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Abstract. We consider the problem of varying the security of blockchain trans-

actions according to their importance. This adaptive security is achieved by using

variable size consensus committees. To improve performance, such committees

function concurrently. We present two algorithms that allow adaptive security by

forming concurrent variable size consensus committees on demand. One is based

on a single joint blockchain, the other is based on separate sharded blockchains.

For in-committee consensus, our algorithms may use various available byzantine-

robust fault tolerant algorithms (BFT). We implement synchronous BFT, asyn-

chronous BFT and proof-of-work consensus. We thoroughly evaluate the perfor-

mance of our adaptive security algorithms.

1 Introduction

Blockchain. A secure distributed ledger, blockchain allows a decentralized network of

peers to register a sequence of transactions despite potentially malicious actions of a

minority of peers. Blockchain technology is poised to revolutionize a variety of fields:

from currency and payment systems that are impervious to state and corporate manip-

ulation [19,23], to automatically enforced contracts [2,8], to internet-of-things massive

data recording [5].

Peers acting maliciously are Byzantine [16]: a Byzantine peer may exhibit arbitrary

behavior. Such malicious peers are controlled by adversary that uses them to com-

promise the blockchain. To overcome the adversary, peers coordinate their collective

decision. This decision may be achieved using classic byzantine-robust coordinated

consensus [6,15,16] or novel proof-of-work [19,23].

In a coordinated consensus algorithm, the peers exchange messages to arrive at a

uniform conclusion. Such an algorithm usually requires every peer to know the identi-

ties of all other peers. That is, a completely connected network topology is necessary. A

coordinated consensus algorithm operates correctly so long as the number of Byzantine

peers is less than its resiliency threshold. This threshold is a fraction of the committee

size. In a fast changing peer-to-peer network, such strict membership requirement is

problematic. In a proof-of-work algorithm, the peers compete to solve a computation-

ally intensive problem. All peers accept the solution of the peer who solves the problem

first. Such algorithms do not require membership or network topology maintenance.

The algorithm operates correctly provided that the computation power of the Byzantine

peers does not exceed the power of the correct peers. That is, the resiliency threshold

of a proof-of-work algorithm is expressed in terms of the computation power. However,
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such an algorithm needs extensive computing resources and has poorer throughput and

latency. This limits the scalability of proof-of-work networks.

There are plenty of studies enhancing the scalability of proof-of-work net-

works [4,7,9,11,13,18,21,22] , optimizing membership maintenance of the coordinated

consensus schemes or joining the two approaches [20]. Ultimately, the scalability of

both coordinated consensus and proof-of-work networks is limited by the need to broad-

cast the information to all peers. To avoid this broadcast, the network needs to be

logically split up or sharded. In sharding, the network is separated into independent

committees that process transactions concurrently. Sharded committees may use either

coordinated or competitive consensus.

Sharding may potentially resolve performance issues. However, the separate com-

mittees do not provide the same protection as the complete network. Indeed, to com-

promise transaction processing, the adversary needs to exceed the resiliency thresh-

old of the consensus algorithm for the single committee. Sharding also introduces

the problem of cross-shard transactions where transaction inputs and outputs span

shards [12,14,17,24].

Adaptive security. Thus, performance and security are cross-purposes of blockchain

design. We propose to mitigate this problem with adaptive security. Specifically, the

client may request the security level for the submitted transaction on the basis of its

importance. For example, the security level of purchasing a cup of coffee, may be lower

than that of buying a car. The fees for registering a higher security level transaction

in the blockchain may be higher. The greater security level is achieved by composing

a larger committee which is less vulnerable to adversarial attack since it has a higher

resiliency threshold.

A stream of various security level transactions requires an adaptive security algo-

rithm that provides an appropriate size committee for each transaction. A naive solution

would sequentially process transactions at the highest security level. However, employ-

ing an excessively large committee would waste network resources while sequential

transaction processing may result in low throughput and high transaction waiting time.

Instead, it is more efficient to assemble the consensus committees on demand and allow

concurrency in transaction processing.

