
ar
X

iv
:0

90
6.

19
47

v1
 [

cs
.D

C
]

10
 J

un
 2

00
9

Ideal Stabilization

Mikhail Nesterenko1⋆ and Sébastien Tixeuil2⋆⋆

1 Kent State University, USA
2 Université Pierre & Marie Curie - Paris 6, France

Abstract. We define and explore the concept of ideal stabilization. Theprogram
is ideally stabilizing if its every state is legitimate. Ideal stabilization allows the
specification designer to prescribe with arbitrary degree of precision not only the
fault-free program behavior but also its recovery operation. Specifications may
or may not mention all possible states. We identify approaches to designing ideal
stabilization to both kinds of specifications. For the first kind, we state the nec-
essary condition for an ideally stabilizing solution. On the basis of this condition
we prove that there is no ideally stabilizing solution to theleader election prob-
lem. We illustrate the utility of the concept by providing examples of well-known
programs and proving them ideally stabilizing. Specifically, we prove ideal sta-
bilization of the conflict manager, the alternator, the propagation of information
with feedback and the alternating bit protocol.

1 Introduction

A program isself-stabilizing[8, 9, 20] (or juststabilizing) if, regardless of the
initial state, it eventually satisfies its specification. This elegant property enables
the program to recover from transient faults or lack of initialization. During
this stabilization period the program behavior is unpredictable. It is tempting
to attempt to engineer the specification such that the program behavior during
fault-recovery is controlled. For example, the program starts behaving correctly
in no more than ten steps, or critical messages are never lost. However, one of
the features of classic stabilization is that the program does not have to satisfy
the specification for an arbitrary amount of time. That is, the program is free to
ignore the recovery constrains built into the specification.

Another disadvantage of stabilizing programs is their poorcompositional
properties. Stabilization programs are usually composed by layers: an lower
level components are not influenced by the higher level components and, after
the lower component starts behaving correctly, they higherlevel, due to stabi-
lization will eventually behave correctly as well. However, if there is non-trivial
two-way interaction between components, the stabilization or correct operation

⋆ This research is supported in part by NSF Career award CNS-0347485.
⋆⋆ This author is supported in part by the ANR SHAMAN project.

http://arxiv.org/abs/0906.1947v1

of the composed system is not guaranteed. These shortcomings diminish the
attractiveness of stabilization as a viable fault-tolerance technique.

In this paper we study the class of programs that always satisfy their speci-
fication. We call such programsideally stabilizing. Related concepts are period-
ically considered by fault-tolerance researchers. However, these approaches are
often regarded as theoretical curiosity with a few isolatedexamples of no practi-
cal importance. Our thesis is that the opposite is true. Ideal stabilization retains
most of the advantages of classical stabilization while allowing the engineers
and program designers to control the program behavior during fault recovery.
Moreover, since the ideally stabilizing programs always satisfy their specifica-
tion, their composition is similar to conventional programcomposition. Thus,
the vast array of established program composition techniques can be applied to
ideally stabilizing programs. We are thus hopeful that our approach to stabi-
lization makes the general concept of self-stabilization more attractive to fault-
tolerance practitioners.

Related work.Ideal stabilization is close tosnap-stabilization[3, 6] and should
be considered complementary. However, snap-stabilization is defined in terms
of immediate correct satisfaction ofexternal invocations. Such definition may
lead to specifications with sequence-based safety and liveness properties. Prov-
ing stabilization to such specifications often results in operational proofs that
are difficult to verify. Ideal stabilization, on the other hand, does not restrict
specifications in any way.

Adding safety properties to self-stabilizing protocols has been a very active
recent path of research, however most approaches make some restrictions on the
natureor theextentof the faults in order to guarantee a particular kind of safety.
Safe stabilization [12, 2] refers to the fact thatfew faults hitting the network
should not compromise a particular safety predicate, whilepreserving global
self-stabilization of the system. Also, the line of work about fault-containing
stabilization [13] may handle only asingle transient failure to ensure actual
containment and recovery, and super-stabilizing protocols [10] can withstand
one topology change at a time. When faults are simple enough to be detected by
checksums [16], it is also possible to maintain elaborate safety predicates. Other
approaches included usingexternalentities that enforce safety [11] or make use
of non-corruptible memory [18]. By contrast, ideal stabilization does not restrict
the nature or the extent of the transient faults that can hit the system inanyway,
and does not make use of any external entity.

