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Abstract 
 

This paper describes a system software design 
for multiple instruction stream control in a massively 
parallel associative computing environment.  The 
purpose of providing multiple instruction stream 
control is to increase throughput and reduce the 
amount of parallel slackness inherent in single 
instruction stream parallel programming constructs.  
The Multiple ASsociative Computing (MASC) model 
will be used to describe this technique and a brief 
introduction to the MASC model of parallel 
computation is presented.  A simple parallel 
computing example is used to illustrate the 
techniques for multiple instruction stream control in 
a massively parallel runtime environment. 
 
Keywords: Multiple instruction streams, associative 
computing, system software, parallel processing. 
 

1 Introduction 
Traditional massively parallel processing 

computers such as single instruction stream, multiple 
data stream (SIMD) computers rely on a host or 
instruction stream to control the array of parallel 
processors or parallel array unit.  By definition of 
Flynn’s taxonomy of parallel computer architectures, 
the SIMD model has only one control unit.   

 
But what if more than one control unit is 

introduced to a massive array of processors?  Can 
multiple control units or instruction streams work 
seamlessly to improve application performance and 
throughput?  Would multiple instruction streams 
reduce parallel slackness inherent in parallel 
programming constructs such as the parallel if-then-
else and if so, how much overhead would a parallel 
runtime environment incur?  How should these 

multiple instruction streams be controlled from a 
programming and system software perspective? 
 

To answer some of these questions and examine 
some of these research topics, the Parallel and Associative 
Computing Research Group at Kent State University is 
conducting research on just such a model.  The Multiple 
ASsociative Computing (MASC) model of parallel 
computation uses an M-SIMD (multiple SIMD) 
architecture that allows for multiple instruction streams to 
control a unique partition of a global set or array of 
processing elements (cells).   
 

This research explores a method of controlling 
multiple instruction streams in a massively parallel 
processing environment such as defined by the MASC 
model of parallel computing.  Furthermore, this research 
explores this control from a system software perspective 
(compilers and parallel runtime environments).  This was 
achieved by examining the current system software 
requirements for single instruction stream computing and 
designing the compiler and system software modifications 
for a multiple instruction stream associative computing 
runtime environment.  
 

Section 2 will present an overview of the MASC 
model of parallel computation.  This model supports a 
generalized data and associative parallel programming 
paradigm with restricted support for control parallelism.  
Section 3 will discuss the system software support for the 
MASC Model.  This includes the current MASC compiler 
and emulator as well as a runtime environment of the 
MASC model using clusters of workstations.  Section 4 
will present the theory and design for control of multiple 
instruction streams.  New parallel byte code instructions 
for this control are introduced and a discussion of the 
overhead required for their implementation is presented.  
Section 5 will present a parallel associative computing 
example demonstrating multiple instruction stream 
control. 



2 The MASC Model of Parallel 
Computation 
The following is a conceptual description of the 

Multiple Associative Computing (MASC) model of 
parallel computation.  As shown in figure 1, the 
MASC model consists of an array of processor-
memory pairs called cells and an array of instruction 
streams. 
 
 

Figure 1: Conceptual view of MASC. 
 
 

A MASC machine with n cells and j instruction 
streams is denoted as MASC(n, j).  It is expected that 
the number of instruction stream processors be much 
less than the number of cells.  The model also 
includes three virtual networks: 
 
1. A cell network used for cell-to-cell 

communication.  This network is used for the 
parallel movement of data between cells.  This 
network could be a linear array, mesh, 
hypercube, or a dynamic interconnection 
network.  

 
2. A broadcast/reduction network used for 

communication between an instruction stream 
and a set of cells.  This network is also capable 
of performing common reduction operations. 

 
3. An instruction stream network used for inter-

instruction stream communication.  
 

