

Streaming PRAM

Darrell R. Ulm Michael Scherger
Department of Computer Science Department of Computer Science

University of Akron Kent State University
dulm@cs.uakron.edu mscherge@cs.kent.edu

Abstract

Parallel random access memory, or PRAM, is a now
venerable model of parallel computation that that still
retains its usefulness for the design and analysis of
parallel algorithms. Parallel computational models
proposed after PRAM address short comings of PRAM in
terms of modeling realism of actual machines. In this
work, we propose a multiple instruction stream
partitioned PRAM, or “stream PRAM.” This model
embodies the reality of a small number of parallel
processors, each with local memory (which could also be
small), where a problem is generally evenly distributed
among all processing elements. Actual hardware
configurations limit the number of shared memories
which can be efficiently implemented. By allowing each
shared memory to also act as an independent instruction
stream, more functionality is possible with a small extra
cost. The additional instruction streams provide limited
asynchronous abilities and offer the flexibility of a
reconfigurable network as well as allowing the processing
elements to perform independent actions. Because the
proposed stream PRAM allows variable sizes for
processors, memory, and problem sizes, it is valuable for
present as well as future parallelism.

1. Introduction

We suggest the addition of multiple instruction streams

and performance parameters to the limited resource
PRAM model which can also be called partitionable
PRAM (PPRAM) [2]. We call the new model stream
PRAM, and this model intends to embody a superset of
limited resource PRAM.

Limited resource PRAM (or PPRAM) models the
bottleneck of shared memory. The PPRAM processors
each have a local memory, which closely represents the
reality of most of parallel computing done today [2].
PPRAM allows variable sizes for processors, memory,
and problem sizes. It has been stated that by
parameterization of each operation in PPRAM based on

actual hardware measures, both scheduling of processors
and run-time prediction are possible [2]. Models such as
BSP and LogP contain this feature [9][30]; however
PRAM contains a wealth of algorithmic research [3]. The
authors believe that stream PRAM is a model suitable for
fast algorithm design for both theory and practice and is
compatible with many existing parallel systems and
languages.

For a stream PRAM algorithm to execute on real
hardware without shared memory, we can simulate the m
shared memories with p processors and the network
between the processors. There are many ways to do this
efficiently, and even if it is done with embedded calls to
popular message passing libraries such as MPI or PVM,
communication, average time parameters are obtainable
[5][17][18]. Furthermore, processor and I/O benchmarks
are easily discovered for any given cluster. Given these
values along with the stream PRAM worst or average case
times for computational and communication complexity, a
programmer or compiler can select the best number of
processors and determine with some accuracy, the running
time of most well behaved programs [2]. Experimental
results are forthcoming.

1.1. Simple PRAM

There are three popular PRAM varieties to handle

reading and writing conflicts: EREW, CREW, and CRCW
[3]. An EREW PRAM does not allow two or more
processors to either read or write to the same global
memory location concurrently. It is the most restrictive
model. The CREW PRAM allows more than one
processing element (PE) to concurrently read from the
same memory location, but only one PE may write to a
global location at the same time. CRCW is the most
powerful PRAM that permits both concurrent reading and
concurrent writing. This paper deals mainly with priority
CRCW although the EREW and CREW simulations are
also derived. Priority CRCW allows the PE with the
largest address to write its value when several PEs are
writing to the same global memory. With combining

CRCW, all PEs, which write to the same location, are
combined by some arithmetic or logical operation such as
addition [3].

1.2. Multiple instruction stream shared memory

partitioned PRAM (or stream PRAM)

This work proposes a PRAM model that has a limit on

the shared memories. We call the model stream PRAM,
which is a multiple instruction stream, partitioned PRAM.
It is based on the PPRAM model by Agbaria, Ben-Asher,
and Newman [2], and it is also derived from the MASC
model defined by Potter and others [19][20]. The PPRAM
model shows concisely how the memory bottleneck
affects the speedup of algorithms, and the MASC model
consistently defines multiple instruction streams in terms
of modeling and hardware. The main contribution of the
stream PRAM model is to allow multiple instruction
streams to coordinate with PEs. While this may seem
somewhat odd in terms of traditional PRAM, the extra
hardware required is minimal, and what is gained is the
flexibility of a reconfigurable network as well as MIMD-
like capabilities [16][24][28][31][32]. The hardware to
actualize the ISs of stream PRAM may vary.
Architectures such as the forthcoming “Cell” (by IBM,
Sony, and Toshiba) ought to execute a stream PRAM
algorithm with the limitations such as local memory size
set accordingly. While it is possible to allow each PE to
act as an independent asynchronous processor
(Asynchronous PRAM), the aim of stream PRAM is to
specify the number of different instructions being issued
on the order of the number of shared memories. It is
arguable that a small number of instruction streams is
feasible to implement by either real hardware or by
simulation on clusters with message passing
[5][17][18][21][22]. Figure 1 shows the hierarchical
evolution of the new model.