Our contribution. In this paper we study two approaches to ideal stabilization.
The approaches depend on the specification type. Specification itself is ideal if
it allows (i.e. mentions) all possible states. Specification is not ideal otherwise.

Ideal stabilization to specifications that are not ideal hinges on the approach we
call state displacement. The specification implementer provides such mapping
from program states to specification states that none of the possible program
states map to disallowed specification states. We identify the necessary con-
dition for such specifications to allow ideal stabilizationand explain how two
well-known programs: conflict manager and the alternator use state displace-
ment to achieve ideal stabilization.

The second approach relies on stating the specification suchthat all the pos-
sible states are allowed. This allows the engineer to specify precisely what be-
havior, including failure recovery behavior, is expected of the program. Ideally
stabilizing program, by definition, has to follow this specification exactly. We
state a proposition that states that such programs are rather common. As an ex-
ample, we consider the problem specifications for two well-known stabilizing
programs: propagation of information with feedback and alternating-bit proto-
col and provide assertional proofs that the programs ideally stabilize to these
specifications.

2 Model

This section introduces the notation and terms we use in the rest of the paper.
To the person familiar with the literature on self-stabilization, our notation may
look fairly conventional. However, we encourage even the specialists to read
this section as the understanding of the results in the further sections hinges on
the notions defined in this one.

Program. A programconsists of a set ofN processes. Each process contains a
set of variables. Every variable ranges over a fixed domain ofvalues. Variable
v of processp is denotedv.p. A processstateis an assignment of a value from
its domain to each variable of the process. A program state, in turn, is an as-
signment of a value to every variable of each process. The Cartesian product of
the values of all program variables is programstate universe. That is, the state
universe defines all states that the program can assume.

Each process also contains a set of actions. An action has theform 〈name〉 :
〈guard〉 −→ 〈command〉. A guard is a predicate over the variables of the
process. Acommandis a sequence of assignment and branching statements.

An action whose guard istrue at some program state isenabledin that state.
The execution of an enabled action changes the values of program variables and
thus transitions the program from one state to another. A programcomputation
is a maximal sequence of such transitions. By maximality we mean that the
computation is either infinite or it ends in a state where noneof the actions are

enabled. Note that we do not assume any fairness of action execution for infinite
computations.

Communication model, extended state.Processes that share variables areneigh-
bors. The communication model determines the type and access method of the
variables shared by neighbor processes. For example, inshared-memorycom-
munication model, the process may mention the variables of the neighbor pro-
cesses in its actions. That is, the process may read the stateof its neighbor
processes. Theextendedstate of the process is the state of its local variables and
the variables that the process can read.

Problem specifications and program sequence mapping.Problem specifica-
tion prescribes the program behavior. This is done by defining theprogram in-
puts and outputs throughexternal variables. External variables are thus either
input or outputvariables. Input variables are modified by the environment while
the program may only read them. The output variables are updated by the pro-
gram, they are used to display the results of the program computation.

The problem specification is the set of sequences of states ofexternal vari-
ables. A program implements the specification. Part of the implementation is the
mapping from the program states to the specification states.This mapping does
not have to be one-to-one. However, we only considerunambiguousprograms
where each program state maps to only one specification state.

We make another important assumption about program sequence mappings.
The mappings have to bemerge-symmetric. Specifically, let there be a set of
program statespr1 throughprk such that they map to specification statess1

through sk. Then, if there is a specification statesm such that the extended
state of each processp in sm is the same as in one of the statess1 through
sk, then there exists a program stateprm that maps tosm. In other words, any
specification state formed by extended process state-preserving combination of
other specification states, has a program state that maps to this new specification
state. Most known mappings are merge-symmetric.