Cells can receive their next set of instructions to 
execute from the instruction stream broadcast 
network.  Cells can be instructed from their current 
instruction stream to send and receive messages to 

other cells in the same partition using some 
communication pattern via the cell network.  Each 
instruction stream processor is also connected to two 
interconnection networks.  An instruction stream 
processor broadcasts instructions to the cells using the 
instruction stream broadcast network.  The instruction 
streams also may need to communicate and may do so 
using the instruction stream network.  Any of these 
networks may be virtual and be simulated by whatever 
network is present. 
 

MASC provides one or more instruction streams. 
Each active instruction stream is assigned to a unique 
dynamic partition of cells.  This allows a task that is being 
executed in a data parallel fashion to be partitioned into 
two or more data parallel tasks using control parallelism.  
The multiple IS’s supported by the MASC model allows 
for greater efficiency, flexibility, and reconfigurability 
than is possible with only one instruction stream.  While 
SIMD architectures can execute data parallel programs 
very efficiently and normally can obtain near linear 
speedup, data parallel programs in many applications are 
not completely data parallel and contain several non-
trivial regions where significant branching occurs [1].  In 
these parallel programming regions, only a subset of 
traditional SIMD processors can be active at the same 
time.  With MASC, control parallelism can be used to 
execute these different branches simultaneously.  Other 
MASC properties include: 
 
• The cells of the MASC model consist of a processing 

element (PE) and local memory.  The accumulated 
memory of the MASC model consists of an array of 
cells.  There is no shared memory between cells. 

 
• Each instruction stream is a processor with a bus or 

broadcast/reduction network to all cells.  Each cell 
listens to only one instruction stream and initially, all 
cells listen to the same instruction stream.  The cells 
can switch to another instruction stream in response 
to commands from the current instruction stream. 

 
• An active cell executes the commands it receives 

from its instruction stream, while an inactive cell 
listens to but does not execute the command from its 
instruction stream.  Each instruction stream has the 
ability to unconditionally activate all cells listening to 
it. 

 
• Cells without further work are called idle cells and 

are assigned to a specified instruction stream, which 
among other tasks manages the idle cells.   

 
• The average time for a cell to send a message through 

the cell network to another cell is characterized by 
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the parameter troute.  Each cell also can read or 
write a word to an I/O channel.  The maximum 
time for a cell to execute a command is given by 
the parameter tlocal.    The time to perform a 
broadcast of either data or instructions is given 
by the predictability parameter tbcast.  The time to 
perform a reduction operation is given by the 
predictability parameter treduce.  The time for a 
cell to perform this I/O transfer is characterized 
by the parameter ti/o.  The time to perform 
instruction stream synchronization is 
characterized by the parameter tsynch.   

 
• An instruction stream can instruct its active cells 

to perform an associative search in time tbcast + 
tlocal + treduce.  Successful cells are called 
responders, while unsuccessful cells are called 
non-responders.   

 
• The instruction stream can activate either the set 

of responders or the set of non-responders.  It 
can also restore the previous set of active cells in 
tbcast + tlocal time.   

 
• Each instruction stream has the ability to select 

an arbitrary responder from the set of active cells 
in tbcast + tlocal time.   

 
• An active instruction stream can compute the 

OR, AND, Greatest Lower Bound, or Least 
Upper Bound of a set of values in all active cells 
in treduce time.   

 
• An idle cell can be dynamically allocated to an 

instruction stream in tsynch + tbcast time.   
 

These predictability parameters were identified 
using an object oriented description of the MASC 
model in [7].  They were developed to identify the 
performance costs using different architecture classes 
of parallel computing equipment.  When the MASC 
model is implemented using a traditional SIMD 
computer such as the STARAN or Wavetracer DTC 
or Zephyr, the MASC model is highly deterministic 
and the predictability costs can often be calculated 
and are often “best possible”  [3].  Many of the 
predictability parameters for MASC operations 
become fixed or operate in one step [3]. 
 