In this paper, we propose two such security algorithms: Composite Blockguard and

Dynamic Blockguard. Composite Blockguard assembles a committee from groups of

peers that maintain independent ledgers. Dynamic Blockguard selects a committee from

the processes that most recently wrote to the shared ledger. Both algorithms may operate

with many consensus algorithms.

Our contribution. We state the problem of adaptive security and propose two effi-

cient algorithms that solve it. We evaluate their performance with major consensus

algorithms: PBFT, SBFT and proof-of-work. We measure their throughput, transac-

tion waiting time and resistance to Byzantine peer corruption. Our results suggest that

the adaptive security provides an effective trade-off between network performance and

security without significant increase in network complexity or major architectural mod-

ifications. Thus, it should be adopted by current blockchain networks.
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Related Work. In a classic Byzantine consensus algorithm, a leader is elected and re-

placed if it is found faulty. The algorithm by Castro and Liskov [6], known as PBFT,

requires weak network synchronization for leader change and tolerates up to f < n/3
Byzantine peers. Synchronous network provides more information. A peer can deter-

mine whether its neighbor is faulty if the message is not received. An efficient syn-

chronous algorithm by Abraham et al. [3], that we call SBFT, tolerates up to f < n/2
faults and achieves consensus in 4 expected rounds of message exchanges. Honeybad-

ger [18] and Thunderella [21] are newer approaches to cooperative consensus that try

to improve its performance.

There is a number of blockchain sharding algorithms [10,13,14,17,24]. RSCoin [10]

uses central bank authority to regulate data and sharding distribution while using a peer-

to-peer network for transaction registration. In Elastico [17], only the agreement algo-

rithm is sharded, the shared blockchain is replicated at every peer. Each committee runs

PBFT. The agreed value is sent to the reference committee. This reference committee

then broadcasts this value to the whole network. The cross-shard transactions have to

lock multiple committees. OmniLedger [14] shards both data and agreement portions

of the network thus improving on the scalability of Elastico. It improves the cross-

transaction locking mechanism and eliminates committee assignment security issues

present in Elastico. RapidChain [24] further improves the sharded design. RapidChain

optimizes overall message communication. It improves on the cross-shard transaction

locking mechanism of Elastico and OmniLedger by moving the locking of input trans-

actions from the client to the committee. RapidChain also improves on cross commit-

tee communication by introducing a committee routing mechanism and optimizes peer

churn handling. None of the above sharding algorithms consider adaptive security.

2 Definitions and Consensus Algorithms

2.1 Definitions

A set of n peer processes (or peers) forms a network to maintain the blockchain. The

blockchain is a sequence of blocks or transactions. We use the terms interchangeably,

i.e. we assume that a block contains a single transaction. A transaction is a unit of

blockchain recording. Each subsequent transaction is cryptographically linked to the

previous one. The first transaction in the blockchain is the genesis transaction.

Each transaction has a unique identifier. The payload (content) of a transaction is

immaterial. Any peer may generate a new transaction. Such peer is generating. Peers

do not share memory. Peer communication is through messages. One peer may com-

municate with any other peer. This communication ability is always bi-directional. A

peer broadcasts a message if it sends it to all other peers. Message delivery is FIFO.

There is no message loss. Messages cannot be forged. Specifically, every peer signs its

message and all other peers have ways of verifying this signature.

Peers are either honest or Byzantine. A set of peers that cooperate to approve a

transaction despite actions of Byzantine peers is a consensus committee.

Adversary. All Byzantine peers behave as if controlled by a single adversary aiming
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to cause maximum amount of damage to the network. The consensus algorithm may

discover the activity of a Byzantine peer, detect its identity and exclude it from further

operation. However, the adversary may adapt by compromising honest peers. So as

not to exceed the maximum number of allowed Byzantine peers f , once the adversary

claims another Byzantine peer, it needs to allow one of the already corrupted peers to

become honest. This is peer shuffle. We assume that the peer shuffle happens only when

peers are idle. That is, during consensus, a peer is either honest or Byzantine.

Sharding. A (recording) group is a set of processes that maintain a single blockchain.