Figure 1: Family tree of stream PRAM (dashed
boxes represent hardware)

We define a stream PRAM(p,m) machine as a

collection of p sequential (RAM) machines and a set of m
global shared memories that can also act as independent
instruction streams. Each RAM of the PRAM has an

instruction set, a local memory, and a specific address in
the range [0..p-1]). During one cycle of execution, each
processor executes one of the m instructions on local data.
An instruction can be a local computation, a read from a
global memory [0..m-1], or a write into global memory
[0..m-1]. Furthermore, it is assumed that npm ≤≤
where n is the size of the problem being solved. Although
this inequality is not necessarily required, it is reasonable
to state in terms of the limitations of today’s hardware
[2][7][12][26]. Most problems of size n solved on a
stream PRAM will be split roughly into n/p sized data
chunks, and each of the p RAM processors will work on
their own data sequentially. Figure 2 shows a
representation of the stream PRAM.

We shall assume there is some network connecting the
PEs to the shared memories/instruction streams. In terms
of algorithmic work, we may either assume that this
network takes O(1) time, or that the network has a latency
to perform the various operation. The stream PRAM can
employ any of the exclusive or concurrent paradigms for
reading and writing: EREW, ERCW, CREW, and
varieties of CRCW. We also note that data I/O occurs
through the shared memories. While in a real architecture,
data may enter through a network perhaps from a large
slower memory, DRAM for example. By routing the data
through the shared memories, we can represent this
bandwidth limitation. Furthermore, in the case that the
local memories of PEs of real hardware implementations
are small, that is, when all the data for a program it too
large even after distribution across the PEs, then data is
streamed through the shared memories to the PEs as the
algorithm is executing. In fact for a wide bus architecture
where there are few PEs, data could stream to the PEs
directly, with even more ISs than the number of shared
memories [24].

Processing
Elements

Local
Memory

Network

Shared Memories/
Instruction Streams

…
STREAM PRAM

PPRAM MASC

PRAM(m)

Reconfigurable
Network Parallel

Computers

SIMD/MIMD
Hybrids

PRAM
SIMD MIMD

qsm(m)

BSP

Stream Hardware:
‘Cell’,GPU,Cluster

Figure 2. The stream PRAM model (patterns denote
IS-PE partitions)

2. Related work

Here we summarize some of the related models.

Notably, PPRAM and MASC figure prominently into the

design of stream PRAM. The PPRAM model defined by
Agbaria, Ben-Asher, and Newman is derived from earlier
variations of PRAM [2]. Vishkin and Wigderson
investigated a PRAM, usually called PRAM(m),
where , strictly, and the input can be read
concurrently by all processors from a global ROM. Later
research showed a

pm <

)(log
m

mn
θ sort on PRAM(m) [2]. The

primary difference between PRAM(m) and PPRAM is the
ability of PRAM(m) to access data in whereas
PPRAM and stream PRAM must load in the data into
each PEs local memory [2]. Also, PPRAM is somewhat
similar to a shared-memory variant of BSP called qsm(m).
Differences include the BSP-like ability of qsm(m) to
compute in super-steps, as well as that fact the PPRAM
allows all variants of PRAM, while the memory access of
qsm(m) appears to be EREW only [12]. The focus of
stream PRAM is to combine the scalability/speedup
analysis features of the well-defined PRAM, along with
the flexibility of using many instruction streams. In
addition, the stream PRAM has the some abilities of the
Asynchronous PRAM limited by the number instruction
streams.

)1(O

2.1. PPRAM Background

The PPRAM model is capable of computing several

operations with a reasonable amount of speedup
considering the limitations made by the model, and thus
also the hardware. The work “Communication-Processor
Tradeoffs in Limited Resource PRAM” shows that for
many important problems, the time complexity scales
exclusively with either the number of PEs or the amount
of shared memory [2]. In the rest of this section we
summarize some of the results from [2]. They showed that
for summation, routing, k-selection, Boolean threshold,
and list-reversal, that the time is , where
the scaling is occurring either in terms of m or p, if the
logarithmic factors are ignored [2]. However, some
problems can be only be solved in approximately

 eliminating factors of log. For the O(n/m) time
complexity, the number of shared memories is the
communication bottleneck when m is strictly smaller than
p [2]. The work cited also notes that a PPRAM(p,1)
simulates a PPRAM(p,m) in a simple fashion with a
deterministic overhead of O(m) [2]. The cost to simulate a
CRCW-PRAM(p,pc), where is some constant with
a CRCW-PPRAM(p,m) is

)//(mppnO +

)/(mnO

1≥c
)2))(log*log(loglog(ppO m

p
with a high probability [2].