3 MASC System Software  
The current system software support for the 

MASC model consists of a compiler, an emulator for  
Windows or Linux based machines, and a parallel 

runtime environment using a cluster of Linux machines.  
The ASC programming language is a data parallel 
associative programming language.  This language is 
further defined in [5][6].  The ASC compiler translates the 
ASC syntax into MASC byte code which can be executed, 
by a number of parallel runtime environments.  Presently, 
single instruction stream runtime environments for the 
ASC compiler and emulator are available for Windows 
and Linux machines, the Connection Machine, the 
WaveTracer DTC and Zephyr, and the ASPRO.   
 

A multiple instruction stream parallel runtime 
environment is presently in development using a cluster 
of workstations as a feasibility prototype.  This runtime 
environment interprets and executes the MASC byte code 
generated by the current single instruction stream ASC 
compiler.  Since the cluster implementation of MASC 
support multiple instruction streams and since the ASC 
compiler only generates single instruction stream byte 
code, a compiler option or optimization phase is being 
developed.  This optimization procedure is called the 
ISGEN (Instruction Stream GENerate) and would be 
performed after linking.  The phases of compilation for a 
MASC program are depicted in the following figure. 
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Figure 2: MASC phases of compilation including 
the ISGEN phase. 
 
 

The ISGEN procedure is used to identify candidate 
regions that can be assigned a separate instruction 
streams.  Within each multiple instruction stream region, 
several code regions or basic blocks are be identified and 
assigned to a virtual instruction stream.  Each virtual 
instruction stream region is then assigned or mapped to a 



physical instruction stream within the MASC parallel 
runtime environment during program execution. 

 

4 Multiple Instruction Stream Control 
Design 
This section will present the parallel 

programming constructs supporting multiple 
instruction streams and discuss the MASC byte code 
operations to support multiple instruction streams in 
the MASC parallel runtime environment.   
Consider the parallel associative if-then-else 
programming construct.   
 

if (parallel condition) then 
  <body_1> 

else 
<body_2> 

endif; 
 

In the ASC programming language the result of a 
parallel conditional statement is stored in a parallel 
bit vector.  For a single instruction stream 
implementation, the instruction stream will instruct 
all cells to evaluate the parallel condition and then set 
their parallel responder bit accordingly.  For those 
cell responders set to TRUE, programming region 
body_1 is executed.  At the completion of body_1, 
the non-responders become active and programming 
region body_2 is executed.  Thus, for a single 
instruction stream, body_1 and body_2 are both 
executed in sequence.  The non-responders are 
inactive during the time body_1 is executing and vice 
versa. 
 

The ISGEN phase during compilation would 
identify begin and end of an ASC parallel if-then-else 
construct and insert four new byte code instructions.  
It can transform a single instruction stream ASC 
program into a multiple instruction stream MASC 
program. 
 
• MI_REGION_BEGIN – This command will be 

used to identify a candidate region for multiple 
instruction streams.  This command will use the 
current assigned instruction stream to perform 
the evaluation of the parallel conditional 
expression. 

 
• MI_REGION_END – This command will be 

used to identify the end of a candidate region of 
multiple instruction streams.  This instruction 
will be used to collapse and combine multiple 
instruction streams into a single instruction 

(thread of execution).  This can be achieved by 
performing a synchronization to wait for all 
instruction streams to complete. 

• MI_BEGIN – This instruction will be used to mark 
the beginning of a basic block identified for a 
multiple instruction stream. 

 
• MI_END – This instruction will be used to mark the 

end of a basic block identified for a multiple 
instruction stream. 

 
In theory, several MI_BEGIN and MI_END statements 
may exist within a single MI_REGION_BEGIN and 
MI_REGION_END construct.  However for a simple 
parallel if-then-else statement, the MASC byte code 
would have the following format: 
 

MI_REGION_BEGIN A 
(parallel conditional expression) 
MI_BEGIN A0 
<body_1> 
MI_END A0 
MI_BEGIN A1 
<body_2> 
MI_END A1 
MI_REGION_END A 

 
The labels used after each command are structure codes 
[5] used to keep track of which child instruction stream 
belongs to a parent region. 
 

