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Abstract 

 
An object oriented description and framework of the 

Multiple ASsociative Computing (MASC) model of parallel 
computation is presented.  This description identifies 
MASC objects and specifies various object and inter-object 
relationships, dependencies, and behaviors.  This was 
achieved by describing various views of the MASC model 
by using many of the UML structural and behavioral 
diagrams.  This object oriented framework has been highly 
useful in designing an implementation of a runtime 
environment for the MASC model.  Also the object oriented 
framework has been highly effective for further parallel 
modeling techniques, comparisons to other parallel 
models, MASC parallel system software research, and 
MASC algorithm development.   
 
Keywords: parallel models, object oriented, parallel 
architectures. 
 
 
1 Introduction 
 

Abstract models of parallel computation are 
important vehicles for the design and development of 
parallel architectures, algorithms, and programming 
languages [4].  As research continues in the development 
of these abstract models of parallel computation, so do 
advances in the implementation a model using both 
software and hardware.  To assist in the design and 
development of models of parallel computation, often a 
more detailed model is needed in describe the static and 
dynamic components of the model. 
 

This paper presents an object oriented description and 
framework for an associative model of parallel 
computation.  This object oriented framework is useful 
for the development of parallel system software, such as 
compilers, interpreters, and runtime environments.  Also 
the object oriented framework is useful in determining 
predictability parameters reflected in the model.  

 
The MASC (for Multiple ASsociative Computing) 

model for parallel computation supports a generalized 
version of an associative style of computing that has been 
in use since the introduction of the associative SIMD 
computers (STARAN, MPP) in the early 1970s and 
1980s.  The MASC model includes the well-known data 
parallel-programming paradigm and extends this 
paradigm to a complete computational model.  The 
associative features of the model allow data in the local 
memories of the processors (PE’s) to be located by 
content rather than by address.  A complete description of 
MASC (a renaming of the original ASC model to 
emphasize multiple instruction streams) can be found in 
[6] and [7]. 
 

The original description in [7], however, provides a 
conceptual view of the principal components and basic 
component interactions of the MASC model.  This 
conceptual description of MASC is primarily used to 
introduce the model and not for research and 
development.  By creating an object framework to 
describe MASC transforms this conceptual description 
into one that is not only object oriented, but provides 
several views for further MASC research in algorithm 
development and predictability, system software design 
and implementation, and hardware simulation and 
modeling.  This object-oriented description of MASC 
details the principal objects and inter-object behaviors by 
using class inheritance, structural, and behavior diagrams.  
This common set of object and behaviors in the model 
allow MASC application developers, MASC system 
software designers and MASC hardware designers to 
establish a common reference point for interfacing system 
software to hardware components.  Also the MASC 
object oriented framework provides a reference for 
hardware and algorithmic predictability analysis. 
 

The remainder of this paper will first give a 
conceptual description of the MASC model of parallel 
computation and also present the MASC predictability 



parameters used in algorithm predictability analysis.  
Next, an overview and research motivation of the MASC 
object model is discussed.  The basic objects of the 
MASC model are presented and organized into classes for 
basic structural modeling.  Once the structural elements 
are defined, the object interactions are presented for a 
discussion of model predictability.   

 
2 The MASC Model 
 

The following is a conceptual description of the 
MASC model of parallel computation.  As shown in 
figure 1, the MASC model consists of an array of 
processor-memory pairs called cells and an array of 
instruction streams. 

 
 

Instruction
Stream

Instruction
Stream

Instruction
Stream

C
el

l I
nt

er
co

nn
ec

tio
n 

N
et

w
or

k

Instruction S
tream

 Interconnection N
etw

ork

B
roadcast / R

eduction N
etw

ork

. . .

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

PEMemory

. . .

T_local

T_route

T_I/O T_bcast

T_reduce T_sync

 

Figure 1: Conceptual view of the MASC model of 
parallel computation. 

 
A MASC machine with n cells and j instruction 

streams is denoted as MASC(n, j).  It is expected that the 
number of instruction stream processors be much less 
than the number of cells.  The model also includes three 
virtual networks: 
 
1. A cell network used for cell-to-cell communication.  

This network is used for the parallel movement of 
data between cells.  This network could be a linear 
array, mesh, hypercube, or a dynamic interconnection 
network.  