Identicalmapping maps every program state to the specification state.That
is, the program operates external variables only. Another simple program map-
ping is projection. Each process maintains output variables and internal vari-
ables for computations and record keeping. The projection of program states
onto specification states removes the internal variables. However, the mapping
may not be as straightforward as identical mapping or projection. For example,
the specification requires the output variable of a process be boolean while the
program maintains an integer variable. The mapping is such that the even values
of the integer variable are mapped totrue while odd values tofalse.

Once the mapping between program and specification states isestablished,
the program computations are mapped to specification sequences as follows.
Each program state is mapped to the corresponding specification state. Then,
stuttering, the consequent identical specification states, is eliminated.

The program does not have to implement all specification sequences. How-
ever, the program cannot select implementation sequences so that it ignores en-
vironment input. Hence the following notion of input completeness. Given a set
of sequencesA, a subsetB ⊂ A is input-completeif, for every sequenceα ∈ A,
there exists a sequenceβ ∈ B such that: every steps1 of α is also inβ and for
every pair of stepss1 ands2 their order inα andβ is the same. Informally, the
sequences in an input-complete subsetB preserve the results and the order of
the input steps inA.

The state universe of the specification is the Cartesian product of the values
of all the external variables. The state that is present in one of the specification
sequences isallowed by the specification. The state isdisallowedotherwise.
The specification isideal if it allows every state in its state universe; otherwise
the specification is not ideal.

We only consider specifications that are suffix-closed. Thatis, every suffix
of a specification sequence is also a sequence in this specification. Suffix closure
enables us to discuss the correctness of the program on the basis of its current
state rather than potentially arbitrary long program history. This facilitates as-
sertional reasoning about program correctness.

Predicates, invariants, stabilization.A statepredicateis a boolean expression
over program variables. A program stateconformsto predicateR, if R evaluates
to true in this state; otherwise, the stateviolatesR. By this definition every state
in the program state universe conforms to predicatetrue and none conforms to
false.

The predicate defines a set of program states that conform to it. In the sequel
we use the predicate and the set of states it defines interchangeably. Predicate
R is closedin a certain programP, if every state of every computation ofP
conforms toR provided that the computation starts in a state conforming to R.

A closed predicateI is aninvariant of the programP with respect to spec-
ification S if I has the following property: every computation ofP that starts
in a state conforming toI, maps to a sequence that belongs to the specifica-
tion. A program state islegitimateif it conforms to the invariant andillegitimate
otherwise.

ProgramP satisfies(or solves) specificationS, if there exists an invariantI
of P with respect toS such that the mappings of the program computations that
start fromI form an input-complete subset ofS. That is, the program does not

have to implement all the specification sequences, but it does need to accommo-
date all possible inputs. Specifically, it needs to implement an input-complete
subset of these sequences.

A programP is stabilizingto specificationS if every computation that starts
in an arbitrary state of the program sate universe contains astate conforming
to the invariant with respect toS. Therefore, any computation of a stabilizing
program contains a suffix that implements a specification sequence.

Definition 1. A program isideally stabilizing if every state in its state universe
is legitimate.

That is,true is an invariant of an ideally stabilizing program.

3 State Displacement

3.1 Necessary Condition for Specification

A non-ideal specification disallows certain states in its state universe. Yet, every
state in the program state universe is legitimate. Thus, fora program to ide-
ally stabilize to such specification, the state mapping should be such that the
disallowed states are displaced. That is, none of the statesin the program state
universe maps to the disallowed states. However, state displacements may not
be possible for an arbitrary specification. In this section we provide a theorem
that establishes a necessary condition for a specification to be solvable by an
ideally-stabilizing program.

Theorem 1. An ideal stabilization is possible to non-ideal specification only if
the specification contains an input-complete subset of sequences such that in
every disallowed specification state there is at least one process whose extended
state does not occur in any of the specification states of thissubset.