As the MASC runtime environment interprets this 
byte code, the runtime environment must now broadcast 
instructions from each of the MI_BEGIN and MI_END 
regions simultaneously.  This can be done by runtime 
environment by reordering the byte code instructions 
from each of the instruction streams into a VLIW (very 
long instruction word).  The VLIW instruction word is an 
array of MASC instructions which is indexed by an 
instruction stream ID number.  The following illustration 
(figure 3) further illustrates the VLIW array or vector of 
MASC instructions. 
 

There are sources of overhead identified and 
associated with implementing multiple instruction streams 
in the parallel runtime environment for MASC. 
 

1. The MASC runtime environment must now 
simultaneously broadcast instructions on behalf 
of the multiple instruction streams 
simultaneously.  This requires the runtime 
environment to buffer the instructions and then 
reorder them into the VLIW instruction word 
individually. 

 



2. A synchronization is required to collect and 
collapse instruction streams.  While the 
synchronization cost in a traditional SIMD is 
fixed at one step, the cost in a cluster 
implementation defined by the cost of such 
synchronization in the cluster 
communication library (for example MPI or 
PVM). 

 

 
 
 

fix_ 6225 C3.14159F$ STMP$+0 beg_of_stmt 1c00 29 0 fix_ 6225 C0.5F$ STMP$+0 
mul_ 313 STMP$+0 RADIUS IPTMP$+0 mul_ 312 LENGTH WIDTH IPTMP$+0 mul_ 313 STMP$+0 BASE IPTMP$+0 
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32 float_ 6312 IPTMP$+0 RPTMP$+0 mul_ 312 IPTMP$+0 HGT IPTMP$+32
float_ 6312 IPTMP$+32 RPTMP$+0 mvpa_ 4822 RPTMP$+0 AREA float_ 6312 IPTMP$+32 RPTMP$+0
mvpa_ 4822 RPTMP$+0 AREA mvpa_ 4822 RPTMP$+0 AREA

IS 0 IS 1 IS 2

 
 
Figure 3: Example Multiple IS instruction 
words implemented as a VLIW array or 
vector of independent MASC instructions. 
 

 
The overhead of the synchronization is limited 

by the efficiency of reaching a global consistent state 
among a set of processes using a parallel 
communication library.  Using MPI, for example, 
using standard TCP/IP, the latency can be quite high 
(approximately 1-10 ms).  This latency can be 
reduced using a different physical medium for data 
communication such as Myrinet.  There are many 
such studies to demonstrate communication latency 
and process synchronization; however they are out of 
the scope of this research. 
 

5 An Example of Multiple Instruction 
Streams 
To illustrate the use of the four new MASC 

intermediate instruction codes, this section will 
present a simple parallel associative programming 
example.  Consider the data parallel application of 
finding the area of various shapes: circles, rectangles, 
triangles, etc.  A MASC program would first read 
into the array memory a set of shape data, one shape 
per cell in the associative memory.  Next, the 
program would compute the area of the various 
shapes.  Since the area of many shapes has to be 
computed, the program will test a “shape type”  
parallel variable to determine which area 
computation to perform for a given partition of cells.  

The following is a partial code listing for this example 
application (figure 4). 
 

Note that parallel variables use a special 
programming syntax of having “ [$]”  as an identifier 
suffix to denote a parallel variable. 
 

5.1 Single Instruction Stream Execution 
For the single instruction stream case, as in the 

existing MASC emulator, the single instruction stream 
executes instructions for both branches of the parallel if-
then-else constructs.  The interpreter processes all the 
responder cells, or those cells that masked the parallel 
condition as TRUE, and then process all the non-
responder cells; those cells that masked the parallel 
condition as FALSE. 
 

While the cells that have responded as “circles”  are 
computing their respective areas, all cells that have 
identified themselves as “not circles”  are inactive and 
waiting to perform their area computations.  Likewise, 
while “rectangles”  are computing their respective areas, 
“ triangles”  are inactive and waiting to perform there area 
computations.  Since a single instruction stream is used to 
execute both branches of a parallel if-then-else construct, 
parallel slackness is being introduced causing a reduction 
in throughput.   