2. A broadcast/reduction network used for 
communication between an instruction stream and a 
set of cells.  This network is also capable of 
performing common reduction operations. 

3. An instruction stream network used for inter-
instruction stream communication.  

 
Cells can receive their next set of instructions to 

execute from the instruction stream broadcast network.  
Cells can send and receive messages to each other using 
some communication pattern via the cell network.  Each 
instruction stream processor is also connected to two 
interconnection networks.  An instruction stream 
processor broadcasts instructions to the cells using the 
instruction stream broadcast network.  The instruction 
streams also may need to communicate and may do so 
using the instruction stream network.  Any of these 
networks may be virtual and be simulated by whatever 
network is present. 
 

MASC provides one or more instruction streams. 
Each is assigned to a unique dynamic partition of cells.  
This allows a task that is being executed in a data parallel 
fashion to be partitioned into two or more tasks using of 
control parallelism.  The multiple IS’s supported by the 
MASC model allows for greater efficiency, flexibility, 
and reconfigurability than is possible with only one 
instruction stream.  While SIMD architectures can 
execute data parallel programs very efficiently and 
normally can obtain near linear speedup, data parallel 
programs in many applications are not completely data 
parallel and contain several non-trivial regions where 
significant branching occurs.   
 

In these regions, only a subset of traditional SIMD 
processors can be active at the same time.  With MASC, 
control parallelism can be used to execute these different 
branches simultaneously.  Other MASC properties 
include: 
 
• The cells of the MASC model consist of a processing 

element (PE) and local memory.  The accumulated 
memory of the MASC model consists of an array of 
cells.  There is no shared memory between cells. 

 
• Each instruction stream is a processor with a bus or 

broadcast/reduction network to all cells.  Each cell 
listens to only one instruction stream and initially, all 
cells listen to the same instruction stream.  The cells 
can switch to another instruction stream in response 
to commands from the current instruction stream. 

 
• An active cell executes the commands it receives 

from its instruction stream, while an inactive cell 



listens to but does not execute the command from its 
instruction stream.  Each instruction stream has the 
ability to unconditionally activate all cells listening to 
it. 

 
• Cells without further work are called idle cells and 

are assigned to a specified instruction stream, which 
among other tasks manages the idle cells.   

 
• The average time for a cell to send a message through 

the cell network to another cell is characterized by 
the parameter troute.  Each cell also can read or write a 
word to an I/O channel.  The maximum time for a 
cell to execute a command is given by the parameter 
tlocal.    The time to perform a broadcast of either data 
or instructions is given by the predictability 
parameter tbcast.  The time to perform a reduction 
operation is given by the predictability parameter 
treduce.  The time for a cell to perform this I/O transfer 
is characterized by the parameter ti/o.  The time to 
perform instruction stream synchronization is 
characterized by the parameter tsynch.   

 
• An instruction stream can instruct its active cells to 

perform an associative search in time tbcast + tlocal 
+treduce.  Successful cells are called responders, while 
unsuccessful cells are called non-responders.   

 
• The instruction stream can activate either the set of 

responders or the set of non-responders.  It can also 
restore the previous set of active cells in tbcast + tlocal 
time.   

 
• Each instruction stream has the ability to select an 

arbitrary responder from the set of active cells in tbcast 
+ tlocal time.   

 
• An active instruction stream can compute the OR, 

AND, GLB, or LUB of a set of values in all active 
cells in treduce time [3]. 

 
• An idle cell can be dynamically allocated to an 

instruction stream in tsynch + tbcast time.   
 
 
3 MASC Object Model 
 

This section will present an overview and research 
motivations for the MASC Object Model (MASCOM).  
The MASC Object Model is a set of parallel associative 
model component descriptions (classes) and object 
behaviors (messages).  MASCOM was designed to be a 
reference of the abstract model for continuing MASC 
design, development, and implementation research.  A 

MASCOM design goal is that the framework is to be 
portable when implemented across different classes of 
parallel computing architectures.  Another design goal is 
that the framework should reflect the costs of 
implementing (overhead) MASC in a particular runtime 
environment for algorithm and performance 
predictability. 
 