Proof: Assume the opposite. There is, a non-ideal specificationS that disal-
lows stated and for every input-complete subsetC of S and for every process
pi, wherei = 1, N , there is a specification stateci in one of the sequences ofC
such that the extended state ofpi is the same inci and ind. However, there is a
programP that ideally stabilizes toS.

SinceP solvesS, P implements an input complete-subset ofS. Assume,
without loss of generality, thatP implementsC. That is, for every sequence of
C there is a computation ofP that maps to this sequence. This means that for
each specification state ofC, there is a program state ofP that maps to it. This
includes the statesci. For eachi, let pri be the program state ofP that maps to
ci.

Recall that the extended state of each process ind is the same as in one of
the statesci. If this is the case then, according to merge-symmetry of program
mapping, there exists are program stateprd that maps tod. Let us consider the
computation ofP that starts inprd. This computation contains a state that maps
to a disallowed state,prd itself. That is, this computation maps to a sequence
outside the specificationS. This means thatd does not conform to an invariant
of P with respect toS. That is,prd is an illegitimate state. However, ifP has
an illegitimate state then, contrary to our initial assumption, P does not ideally
stabilize toS. Hence the theorem. �

3.2 Examples

To illustrate the concept of ideal stabilization to non-ideal specifications and the
ramifications of Theorem 1, we provide several examples.

Conflict manager.The specification we consider is a simplified (unfair) variant
of the dining philosophers problem [4, 7] that we callUDP . The program is
adapted from the deterministic conflict manager presented by Gradinariu and
Tixeuil [15]. The processes are arranged in a chain. Every process has a unique
identifier. The specification defines one external output boolean variablein per
process. If the value ofin is true, the process may execute the exclusive critical
section of code. The specification defines infinite sequenceswherein variables
alternate betweentrue and false. The sequences are not necessarily fair as a
certain process may never be given a chance to execute the crucial section. That
is, an input-complete subset of the specification contains any subset of such
sequences.

The specification prohibits concurrent critical section access by neighbor
processes. That is, the specification disallows states where in variables of two
neighbors aretrue in the same state. Assuming shared memory communication,
the extended state of the process contains the state of its neighbors. Hence, none
of the allowed specification states contain an extended process state where both
the process and one of its neighbors are inside the critical section. The specifi-
cation thus satisfies the conditions of Theorem 1.

The conflict manager programCM is as follows. Each process has a sin-
gle boolean variableaccessand a single actionflip that is always enabled. The
action toggles the value ofaccess.

flip : true −→ access := ¬access

The program mapping is this. For each processp the variablep.in is true
if p.access is true andp has the highest identifier among its neighbors with
access set totrue.

Let us discuss why this mapping is merge-symmetric. Any extended pro-
cess state-preserving combination of specification statesproduces a specifica-
tion state where neighbors are not accessing the critical section. Then, by appro-
priately settingaccess variables, we can generate the program state that maps
to this specification state.

Let us give an illustration for this reasoning. Assume we have a chain of
four processes with identifiers〈2, 1, 3, 4〉. The extended state of each process in
this case is its own state plus the state of its left and right neighbors. Consider
two specification states

s1 ≡ 〈true, false, false, false〉

and
s2 ≡ 〈false, false, false, true〉

Some of the program states that map tos1 and s2 are respectivelypr1 ≡
〈true, true, false, false〉 andpr2 ≡ 〈false, false, false, true〉.

Specification states3 ≡ 〈true, false, false, true〉 is formed by merging states
s1 ands2. Note that the extended states of each process ins3 are the same in ei-
thers1 or s2. For example, the extended state of processp2 is 〈true, false, false〉,
which is the same ins1 ands3. Note that there are a number of program states
that map tos3. For example,pr3 ≡ 〈true, false, false, true〉.

Theorem 2. ProgramCM ideally stabilizes to the unfair dining philosophers
specificationUDP .

Proof: To prove ideal stabilization we need to show that a computation of
CM from an arbitrary program state satisfiesUDP. First, we show that every
state ofCM maps to an allowed state ofUDP . Indeed, among the neighbors
whoseaccess is true, in is set totrue only for the process with the highest iden-
tifier. That is, every program state maps to the state ofUDP where neighbors
do not access the critical section concurrently. Hence, no program state maps to
a disallowed state.