 

5.2 Multiple Instruction Stream Execution 
To reduce the amount of parallel slackness and 

increase throughput, the use of multiple instruction 
streams is introduced at the MASC byte code level.  
Consider the following modification to the MASC byte 
code as shown in figure 5. 
 
Since in this example the area of three different types of 
shapes is computed, three separate multiple instruction 
stream regions have been identified.  The start of a 
multiple instruction stream region begins as the MASC 
byte code for a parallel comparison is identified.  The 
region is initialized and assigned a label used by the 
parallel runtime environment for instruction stream 
synchronization.  The current instruction stream is used to 
make the parallel comparison and set the responder vector 
for those cells that have identified themselves as “circles” .  
The first MI_BEGIN-MI_END block (i.e. A0 in Figure 5) 
is next and identifies the section of code for computing 
the area of a circle.  The second MI_BEGIN-MI_END 
block is used processing the outermost parallel else  

IS 0 IS 1 IS 2 IS 3 IS n-1 . . . 

Multiple IS  
Instruction Word 



 
 
 
 
Figure 4: Partial MASC program and 
resultant byte code for computing area of 
various shapes.  

 
 
 Figure 5: Partial MASC byte code illustrating 
multiple instruction streams begin and end 
regions. 

.MI_REGION_BEGIN A 
beg_of_stmt  1c00 29 0  
begif 2000 IF$S1  
eq_ 714 SHAPETYPE CIRCLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$1  
.MI_BEGIN A0 
beg_of_stmt  1c00 30 0  
decl_ 6125 C3.14159F$ 1 3.14159 0 32  
entry_ 6f00 C3.14159F$  
fix_ 6225 C3.14159F$ STMP$+0  
mul_ 313 STMP$+0 RADIUS IPTMP$+0  
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32  
float_ 6312 IPTMP$+32 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
.MI_END A0 
.MI_BEGIN A1 
beg_of_stmt  1c00 31 0  
label 6800 ELS$1  
else_ 2c02 IF$E1  
.MI_REGION_BEGIN B 
beg_of_stmt  1c00 32 0  
begif 2000 IF$S2  
eq_ 714 SHAPETYPE RECTANGLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$2  
.MI_BEGIN A1-B0 
beg_of_stmt  1c00 33 0  
mul_ 312 LENGTH WIDTH IPTMP$+0  
float_ 6312 IPTMP$+0 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
.MI_END A1-B0 
.MI_BEGIN A1-B1 
beg_of_stmt  1c00 34 0  
label 6800 ELS$2  
else_ 2c02 IF$E2  
.MI_REGION_BEGIN C 
beg_of_stmt  1c00 35 0  
begif 2000 IF$S3  
eq_ 714 SHAPETYPE TRIANGLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$3  
.MI_BEGIN A1-B1-C0 
beg_of_stmt  1c00 36 0  
decl_ 6125 C0.5F$ 1 0.5 0 32  
entry_ 6f00 C0.5F$  
fix_ 6225 C0.5F$ STMP$+0  
mul_ 313 STMP$+0 BASE IPTMP$+0  
mul_ 312 IPTMP$+0 HEIGHT IPTMP$+32  
float_ 6312 IPTMP$+32 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
.MI_END A1-B1-C0 
beg_of_stmt  1c00 37 0  
label 6800 ELS$3  
endif_ 2702 IF$E3  
.MI_REGION_END C 
.MI_END A1-B1 
beg_of_stmt  1c00 38 0  
endif_ 2702 IF$E2  
.MI_REGION_END B 
beg_of_stmt  1c00 39 0  
endif_ 2702 IF$E1  
.MI_END A1 
.MI_REGION_END A 

if shapetype[$] .eq. CIRCLE then 
  area[$]=3.14159*radius[$]*radius[$]; 
else 
  if shapetype[$] .eq. RECTANGLE then 
    area[$] = length[$] * width[$]; 
  else 
    if shapetype[$] .eq. TRIANGLE then 
      area[$] = 0.5*base[$]*height[$]; 
    endif; 
  endif; 
endif; 