For an implementation of hardware and system 
software components of an abstract model of parallel 
computation progresses, hardware designers and software 
developers can now have discussions using a common set 
of classes and objects.  Consider the model diagram 
shown in figure 2.  When discussing a “cell”  in the 
MASC model, a hardware designer may view a cell as a 
FPGA or ASIC component containing an ALU and a 
small memory.  A system software engineer may discuss 
the interactions of a “cell”  in terms of dynamic activation, 
or controlling which instruction stream to listen.  The end 
result is that different types of developers now have a 
common reference point to perform research and 
development while maintaining a common dialog with 
researchers in other areas. 

 

 
 
Figure 2: MASCOM framework viewpoints. 
 
 
4 MASCOM Class Structure 
 

The structural classes of MASCOM provide the 
model with a foundation of classes, objects, aggregations, 
and inheritance.  The fundamental base classes of the 
MASCOM model are shown in figure 3.   

 
At the abstract parallel model level, parallel data is 

stored in fields.  Beginning with the memory in a cell, the 
basic class for storage element is the field class.  The field 
class is an abstract base class in which other concrete field 



types are derived (integer fields, string fields, real fields, 
Boolean fields, etc).   

 
To manage the fields, the field manager class 

maintains the collection of fields.  The purpose of this 
collection is to provide the memory addressing capability 
for the cell and instruction stream classes.   

 
Figure 3: Fundamental base classes of 
MASCOM. 

 
 
The field manager shown in figure 4 is identified 

with a cell; however, the functionality of the Field 
Manager could be associated with an instruction stream if 
the cell does not have any memory addressing 
capabilities. 
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Figure 4: MASCOM cell aggregation diagram. 

 
Each cell also has a field ALU class capable of 

performing basic arithmetic and logical operations on 
fields.  The functionality of the field ALU class is not 

specified to allow for different types of processing 
elements to be "plugged-in" the MASC model.  The 
cardinality of to cell to a Field ALU is 1:1.  The field 
ALU can be implemented as a singleton pattern to reflect 
that when a parallel model of computation (or 
implementation of a model) is supporting virtual 
parallelism, there are fewer physical processing elements 
than data to be processed.  As illustrated in figure 5, 
allowing a virtual cell manager class to maintain a 
collection of field managers supports virtual parallelism.   
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Figure 5: MASCOM Virtual cell organization. 

 
A MASCOM instruction stream class has the 

same basic components and functionality of a MASC cell; 
i.e. it has the capability of performing computations on 
local (scalar) fields and communicates with other 
instruction streams.  Since instruction streams must also 
be able to broadcast instructions to its partition of cells, 
and perform reductions from a partition of cells.  
Therefore, it is natural for the properties and 
functionalities of the instruction stream class to be derived 
from a cell class.  Since the properties of an instruction 
stream can be derived from a cell, it is natural for an 
instruction stream to inherit the properties and 
functionality of a cell and this is illustrated in figure 6.   
 

Cell

Instruction Stream

 

Figure 6: MASCOM Instruction stream / cell 
inheritance. 

 



An interconnection network class is a class used 
for communication between cells and/or instruction 
streams.  This is an abstract base class to allow for 
different interconnection network class implementations 
to be plug-in compatible with the existing MASC 
architecture.  Thus, it will be possible to design and 
specify different types of networks used in MASC for 
different deployments of the model.  For example, the cell 
network could be implemented using a grid mesh 
network, the broadcast reduction network could be 
implemented using a bus based network, while the 
instruction stream network could be implemented as a 
type of intelligent shared memory with basic network 
functionality. 
 

Now that the basic structural components are 
defined, the MASCOM aggregation diagram of MASC is 
illustrated in figure 7.   
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Figure 7: MASCOM class structure and 
aggregation diagram. 

 
The top Interconnection Network class is used for an 
object to allow for Instruction Stream communication and 
synchronization.  The aggregation of an Instruction 

Stream is identical to that of a Cell, each allowing for 
Fields, Field Managers, and Field ALU classes.  The 
middle Interconnection Network object is used for 
instruction stream broadcast and cell reductions.  Finally 
the lower Interconnection Network class is used for inter-
cell communication. 
 