Moreover in every computation of the program at least one process, the pro-
cess with the largest identifier in the system, alternates between settingaccess
to true andfalse. This means that this process alternates between entering and
exiting the CS indefinitely. Such computations satisfy the specification. That is,
CM ideally stabilizes toUDP. �

Leader election.We show a simplified leader election problemLE as an exam-
ple of the specification to which ideally stabilizing solutions do not exist. Again,
the processes form a chain. In this case, we only considerN > 3. In the exter-
nal state, each process has two boolean variables: an input variablecontend and
an output variableleader. The value of the input variablecontend is set to a
particular value and does not change throughout the specification sequence. In
each specification stateleader of at most one process istrue. To exclude trivial
solutions, the specification requires that the leader is elected only out of the pro-
cesses that contend for leadership. That is, the processes whosecontend vari-
able istrue. Each specification sequence is finite and ends with a state where
the leader is elected. Note that the input complete subset ofsequences has to
contain a sequence for every combination of the contending processes.

Theorem 3. There does not exist a program that ideally stabilizes to thesim-
plified leader election specificationLE .

Proof: Let us consider states1 where the first process is the only one con-
tending for leadership. This is the process that has to be elected leader. That
is, the following output state has to be in every input-complete subset.s1 ≡
〈true, false, · · · , false, false〉 Similarly, let s2 be the state where the last pro-
cess is the only one contending:s2 ≡ 〈false, false, · · · , false, true〉.

We now form the states3 where both the first and the forth processes are
contending for leadership and both of them are elected. Thatis,

s3 ≡ 〈true, false, · · · , false, true〉

This state is disallowed . Yet, the extended state of every process is present in
eithers1 or s2. Thus, according to Theorem 1, ideal stabilization is not possible
toLE . �

Linear alternator. For another example, we demonstrate how a well-known
program called the linear alternatorLA proposed by Gouda and Haddix [14]
fits into our ideal stabilization model. The alternator provides a solution to the
fair variant of the dining philosophers problemFDP . The problem specification
is the same as described above except all the sequences are fair with respect to
the process critical section access. The modified specification still excludes the
states where two neighbors are executing the critical section concurrently and
the specification still satisfies the conditions of Theorem 1. Therefore, the ideal
solution is still possible for this specification.

The implementation ofLA is as follows. Similar toCM manager, each
process has a boolean variablex. This time though we assume that the processes
in the chain are numbered in the increasing order from1 to N . The numbering
is for presentation purposes only as as each process only need to be aware of
its right and left neighbor. The process actions are as follows. In the actions,
parameterj ranges from2 to N − 1.

x.p1 = x.p2 −→ x.p1 := ¬x.p1

(x.pj 6= x.pj−1) ∧ (x.pj = x.pj+1) −→ x.pj := ¬x.pj

x.pN−1 6= x.pN −→ x.pN := ¬x.pN

The program to specification states mapping is as follows. For each process
pj, the output variablein.pj evaluates totrue if process’ action is enabled.

Theorem 4. ProgramLA ideally stabilizes to the fair dining philosophers spec-
ificationFDP.

Proof:
Gouda and Haddix [14] prove that the alternator satisfies thefairness prop-

erties of the dining philosophers specification from an arbitrary program state.
We only show the displacement of disallowed states. Note that an action of a
processp is enabled ifx.p is not equal to the left neighbor’s variable and equal
to the right neighbor’s variable. This can only hold for one process in the neigh-
borhood. That is, every program state maps to a specificationstate where none
of the neighbors are in the critical sections concurrently.In other words, the
program states only map to the allowed states. Hence the theorem. �

4 Stabilizing to Ideal Specifications

4.1 Forming Ideal Specifications

Another method of achieving ideal stabilization is by stating the specification
such that all the states in its universe are legitimate. Thatis, stating ideal spec-
ification. At first sight this seems difficult to achieve. However, the following
proposition demonstrates that such specifications are rather common.