There are as many groups as there are separate blockchains. In case of sharding, a peer

in the consensus committee that approves a certain transaction in a blockchain does not

necessarily belong to the group that records it. However, a peer may belong to only one

recording group and only one consensus committee at a time.

2.2 Consensus Algorithms

PBFT. The committee of peers elect the leader. The leader is unambiguously deter-

mined by the identities of the peers of the committee. A peer that generates a transaction

sends it to the leader. The leader runs consensus on every arriving transaction consec-

utively. Once a transaction reaches the leader, it sends a pre-prepare message with this

transaction to all the committee peers. After a non-leader peer receives the pre-prepare

message, the peer broadcasts a prepare message to the committee. Once a peer receives

2f + 1 prepare messages, it broadcasts the commit message. After the peer receives

2f + 1 commit messages, it locally confirms the transaction. Since the peer has 2f + 1
commit messages, at least one honest voted for the transaction and no other can receive

2f + 1 different commit messages. This is also true for the prepare messages.

A non-leader Byzantine peer may delay messages or send incorrect messages. How-

ever, if the fraction f of Byzantine peers is small, the honest peers are guaranteed to

receive sufficient number of correct massages and then commit. That is, the actions

of non-leader Byzantine peer may only delay the consensus. A Byzantine leader may

temporarily block the consensus by sending different messages to different peers or not

sending messages altogether. In either case, the honest peers discover the Byzantine

leader and replace it by forcing a view change. PBFT is guaranteed to withstand up to

f < n/3 Byzantine peers regardless of the message propagation delay.

SBFT. Leader election is similar to PBFT. The algorithm works in four rounds. (i) The

generating peer sends its transaction to the leader. (ii) The leader sends the proposal

message to the peers. (iii) Once a peer receives the proposal message, it commits the

transaction and sends the commit message to all other peers. If a peer receives f + 1

valid commit messages, it confirms the transaction. A Byzantine leader may be able to

prevent some or all peers from committing by either sending different proposal mes-

sages to different peers or not sending messages at all. However, the honest peers dis-

cover such behavior and elect the new leader. (iv) The peer that confirms the transaction

sends a notification message about the confirmation. At the end of the fourth round, if

there are peers that have not confirmed the transaction and terminated, the new leader

is elected and the algorithm is repeated.
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constants

gsize // group size

variables

freeGroups // list of all the groups currently idle

waitingTrans // transaction waiting queue

activeComs // active committees

commands

new transaction t generated −→
add t(ts) to tail of transWaiting

evaluate()

consensus committee c(gl) done −→ // gl is the list of groups in the committee

remove c from activeComs

add gl to freeGroups

evaluate()

function

evaluate()
let t(ts) be at head of waitingTrans // ts is security level

while(ts ∗ gsize ≤ size(freeGroups) and not empty(waitingTrans))
remove t from head of waitingTrans

form committee c from first ts groups in freeGroups

add c to activeComs

remove ts groups from freeGroups

let t(ts) be at head of waitingTrans

run consensus in committee c

Fig. 1: Composite BlockGuard.

Similar to PBFT, this algorithm relies on at least one honest peer confirming the

transaction. However, it assumes that there is a bound on communication delay between

honest peers. If a message is not received after a certain delay, it is guaranteed never

to arrive. On the other hand, the algorithm has to delay to ascertain this lack of mes-

sage receipt. In practice this may make SBFT slower. However, it has higher resilience

threshold. It can tolerate up to f < n/2 Byzantine peers.

PoW. Adding a transaction to the blockchain requires solving a computationally inten-

sive problem involving the data from the new transaction. The new transaction is then

cryptographically linked to last transaction in the blockchain. This task is mining the

new transaction. Once mined, the integrity of the transaction is easily verified.

The generating peer broadcasts the transaction to the network. Once a peer receives

a new transaction, it attempts to mine it. After some peer mines the transaction, it broad-

casts the mined transaction. Once a peer receives a mined transaction, it verifies it, at-

taches it to the blockchain and starts mining a new transaction on top of it. Several peers

may mine transactions concurrently. This is a fork in the blockchain. A branch of a fork

5



may be extended by addition transactions mined on top of the current block. The shorter

branch is discarded.