 
5 MASCOM Object Interactions and 

Predictability 
 

The MASCOM object interactions and behavioral 
diagrams define the predictability in the MASC model 
[5].  The MASC predictability parameters can be 
illustrated using sequence diagrams; four are presented in 
this paper.  The Troute is a measurement of cell-to-cell 
communication.  Since the communication network and 
protocol are not specified however, the sequence diagram 
in figure 8 illustrates that the time Troute is bounded by the 
completion of all sends from one cell to another cell 
(sends to multiple cells are acknowledged by the *  
symbol).  
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Figure 8: MASCOM predictability parameter Troute 
sequence diagram. 
 
 The next predictability parameter in the MASC 
model is Tbcast.  This parameter measures the maximum 
time for performing a broadcast of data or instructions 
from an instruction stream to a cell or partition of the set 
of cells.  Again, figure 9 illustrates that the time Tbcast is 
bounded by the completion of the broadcast to the 



interconnection object and the completion of all sends 
from the network to a partition of cells. 
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Figure 9: MASCOM predictability parameter Tbcast 
sequence diagram. 
 
 

Another sequence diagram is for the MASC 
predictability parameter Tlocal that measures the maximum 
time a local cell operation requires.  This is illustrated in 
figure 10.  The time Tlocal is bounded by the time from 
when an instruction stream broadcasts the instruction to 
the cell to the time the instruction sequence is complete.  
Since not all instructions are arithmetic, the ALU request 
and complete sequence is optional.  This sequence 
diagram also considers that an instruction stream may 
broadcast a series of instructions to a cell to execute 
instead of broadcasting each instruction individually.   
 

A feature of parallel associative computing is to 
perform an associative search and process all the 
responding cells.  This is a typical operation performed 
often using a basic parallel selection programming 
structure along with program iteration [10].  The basic 
associative search-process-retrieve cycle is illustrated in 
figure 11.  Note that "Cell*" is used to illustrate that all 
cells of an instruction stream are used.  The instruction 
stream would first instruct all cells to perform a parallel 
search by broadcasting the datum and fields to search.  
Once complete, the first responder cell is identified, 
selected, and processed.  This is repeated iteratively for 
the remaining responding cells. 
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Figure 10: MASCOM predictability parameter 
Tlocal sequence diagram. 

   
 

Instruction
Stream

Cell*

Broadcast Instruction
for Parallel Search

Perform Search
Set Responder Flag

Select First/Next
Responder

Repeat Until
All Responders
Are Processed

Execute
Instructions

Clear
Responder Flag

Broadcast
Instructions

Return
Result

 

Figure 11: MASC description of the associative 
search-process-retrieve cycle. 

 



6 Conclusions 
 
This paper has presented an object oriented description 
and software framework for the MASC model of parallel 
computation.  This framework provides a basis for many 
types of hardware and software developers to 
communicate and share ideas and concepts in an object 
oriented manner.  The MASC model is a model of parallel 
computation that supports an associative style of parallel 
computation that allows memory to be addressed by 
content rather than by address.  By using the various 
MASCOM structural and behavioral diagrams and views, 
the same model can be used for various disciplines of 
parallel computing research such as parallel architecture, 
parallel algorithm development, and implementations of 
parallel runtime environments.  The class and structural 
diagrams of MASCOM provided the foundation classes 
and class aggregations.  The object interactions and 
behavioral diagrams of MASCOM provided the 
responsibilities and requirements of the classes in the 
model.  The object interactions led to the development of 
various sequence diagrams for computational 
predictability.  The development of the MASC object 
model was instrumental in identifying duplicate 
responsibilities and classes among the various 
components of MASCOM; such as clarifying that an 
instruction stream and a cell have the same basic 
functionality, which is not illustrated in the MASC 
conceptual diagram. 
 

The future of the MASC object model is currently 
being used as a development reference for implementing 
the MASC model using a cluster of workstations.  
However implementing MASC on other parallel 
computing hardware can use this same description as a 
reference.   The MASCOM description can also be used 
as a common reference for comparing MASC with other 
models of parallel computation. 
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