We shall use the notation of PPRAM(n,p,m) for
solving a problem of size n with p processors and m
shared memories. Given this, summing up n memories on
PPRAM(n,p,m) takes)log//(mmppn ++θ time with

the upper bound being true for the CREW model [2]. A
EREW-PPRAM(n,p,m) can solve integer sorting, and k-k

routing in))2,min(log(log
log

k
m

m
n pO time where pnk /=

[2]. The list reversal problem requires)log/(mmn +θ
time, when pnm /< , for the priority EREW-
PPRAM(n,p,m) model [2]. Lastly, k-selection is solvable
with a PPRAM(n,p,m) in

)log)loglog/(/(p
n

m
p mmppnO ++ steps [2]. When

implementing algorithms on clusters or other parallel
machines, the authors of [2] indicate that for the given
hardware, an effective number of shared memories can be
found with measurement.

2.2. MASC Background

This section describes the associative model of

computation presented in the IEEE Computer article
''MASC: An Associative Computing Paradigm,'' which is
based on work done at Kent State University [19]. Also,
see [1][4][6][10][15][16][20][23][24][25][26][27][28][29]
[31][32][33]. The vast majority of existing platforms
already efficiently support MASC, and there is an actual
one IS language called ASC [14][20]. Currently work by
D. R. Ulm is underway to build a C++ data-parallel class
library, called ZIPPAR (downloadable from
www.sourceforge.net), which is eventually to incorporate
MPI and PVM for communication so that the stream
PRAM paradigm, using data-parallel methods, will be
easily portable to many platforms.

A frequent criticism of SIMD programming is that
many processing elements (PEs) may be idle during
if-else or case statements. The instruction streams provide
a way to concurrently process conditional statements by
partitioning the PEs among the instruction streams (ISs)
[19]. The associative model (MASC) has an array of PEs
and one or more ISs that each broadcast their instructions
to the mutually exclusive sets in a partition of the PEs.
Here we define partition as the collection of disjoint sets.

Most applications require a small number of ISs in
comparison to the number of PEs (with no firm
restrictions). An MASC machine with j ISs and n PEs is
written as MASC(n, j). Each PE (or cell) has a local
memory, and MASC locates objects by content or location
in the combined local memory of the PEs [20]. This is
accomplished by searching a specified field of each PE for
a given data item. Each PE is capable of performing local
arithmetic and logical operations and the usual functions
of a sequential processor other than issuing instructions.
Figure 3 shows the MASC model.

Figure 3. The MASC model

Cells may be active, inactive, or idle. Active cells execute
the program which is broadcast from the IS that it is
currently listening to. An inactive cell is considered in a
group of IS cells, but does not execute instructions until
the IS instructs inactive cells to become active again. Idle
cells are currently inactive, not listening to any IS, and
contain no essential program data but may be re-assigned
as an active cell later [26].

ISs can be active or idle. An active IS issues
instructions to a group of cells. An idle IS is not assigned
to any PEs and is waiting until another IS forks,
partitioning its PEs between itself and a new previously
inactive IS. All PEs may be assigned to one of the ISs
using local data and comparisons. If an IS broadcasts
some value to a set of PEs, the PEs could set this value to
their active IS in the next instruction cycle, or choose not
to switch. That is, a PE can change the IS to which it
listens dynamically [29].

MASC supports data parallel reduction operations:
AND, OR, MIN and MAX; one or more instruction
streams (ISs), each of which is sent to a distinct set in a
dynamic partition of the processors; broadcasting from the
ISs; and task assignment to ISs using control parallelism
or data locality which allows PEs to switch ISs based on
local data [26]. There are three networks, real or virtual,
shown in Figure 3: the PE interconnection network, the IS
interconnection network, and the network between the
PEs and ISs.

To ensure running time predictability of the data
parallel model on actual machines, parameters describe
the running time for the basic operations of the MASC are
as follows [24]:

I.Tnet is the time to perform a routing of a word between

all PEs, that is sending a word from each PE to any
other PE location.