PoW consensus works correctly provided that the computational power of honest

peers exceeds that of Byzantine peers. If peers have the same computational power,

PoW consensus tolerates up to f < n/2 Byzantine peers.

3 The Adaptive Security Problem and Solutions

The Adaptive Security Problem. Consider a sequence of transactions that arrive over

time. They need to be recorded into the blockchain. Each transaction has a security

level. This security level is fixed and a solution can neither modify nor anticipate it.

Consider a committee consensus algorithm that, given a fixed number of peers and a

transaction, allows peers to agree to this transaction in a fixed number of steps. This

agreement is effected despite the actions of Byzantine peers so long as the number of

them is less than a certain resiliency threshold f . A peer may be in at most one commit-

tee at a time. For a transaction at security level i, the committee consensus algorithm

needs to contain more peers than at level i − 1. For example, a consensus algorithm

may contain 2i peers, i.e. the consensus committee size may grow exponentially with

security levels. In this case, the number of security levels is logn.

The Adaptive Security Problem requires the solution, an adaptive security algo-

rithm, to assign committees to the transactions such that each committee satisfies the

transaction security level.

A trivial solution assigns all peers to every transaction. In other words, every trans-

action is processed at the highest security level. However, such solution is inefficient

as communication resources are wasted with large committee agreeing on a low secu-

rity level transaction. Another solution forms committees of appropriate size for each

transaction but processes them sequentially. This solution uses the resources efficiently.

However, it has low throughput since transactions are processed sequentially. Hence,

we are led to consider an adaptive security algorithm that selects appropriate size com-

mittees and processes transactions with as much parallelism as possible. We present

two such algorithms: Composite Blockguard and Dynamic Blockguard.

Common features of the security algorithms. We first discuss the features that are

common to both Composite Blockguard and Dynamic Blockguard. There are two com-

mittee types: reference and consensus. Reference committee schedules transactions for

verification. We assume its existence and do not discuss its formation and maintenance.

Several papers discuss reference committee maintenance [24,17].

Once the new transaction is generated, it is pending. The reference committee main-

tains a queue of pending transactions. Transactions are processed in FIFO order. If ap-

propriate consensus committee is available, the pending transaction at the head of the

queue is removed and dispatched to the committee for processing. The transaction is

then tentative. If the committee approves the tentative transaction, it is added to the

blockchain and becomes recorded. Once a sufficient size committee is available, the

transaction is dispatched and the next transaction is considered. If enough peers are

available, multiple transactions are processed concurrently.
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constants

winSize // window size

secMult // security level multiplier

variables

bc // blockchain DAG

waitingTrans // transaction waiting queue

freePeers // list of peers not in committees

activeComs // active committees

commands

new transaction t generated −→
add t to tail of waitingTrans

end of recording stage −→
let t(ts) be at head of waitingTrans // ts is security level

let peerlist be the first winSize peers of totally ordered bc

while(size(peerlist) > ts ∗ secMult and not empty(waitingTrans))
form committee c by randomly selecting

ts ∗ secMult unassigned peers of peerlist

add c to activeComs

start consensus stage // run consensus algorithms in all committees of activeComs

end of consensus stage −→
start recording stage // each committee records accepted transaction into bc

Fig. 2: Dynamic BlockGuard.

Composite Blockguard adaptive security algorithm. The algorithm is shown in Fig-

ure 1. In this algorithm, peers are divided into storage groups maintaining independent

blockchains. The algorithm maintains a list of idle groups freegroups and stores pend-

ing transactions in waitingT rans. Once a new transaction arrives or a consensus com-

mittee is done, Composite Blockguard finds appropriate number of available groups,

forms a consensus committee to process the next transaction in watingT rans and dis-

patches the transaction. If not enough idle groups are available, the pending transactions

wait.