Proposition 1. For every program there is an ideal specification to which this
program ideally stabilizes.

We provide an informal argument for the validity of this proposition. Con-
sider any program and all the computations produced by this program when it
starts from an arbitrary state of its universe. Now define thespecification that
contains exactly these computations. This specification isideal as all the states

of its state universe are allowed while the program ideally stabilizes to this spec-
ification.

Naturally, this kind of specification may not be very useful as it, in essence,
defines specification to be whatever the program computes. However, below we
describe how a number of stabilizing program published in the literature can be
defined as ideally stabilizing to ideal specifications.

4.2 Examples

Propagation of Information with Feedback. As the first example we describe
a programPIF that ideally stabilizes to the propagation of information with
feedback [5, 19] specification. The presentation of this program as snap-stabilizing
is well-known [3]. The program is presented on rooted trees.However, to sim-
plify the presentation, we describe the operation of this program on a chain.

For ease of exposition we preserve the rooted tree terminology. Similarly to
the alternator, we assume that the processes are numbered from 1 to N from
left to right in the chain. We refer to the leftmost processor, with identifier1, as
root; the rightmost, with identifierN , asleaf; and the processes in between as
intermediate. For each processp, the processes to the left of it areancestorsand
to the right —descendants.

Each process has a state variablest. In the intermediate processes, the vari-
able may hold one of the three values:i, rq , rp which stand foridle, requesting
andreplying respectively. The root can only be idle or requesting while the leaf
can be either idle or replying.

The objective of the program is to send a signal from the root to the leaf and
in return receive an acknowledgment that matches this signal. Operationally,
the program should ensure that after the root makes a requestthen every process
propagates this request along the chain from left to right incausally ordered
steps transitioning from idle to requesting. Afterwards, the processes propagate
the reply from right to left in causally ordered steps transitioning from request-
ing to replying.

We define the following state predicates.RP (k) are the specification states
where allk processes on the left are requesting(k = 1, N − 1) and the rest
of the processes are replying.RQ(l,m) are the specification states where alll

processes on the left are requesting(l = 0, N − 1) and allm − l processes
following them are idle(m = l + 1, N) while the remaining processes are
replying. SpecificationSPIF includes the sequences where the system satisfies
one of the predicates and transitions from one to the other infinitely.

Let us define another pair of predicates. PredicateRP ′(k) defines the states
wherek processes on the left are requesting(k = 1, N − 1), the processk + 1

is replying and none of the rest are idle. Notice thatRP (k) ⊂ RP ′(k). Pred-
icateRQ′(l,m) are the states where alll processes on the left are requesting
(l = 0, N − 1), all m − 1 following them are idle(m = l + 1, N) and the state
of the other processes is arbitrary. Similarly,RQ(l,m) ⊂ RQ′(l,m). Specifi-
cationIPIF includes the sequences where the system always satisfies either
RP ′(k) or RQ′(l,m), each sequence has a sequence inSPIF as a suffix and
the transition fromRQ′(l,m) is only toRP (k).

We now describe programPIF . It has only external variables. The map-
ping between the program and specification variables is identical. The actions
of PIF are shown in Figure 1.

request: st.p1 = i ∧ st.p2 = i −→ st.p1 := rq
clear : st.p1 = rq ∧ st.p2 = rp −→ st.p1 := i
forward : st.pj−1 = rq ∧ st.pj = i ∧ st.pj+1 = i −→ st.pj := rq
back: st.pj−1 = rq ∧ st.pj = rq ∧ st.pj+1 = rp −→ st.pj := rp
stop: st.pj−1 = i ∧ st.pj 6= i −→ st.pj := i
reflect: st.pN−1 = rq ∧ st.pN = i −→ st.pN := rp
reset: st.pN−1 = i ∧ st.pN = rp −→ st.pN := i

Fig. 1.PIF program actions. Actionsrequestandclear belong to the root process; actionsfor-
ward, back, andstop– to intermediate processes, i.e parameterj ranges from2 to N − 1; actions
reflectandreset– to the leaf.

