peleg. Notions of connectivity in
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Appendix

The proofs of Lemma 6 and supporting lemmas are adopted from [17].
Define CP a subgraph of CC that contains links based on the identifiers stored in process memory.

In this sense, CP captures current network connectivity information the set of processes possesses.

Lemma 7 If a computation of L starts in a state where for some process a there are two links (a, b) ∈ CP
and (a, c) ∈ CC \ CP such chat a < c < b, then this computation contains a state where there is a link
(a, d) ∈ CP where d ≤ c.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \ CP are such that b < c < a, then this
computation contains a state where there is a link (a, d) ∈ CP where d ≥ c.

Intuitively, Lemma 7 states that if there is a link in the incoming channel of a process that is shorter
than what the process already stores, then, the process’ links will eventually be shortened. The proof is
by simple examination of the algorithm.

Lemma 8 If a computation of L starts in a state where for some process a there is an edge (a, b) ∈ CP
and (a, c) ∈ CC \ CP such that a < b < c, then the computation contains a state where there is a link
(d, c) ∈ CP , where d ≤ b.

Similarly, if the two links (a, b) ∈ CP and (a, c) ∈ CC \ CP are such that c < b < a, then this
computation contains a state where there is a link (d, c) ∈ CP , where d ≥ b.

Intuitively, the lemma states that if there is a longer link in the channel, it will be shortened by
forwarding the id to its closer successor.

Lemma 9 If a computation of L starts in a state where for some processes a, b, and c such that a < c < b
(or a > c > b), there are edges (a, b) ∈ CP and (c, a) ∈ CC, then the computation contains a state where
either some edge in CP is shorter than in the initial state or (a, c) ∈ CP .

Proof: The timeout action in process c is always enabled. When executed, it adds message(c) to the
incoming channel of process a. Then, the lemma follows from Lemma 7. �

Lemma 10 If a computation starts in a state where there is a link (a, b) ∈ CP , then the computation
contains a state where some link in CP is shorter than in the initial state or there is a link (b, a) ∈ CP .

Proof: Assume without loss of generality that a < b. Once a executes its always enabled timeout
action, link (b, a) is added to CC. We need to prove that either some link in CP is shortened or this link
is added to CP .

Let us consider a link (b, c) ∈ CP such that c < b. There can be three cases with respect to the
relationship between a and c. In case c < a, the lemma follows from Lemma 7. In case c = a, the claim
of the lemma is already satisfied. The case of c > a is the most involved.

According to Lemma 8, if c > a, the computation contains a state where a shorter link to a belongs to
CC. That is, there is a process d such that a < d ≤ c and (a, d) ∈ CC. Let us consider link (e, d) ∈ CP
such that e < d.

If e < a, then, according to Lemma 7, some link in CP shortens. If e = a, then some link in CP
shortens according to Lemma 9. In both cases the claim of this lemma is satisfied.

Let us now consider the case where e > a. According to Lemma 8, the link to process a in CC
shortens. The same argument applies to the new shorter link to a in CC. That is, either some link in
CP shortens or a link to a shortens. Since the length of the link to a is finite, some link in CP eventually
shortens. Hence the lemma. �
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Lemma 11 If the computation is such that if (a, b) ∈ CP then (b, a) ∈ CP in every state of the compu-
tation, then this computation contains a suffix where ((a, b) ∈ CP )⇔ ((a, b) ∈ CC)

Lemma 11 states that if CP does noes not change in a computation then eventually, the links in CP
contain all the links of CC.
Proof: (of the lemma)

That is, there is a pair of consequent processes u and v that are not neighbors. By condition of the
lemma, CP is strongly connected. This means that there is a path from u to v.

Let us consider the shortest such path. Since u and v are not neighbors, the path has to include
processes to the left or to the right of both u and v. Assume without loss of generality u < v and the
path includes processes to the right of u and v. Let us consider the rightmost process in this path w. Let
x and y be the processes that respectively precede and follow w in this path. Since w is the rightmost,
both x and w are to the left of w.

Note that each process in CP can have at most one outgoing left and one outgoing right neighbor.
By the condition of the lemma the outgoing neighbor of a process is also its incoming neighbor. Since x
precedes w in the path from u to v and y follows w, x is the incoming and y is the outgoing neighbors
of w. Yet, x and y are both to the left of w. This means that x = y. However, this also means that w
can be eliminated from the path from u to v and can be this way shortened. However, we considered the
shortest path from u and v. It cannot be further shortened. We arrived at a contradiction that proves
the if part of the lemma.

The only if part follows form the observation that each process can only have a single right and single
left neighbor. That is, a process is already a neighbor with the consequent process it cannot be a neighbor
with any other process. �
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