Dynamic Blockguard adaptive security algorithm. The algorithm is shown in Fig-

ure 2. This algorithm has a single blockchain and thus a single recording group. A

consensus committee is selected out of this group of peers. Multiple consensus com-

mittees may operate concurrently if their members do not intersect. This means that the

committees have to concurrently write to the same blockchain. To ensure the integrity

of the blockchain, the computation proceeds by alternating two stages: consensus stage

and recording stage. In the consensus stage, committees agree on blocks to be written to

the blockchain. Every committee must reach consensus before any committee may pro-

ceed to the next stage. In the recording stage, each committee broadcasts the transaction

to the group maintaining the blockchain. That is, they broadcast it to the whole network.
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Each written transaction is cryptographically linked to all the written transaction in the

previous recording stage. This way, the resultant blockchain is a series-parallel graph.

Committee selection window is the set of unique peers that published in the blockchain

most recently. Committee peers are picked at random from the committee selection

window. For example, to select 64-peer committee, a 512 selection window may be

chosen. Then the individual 64 members are selected from the 512 members of the

window.

Algorithm analysis and comparison. In both Composite and Dynamic Blockguard,

changing the security of each level or adding security levels is relatively easy. In Dy-

namic, it is just a matter of adjusting Committee Selection Window size or committee

sizes. In Composite, the security levels can be changed by modifying the number of

groups being merged into a committee

Composite Blockguard is simpler to implement. Since the groups do not overlap,

the parallelism is potentially greater. On the other hand, Dynamic Blockguard automat-

ically prefers the most active and, potentially, more reliable peers. However, Composite

Blockguard has fewer synchronization issues between parallel committees as they are

writing their results in separate ledgers. Composite Blockguard, though, has the added

complexity of cross-shard transactions where a transaction affects more than a single

blockchain. Dynamic Blockguard does not have this complication since it uses just one

blockchain.

4 Performance Evaluation

4.1 Preliminaries

Setup. We evaluate the performance of Composite and Dynamic Blockguard using ab-

stract simulation. The code for our simulation is available on GitHub [1]. The behavior

of each algorithm is represented as a computation and the performance of such compu-

tations is evaluated. Individual computation consists of a sequence of rounds. In every

round, each peer may receive a single new message, do local computation and send

messages to other peers.

Message propagation may take several rounds. The message propagation delay is

uniformly distributed between one round and the maximum. If some peer ps sends

several concurrent messages to the same peer pr, message propagation delay is im-

plemented as follows. Once pr receives the first message, the next message is delayed

between one and the maximum number of rounds. Once this one is received by pr,

the next message delay is computed and so on. Message delivery is FIFO. In a single

round the recipient may process only a single message from the same sender. However,

if multiple messages from different senders are available for delivery by a single peer

pr, pr processes them all in a single round.

Unless specified otherwise, the fraction of Byzantine faults in the network is n/10.

Byzantine behavior is difficult to simulate in its full complexity. We implement sim-

plified Byzantine peer behavior as follows. A committee is reliable if the number of

8
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Fig. 3: Fixed size committees.
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Byzantine peers in it does not exceed its tolerance threshold. The committee is defeated

otherwise. For example, a committee running PBFT is reliable if the number of Byzan-

tine peers is less than 1/3 of the total number of its members. The network may not

recognize a defeated committee. A defeated committee proceeds operating as normal

and writes its transaction to the blockchain. This transaction is counted as defeated. In

PoW, if an honest peer mines a transaction in a defeated committee, the transaction is

counted as reliable.

Byzantine peer behavior affects reliable committees as well. A committee running

PBFT or SBFT may elect a Byzantine peer as a leader. In our simulation, an election

of Byzantine leader forces a view change and, in effect, slows down the consensus.

A correct transaction is, eventually, recorded in the blockchain. Let us consider the

operation of reliable PoW. If an honest peer mines a transaction first, it is recorded in

the blockchain. If a Byzantine peer mines a transaction first, the transaction is discarded

and mining re-starts. That is, similar to PBFT and SBFT, the presence of Byzantine

peers slows down the operation of the consensus algorithm.