Theorem 5. PIF classically stabilizes toSPIF and ideally stabilizes toIPIF .

Proof: First, we prove thatRQ(l,m) ∨ RP (k) is an invariant ofPIF with
respect toSPIF . Notice that this disjunction is closed inPIF . That is, none of
the actions ofPIF violate the predicate. Let us show that a program transitions
from RQ(l,m) to RP (k) and back. If the program satisfiesRQ(l,m), at least
one action is enabled. Indeed, ifl = 0,m < N , requestis enabled instop is
enabled in processpm+1. If, l < m−1,m ≤ N , requestis enabled inpl+1. With
the execution of an action eitherl or m are incremented. Ifl = N − 1,m = N ,
reflectis enabled that transitions the program intoRP (N − 1). Similarly, if the
system satisfiesRP (k) for k = 2, N − 1, actionbackis enabled. The execution
of this action keeps the system inRP (k) but decrementsk. If k = 1, clear
is enabled. Its execution moves the program back inRQ(l,m). That is, the
disjunction of the two predicates is closed and aPIF computation that starts in
a state conforming to one of them, satisfiesSPIF . Hence,RQ(l,m)∨RP (k)
is an invariant ofSPIF .

Observe that the disjunction ofRQ′(l,m) ∨ RP ′(k) contains the program,
as well as specification, state universe. We show thatPIF stabilizes toSPIF

from this predicate as required byIPIF. An argument similar to the above
demonstrates that an action is enabled ifPIF satisfiesRP ′(k). This action
either decrementsk or moves the system toRQ′(l,m). Also, similarly, ifPIF
satisfiesRQ′(l,m), then an action is enabled that increments eitherl or m.
Moreover, ifl = N − 1,m − N , the execution ofreflecttransitions the system
to RP (k). That is,PIF moves fromRP ′(k) to RQ′(l,m) to RP (k). This
means that the program stabilizes toSPIF and ideally stabilizes toIPIF. �

Alternating bit protocol. Alternating bit protocol is an elementary data-link
network protocol. There is a number of classic stabilizing implementations of
the protocol. Refer to Howell et al [17] for an extensive listof citations. There
is also a snap-stabilizing version [6].

The problem is stated as follows. There are two processes:sender— p, and
receiver— q. The processes maintain boolean sequence numbersns.p andnr.q.
The processes exchange messages over communication channels. The channels
are reliable and their capacity is one. That is, if the channel is empty, the message
is reliably sent. If the channel already contains a message,an attempt to send
another message leads to the loss of the new message. The processes exchange
two types of messages:data andack. Both carry the sequence numbers.

SpecificationSABP prescribes infinite sequences of states where there is
exactly one message in the channels. The message carries thesequence number
of the sender. The state transitions are such thatp changes the value ofns. This
change is followed by the change of the value innr that matches the value of
ns.

Specification ofIABP is such that for every state in the universe there is a
sequence that starts in it and every sequence contains a sequence ofSABP as a
suffix. Specification ofIABP is thus ideal.

The programABP uses only external variables as described bySABP and
IABP. ABP actions are shown in Figure 2. The sender has two actions:next
andtimeout. Action next is enabled if there is a message fromq in the channel.
The timeout action is enabled if there are no messages in either channel. Upon
receiving a message fromq with matching sequence number,p increments the
sequence number and sends the next message. Ifp times out, it resubmits the
same message. The receiver has a single action. Whenq, receives a message,
it sends an acknowledgment back top. If the message bears a sequence num-
ber different fromrn, q incrementsrn signifying the successful receipt of the
message.

Theorem 6. ABP classically stabilizes toSABP and ideally stabilizes toIABP.

next: receiveack(nm) −→
if nm = ns then

ns := ¬ns

senddata(ns)
timeout: timeout() −→ senddata(ns)
reply: receivedata(nm) −→

if nm 6= nr then
nr := nm

sendack(nm)

Fig. 2.ABP actions.

ack(ns) data(ns)

data(ns)

∅

ack(¬ns)

∅

ack(¬ns)

data(¬ns)

ack(ns)data(¬ns)

ns=nr ns≠nrnext

reply

reply timeout

next

reply

timeout

next

reply

next

Fig. 3.ABP state transitions.