beg_of_stmt  1c00 29 0  
begif 2000 IF$S1  
eq_ 714 SHAPETYPE CIRCLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$1  
beg_of_stmt  1c00 30 0  
decl_ 6125 C3.14159F$ 1 3.14159 0 32  
entry_ 6f00 C3.14159F$  
fix_ 6225 C3.14159F$ STMP$+0  
mul_ 313 STMP$+0 RADIUS IPTMP$+0  
mul_ 312 IPTMP$+0 RADIUS IPTMP$+32  
float_ 6312 IPTMP$+32 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
beg_of_stmt  1c00 31 0  
label 6800 ELS$1  
else_ 2c02 IF$E1  
beg_of_stmt  1c00 32 0  
begif 2000 IF$S2  
eq_ 714 SHAPETYPE RECTANGLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$2  
beg_of_stmt  1c00 33 0  
mul_ 312 LENGTH WIDTH IPTMP$+0  
float_ 6312 IPTMP$+0 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
beg_of_stmt  1c00 34 0  
label 6800 ELS$2  
else_ 2c02 IF$E2  
beg_of_stmt  1c00 35 0  
begif 2000 IF$S3  
eq_ 714 SHAPETYPE TRIANGLE LPTMP$+0  
mvpa_ 4832 LPTMP$+0 THEM  
if_ 3002 LPTMP$+0 ELS$3  
beg_of_stmt  1c00 36 0  
decl_ 6125 C0.5F$ 1 0.5 0 32  
entry_ 6f00 C0.5F$  
fix_ 6225 C0.5F$ STMP$+0  
mul_ 313 STMP$+0 BASE IPTMP$+0  
mul_ 312 IPTMP$+0 HEIGHT IPTMP$+32  
float_ 6312 IPTMP$+32 RPTMP$+0  
mvpa_ 4822 RPTMP$+0 AREA  
beg_of_stmt  1c00 37 0  
label 6800 ELS$3  
endif_ 2702 IF$E3  
beg_of_stmt  1c00 38 0  
endif_ 2702 IF$E2  
beg_of_stmt  1c00 39 0  
endif_ 2702 IF$E1 



statement.  When the next byte code for a parallel if 
statement is encountered (see region B in Figure 5), a 
new multiple instruction stream region is established.  
The two instruction streams for the second region are 
used to compute the area of rectangle cells and 
triangle cells (which are in a third multiple 
instruction stream region.  After all of the byte code 
statements  for a multiple instruction stream block are 
complete, the cells change to an inactive state and 
wait for a synchronization to complete for the 
corresponding multiple instruction stream region.  
For this non-optimized example three 
synchronizations are required to collapse the three 
instruction streams to one. 
 

One such improvement is the multiple 
instruction stream region optimizations.  Since each 
multiple instruction stream region concludes with a 
synchronization step, reducing the number of regions 
are reduce the overhead incurred by instruction 
stream synchronizations.  This is illustrated in the 
MASC byte code shown in figure 6. 
  

 
 
Figure 6: Partial example MASC byte code 
illustrating multiple instruction streams 
begin and end regions as created optimized 
to reduce the number of multiple instruction 
stream regions. 
 

This optimized version of the shape example using 
multiple instruction streams requires only one region, and 
therefore, only one synchronization.  
 

6 Conclusions 
This paper has discussed a method of controlling 

multiple instruction streams in a massively parallel 
associative computing environment.  The MASC model is 
a model of parallel computation that supports an 
associative style of parallel computation that allows 
memory to be addressed by content rather than by 
address.  This model was used to demonstrate how 
multiple instruction stream control is feasible by 
introducing four new MASC byte code operations that are 
interpreted by the parallel runtime environment.  These 
operations are used to identify program regions where 
multiple instruction streams exist and define their entry 
and exit points.  An example was developed to 
demonstrate the new MASC operations.  This example 
discussed the execution using single and multiple 
instruction streams. 
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