In SBFT and PBFT, non-leader Byzantine peers have little influence over the per-

formance of the algorithm, while Byzantine leaders are detected by the consensus algo-

rithm. It is therefore possible that all Byzantine peers may eventually be detected and

removed from the network. To counter this, our adversary may shuffle Byzantine peers.

That is, a peer may start honest, become Byzantine and then become honest again over

the course of our experiment. The adversary may never have more than f Byzantine

peers in the network at any given time. Let s rounds be a shuffle period. Every s rounds,

a random number of Byzantine peers become honest and an equal number of honest

peers become Byzantine. This maintains the ratio of Byzantine to honest peers in the

network. Peers assigned to a committee may not be shuffled. In Dynamic Blockguard,

Byzantine peers are shuffled after the recording stage. In Composite Blockguard, shuf-

fling happens every round but only affects non-assigned peers.

We use geometric distribution to select the security level of newly generated trans-

action. The selection probability is 50%. That is, for security level k, the probability of

selection is 0.5k. For the highest security level, the probability is 0.5k−1. To put another

way, half of the transactions are at the lowest security level 1, then 25% of transactions

is at the next security level up and so on.

We do not take into account the performance of the reference committee in our

experiments. However, we assume that the reference committee carries out the follow-

ing tasks: it allocates peers to consensus committees, it conducts synchronous stages in

Dynamic Blockguard.

Experiment parameters and evaluation metrics. Unless stated otherwise, in the be-

low experiments, the parameters are set as follows. The number of peers in the network

is 1024. The number rounds in a computation is 1000. For each data point, we carry out

10 computations and compute the average of the evaluated metric.

A new transaction is generated in every two rounds. This transaction generation

rate slightly exceeds the maximum throughput of all consensus algorithms. The new

transaction is generated by a randomly selected peer.
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Fig. 4: Throughput.

We have 5 security levels. The highest security level is the 5-th level which contains

the whole network. That is, the level-5 committee contains 1024 peers. Each lower level

contains half of the peers of the higher level. The lowest security level contains 64 peers.

In PoW, we use binomial distribution to determine the number of rounds it takes the

peers to mine a transaction. The mode, i.e. most frequently occurring value, is 5 and

variance 2.5.

We vary maximum message delay and the fraction of Byzantine peers in the net-

work. We compute the following metrics. Throughput is the number of consensuses per

round. We compute it as the number of successful consensuses divided by the length of

the computation. Consensuses of defeated committees are not counted. (Transaction)

waiting time is computed as follows. For coordinated consensus algorithms, i.e. PBFT
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Fig. 5: Average waiting time.

and SBFT, it is the number of rounds from the moment the transaction is generated till

the first peer determines that the transaction is committed. For PoW, it is the time from

this transaction. The waiting time for transactions of defeated committees is counted.

4.2 Results and Analysis

Motivation experiments. The results of the first series of experiments are shown in

Figure 3. The results demonstrate the need for adaptive security. We show that there

is a trade-off between the performance and the security of the network. The security

level of every transaction is ignored and all transactions are approved by committees

of a specific size. We vary this single committee size. The committees proceed with

maximum possible concurrency.
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Figures 3a and 3b show throughput for Composite and Dynamic Blockguard re-

spectively. Similarly, Figures 3c and 3d show waiting time for the two algorithms. The

results indicate that as the committee size increases, the throughput declines and trans-

action waiting time increases. The throughput decline is more pronounced for SBFT

since this is a synchronous algorithm. It has to wait for the maximum delay time to

ascertain the lack of message receipt. Similarly, wating time is greater for SBFT.

Conversely, Figures 3e and 3f shows the ratio of defeated committees for particular

fraction of Byzantine peers. We show the results for PBFT only and for the lower three

security levels. The results for other consensus committee algorithms and security levels

are similar. The results indicate that smaller size committees are defeated with greater

ease.