Proof: We prove the correctness of the theorem by enumerating the state
transitions ofPIF . We classify the state universe ofABP into two groups:
(i) ns is equal tonr and (ii) ns is not equal tonr. The states are further clas-
sified according to the type of messages in the channels. The states and state
transitions are shown in Figure 3. Note that to simplify the diagram we do not
show the states that contain more than a single message. However, after a single
transition, the program moves from one of those states to a state shown in the
figure. The correctness of the theorem claims can be ascertained by examining
the states and transitions shown in the figure. �

5 The Impact of Ideal Stabilization Approach

In this paper we proposed a new way of approaching stabilization. Our approach
eliminates two of the most problematic features of classic stabilization: unpre-
dictable behavior during stabilization and poor composability. We hope that this
work adds more credence to stabilization as a viable fault-tolerance technique
and generates more interest in the subject among both theoretical researches and
reliability engineers.

References

1. Anish Arora, editor.1999 ICDCS Workshop on Self-stabilizing Systems, Austin, Texas, June
5, 1999, Proceedings. IEEE Computer Society, 1999.

2. Alina Bejan, Sukumar Ghosh, and Shrisha Rao. An extended framework of safe stabilization.
In David Jeff Jackson, editor,Computers and Their Applications, pages 276–282. ISCA,
2006.

3. Alain Bui, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. State-optimal snap-
stabilizing pif in tree networks. In Arora [1], pages 78–85.

4. K.M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on
Programming Languages and Systems, 6(4):632–646, October 1984.

5. Ernest J. H. Chang. Echo algorithms: Depth parallel operations on general graphs.IEEE
Transactions on Software Engineering, 8(4):391–401, July 1982.

6. Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien Tixeuil. Brief an-
nouncement: Snap-stabilization in message-passing systems. In Principles of Distributed
Computing (PODC 2008), August 2008.

7. E. Dijkstra.Cooperating Sequential Processes, pages 43–112. Academic Press, 1968.
8. Edsger W. Dijkstra. Self-stabilizing systems in spite ofdistributed control.Commun. ACM,

17(11):643–644, 1974.
9. S. Dolev.Self-stabilization. MIT Press, March 2000.

10. Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci., 1997, 1997.

11. Shlomi Dolev and Frank A. Stomp. Safety assurance via on-line monitoring. Distributed
Computing, 16(4):269–277, 2003.

12. Sukumar Ghosh and Alina Bejan. A framework of safe stabilization. In Shing-Tsaan Huang
and Ted Herman, editors,Self-Stabilizing Systems, volume 2704 ofLecture Notes in Com-
puter Science, pages 129–140. Springer, 2003.

13. Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V.Pemmaraju. Fault-containing
self-stabilizing algorithms. InProceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, pages 45–54, 1996.

14. Mohamed G. Gouda and F. Furman Haddix. The alternator. InArora [1], pages 48–53.
15. Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without fair-

ness assumption. InProceedings of the International Conference on Distributed Computing
Systems (ICDCS 2007), page 46. IEEE, June 2007.

16. Ted Herman and Sriram V. Pemmaraju. Error-detecting codes and fault-containing self-
stabilization.Inf. Process. Lett., 73(1-2):41–46, 2000.

17. Rodney R. Howell, Mikhail Nesterenko, and Masaaki Mizuno. Finite-state self-stabilizing
protocols in message-passing systems. In Arora [1], pages 62–69.

18. Chengdian Lin and Janos Simon. Observing self-stabilization. InPODC, pages 113–123,
1992.

19. A. Segall. Distributed network protocols.IEEE Transactions on Information Theory,
29(2):23–35, January 1983.

20. Sébastien Tixeuil.Algorithms and Theory of Computation Handbook, Second Edition, chap-
ter Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Struc-
tures. Taylor & Francis, 2009.