II.Tcomp is the time to perform a sequential PE local
operation indexed.

III.Tcomm is the worst-case time for an IS to write or read
data to or from one PE.

IV.Tsync is the maximum time for an IS communication or
to synchronize ISs.

V.Tbroad is the time to broadcast, and r is the time to do a
data reductions and, or, min, max involving active
PEs.

Local mem. Processor 1

Local mem. Processor 0

Local mem. Processor 2

Local mem. Processor P

Instruction
Stream Proc.

Instruction
Stream Proc.

Instruction
Stream Proc.

…

P
E
/I
S

N
E
T
W
O
R
K

…

I
S

N
E
T
W
O
R
K

n
e
t
w
o
r
k

VI.Tred is the time to perform a reduction operation with
data on a set of PEs.

VII.TI/O is the time to input or output data from or to an
external source to PEs.

VIII.The variable p is the number of PEs.
IX.The variable j is the number of ISs.

The MASC model simulates PRAM with constant time

overhead when the PRAM algorithm requires the same
order of shared memories as MASC ISs [26]. Table 1
shows relationships between MASC and PRAM. In short
the ISs of MASC can act like shared memories where a
MASC ‘IS broadcast’ operation simulates the concurrent
read of a PRAM [26][29]. Also, a MASC ‘IS-reduce’
operation simulates the PRAM concurrent write [26][29].
Because MASC completes most of its work in the local
memories of the PEs, the MASC machine more closely
resembles PPRAM rather than PRAM. Specifically,
MASC is almost equivalent to the priority-CRCW
PPRAM with the exception that the PPRAM does not
include multiple instruction streams. As is seen in Table 1
MASC(p,m) simulates the priority-CRCW(p,m) PRAM
with O(1) overhead. The next section show the results of
merging PPRAM with the multiple instruction streams of
MASC.

Table 1. MASC times to simulate PRAM and also for
PRAM to simulate MASC [26]

Machine: Is Simulated By:
Priority-CRCW(p,m) MASC(p,m)
In Time: O(1)

Priority-CRCW(p,m) MASC(p,j), mj ≤
In Time: Probabilistic O(min(p/j, m/j)), Deterministic O(m/j)

Priority-CRCW(p,m) MASC(p,j), , with a PE network mj ≤
In Time: Probabilistic O(min(p/j, m/j, net_route_(p, m)),
 Deterministic O(min(p/j, net_route(p, m))
 (net_route(p,m)) is time to simulate PRAM with
 known network methods for a given network.

MASC(p, 1) Priority-CRCW(p,1)
In Time: O(1)

MASC(p, 1) CREW(p,1) or EREW(p,1)
In Time: O(p), due to reductions/broadcasts

MASC(p,m) Priority CRCW (p, m)
In Time: O(m), due to instruction streams, or
 O(1), if instruction set is finite, (no user defined)

3. The stream PRAM model

The stream PRAM model adds multiple instruction

streams roughly as defined by MASC to the PPRAM

model. The ISs are appended onto the existing m shared
memories of the PPRAM. By only allowing one IS, the
stream PRAM can simulate any PPRAM algorithm in
constant time if the stream PRAM model has concurrent
read capability.

The model is envisioned as executing in the following
three cycles:
1. Instruction Send Phase: Each IS sends the next
instruction to the set of PEs that are part of that stream’s
‘working group.’ For stream PRAM this is accomplished
by each PE concurrently reading from a particular
memory/IS. Thus for the CREW and CRCW variants, this
can be accomplished in O(1). The EREW and ERCW
variants must simulate the concurrent read, which requires

time with extra memory. Since an
algorithm that needs O(t) time with m shared memories
can easily be simulated with m’≤m shared memories in

)(log pO)(pmO +

)(' tO m
m time [3], then we need)log(pO m

pm+ steps to
simulate the extra memory, equating to the overhead of

)log(pO m
p in the worst case (since p>m). An alternative

method takes m steps, that is for i=0 to m-1 each
processor reads from shared memory ((j+i)
mod m). Each processor now has every possible
instruction, and each read is exclusive, so this second
method completes in O(m). For a small number of shared-
memories/instruction streams this is fairly practical [24].
Thus a hybrid algorithm for EREW or ERCW can
complete phase 1 in