Algorithm performance experiments. The results of the performance evaluation of

the adaptive security algorithms are shown in Figures 4, 5, and 6. Let us first discuss

the results in Figure 4. Figures 4a and 4b demonstrate how throughput depends on the

network delay for Composite and Dynamic Blockguard respectively. As network delay

increases, the throughput declines. However, different consensus committees react to

this increase differently. PBFT has the best performance and lowest decline since the

committees just wait for the actual messages to arrive. SBFT exhibits the most sensitiv-

ity to the network delay. The reason is that SBFT has to wait for the maximum delay to

determine that the message is not coming.

Let us discuss Figures 4c and 4d. It shows that the performance of Composite and

Dynamic Blockguard decreases as the fraction of Byzantine peers in the network in-

crease. This is due to Byzantine peers slowing down the consensus algorithms. PBFT

suffers the most since its tolerance threshold is only a third of the peers.

Let us address the results in Figure 5. Figures 5a and 5b show the dependency of

transaction waiting time on network delay. As expected, the waiting time increases with

delay. SBFT is the most vulnerable to this increase since it has to wait for maximum

delay time. Figures 5c and 5d show how waiting time varies with the fraction of Byzan-

tine peers. Let us explain the trends in the data. As the consensus committee approaches

its resiliency threshold, the number of view changes or repeated transaction mining in-

creases which increases the transaction waiting time. If the fraction is away from this

threshold, the committees are either reliable or defeated. In either case the waiting time

is relatively low. Thus, there is a peak near n/3 for PBFT and near n/5 for SBFT

and PoW. This trend is less pronounced in Dynamic Blockguard since it is masked by

synchronization across consensus committees in the same stage.

Let us now focus on the results in Figure 6. The number of defeated committees

increases with the fraction of Byzantine peers. It increases fastest for PBFT since it has

the lowest tolerance threshold. It increases slowest for PoW since honest miners may

still record a reliable transaction in a defeated committee.

The results of our experiments indicate that both Composite and Dynamic blackguard

algorithm provide adaptive security with a trade-off between performance and security

parameters. Composite and Dynamic Blockguard operate adequately regardless of the

specific consensus algorithm that they use.
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Fig. 6: Ratio of defeated committees.

5 Conclusions and Future Work

In this paper, we defined the Adaptive Security Problem and showed two efficient solu-

tions for it: Composite and Dynamic Blockguard algorithms. In conclusion, we would

like to list further algorithm improvements and possible research directions. Compos-

ite and Dynamic Blockguard may be combined to further increase network efficiency.

In both algorithms, rather than processing transactions FIFO, the reference committee

may re-order transactions to better utlize available peers. Both algorithms have to be

able to handle churn of peers. As old peers leave and new peers arrive, the algorithms

have to be able to add them to the committees. To further demonstrate their practicality,

both algorithms may be implemented and tested in a realistic blockchain system.
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Appendix

Parameter Experiments
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(a) Composite Blockguard, throughput
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(b) Dynamic Blockguard, throughput
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(c) Composite Blockguard, waiting time.
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(d) Dynamic Blockguard, waiting time.

Fig. 7: Timelines.

Let us discuss the results in Figure 7. Each metric is taken as a rolling average

where only transactions that have been confirmed in the last 200 rounds of computa-

tion are considered. For example, throughput is calculated by taking the total number

of transactions over the past 200 rounds that have been confirmed over the total number

of transactions submitted to the network in that time. In Figures 7a and 7b, we see that
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while the throughput varies it is consistently confirming one transaction in two rounds

for PBFT and PoW. In the case of SBFT, this throughput is lower: one transaction per 3

to 4 rounds. This is due to to the need for SBFT to wait for the maximum network de-

lay. We note that same trends in Figure 7c for Composite Blockguard. In Figure 7d. the

waiting time gradually increases for Dynamic Blockguard. This indicates that transac-

tions are being submitted faster then the throughput of the network. This is not apparent

in Figure 7b because throughput is measured as a rolling average. That is, the number of

transactions confirmed by the network is constant but the queue of waiting transactions

grows. The results show that Dynamic Blockguard can not handle as high of a trans-

action rate as Composite Blockguard. However, in order to compare the two, the same

transaction rate should be used. The stability and consistency of the throughput shows

that 1000 rounds is sufficient to take measurements on how the network will behave

over a much longer duration.
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