10 −≤≤ pj

))log,(min(pmO m
p . One may be able

to do better, since the PPRAM can sum up p memories in
only)log(mO m

p + [2], but this question is left open for
future efforts. Still, any stream PRAM that has concurrent
read can complete this phase in O(1). Interestingly, the
architectural work done for MASC and PRAM (notably
for PRAM in Akl’s book[3]) has shown there is much
evidence that concurrent reading is quite possible in
hardware [3][16][28][31][32][33]. The cost for phase 1 is
the cost for a concurrent read, or . CRT

2. Synchronous Execution of Operations: The PEs of any
variant of stream PRAM now perform the operation
loaded in phase 1. Each PE may execute one of the m
potentially different instructions. It is assumed that these
instructions will complete in O(1) time for simple
operations or O(f(n/p)) time for an operation, f(), which is
a sequential function. Phase 2 finishes when the PE with
the slowest operation completes. Thus, there needs to be
an implicit barrier synchronization at the end of this
phase. The time needed is the average cost for each CPU
instruction times the number of instructions plus the
synchronization cost, or SYNCp

n
SEQUENTIALCPU TfTT +×))((,

where))((p
n

SEQUENTIAL fT may often be O(1) for simple

operations.

3. Next Instruction Determination Phase: Each PE now
decides which instruction stream it will execute next.
Based on data and conditions local to each PE, a PE
selects from which stream it will read in Phase 1. Note
that the ISs do not directly dictate this. Phase 3 has a cost
of constTCPU × .

4. Goto Phase1.

One stream PRAM execution cycle is

constTTfTTT CPUSYNCp
n

SEQUENTIALCPUCR ×++×+))((. For

large n the sequential operations dominate. The special
cases of EREW and ERCW stream PRAM(n,p,m) that
always use only one (or constant) IS, but have m shared
memories, can actually complete Phase 1 in

)log(mO m
p + with a modification of the summation

algorithm from [2]. Instead of adding several values, one
value is replicated with a 1-to-p broadcast. A concern of
the reader at this point may be that the seemingly more
powerful stream PRAM is only more powerful if
concurrent read is allowed. This is actually true. The
definition of the stream PRAM model states that each IS
is grouped with a shared memory. The benefit is that the
model still consists of only two layers of resources, the
processors and the shared-memories/instruction-streams.
Because exclusive read model stream PRAM PEs cannot
concurrently read data from the shared memories, the PEs
can also not concurrently read the next instruction. The
authors and much previous literature believe that the
exclusive read model is excessively restrictive
[3][5][16][28][32][33]. If an architecture can afford
multiple instruction streams, it probably ought to also
have concurrent read. Table 2 lists some of the nicely
behaving simulations.

Table 2. Simulations of stream PRAM and MASC
Simulation In Extra Time
Priority-CRCW PPRAM(n,m)
Simulated by: MASC(n,m)

O(1)

MASC(n,m)
Simulated by: Priority CRCW
 PPRAM(n,m)

O(m), to simulate ISs
Or O(1) for constant
number of ops.

PPRAM(n,m)
Simulated by: Priority CRCW
 stream PRAM(n,m)

O(1)

MASC(n,m)
Simulated by: Priority-CRCW
 stream PRAM(n,m)

O(1)

Priority-CRCW stream PRAM(n,m)
Simulated by: MASC(n,m)

O(1)

From Table 2 and what has been shown concerning
stream PRAM properties, it is apparent that there is a
strong relationship between MASC and stream PRAM.
Specifically, priority-CRCW stream PRAM(n,p,m) is for
all intensive purposes equivalent to MASC(n,p,m).
Therefore any MASC algorithms already discovered will
function in priority-CRCW stream PRAM in O(1) steps
when the number of stream PRAM shared memories is on
the same order as the number of instruction streams in
MASC. Also, MASC can execute any existing stream
PRAM or PPRAM algorithms with constant overhead
[4][6][8][10][13][15][20][27][29].

4. Predictability, simulation on real systems,
and future directions

Recent work to define the circuitry for the MASC

model has shown that it is well within the realm of
implementation [1][24][31][32][33]. By implication, the
implementation of stream PRAM and PPRAM is also
quite possible. The authors believe that clusters of
workstations can support the stream PRAM paradigm
with average time predictability [2][5][17][18][21][22].
Previous work in limited-resource PRAM show good
results with PPRAM, BSP, and qsm(m) [2][30][12]. The
extra overhead to run the m ISs ought to require only a
slight amount of overhead when considering parallel
slackness and many large problems where pn >> [9].
Figure 4 shows one naive method to execute the ISs.

Figure 4: Simulation of stream PRAM on a cluster.

 If we wish to use only a constant or log number of ISs,

then each processor, PE that is, could keep track of all ISs.
Given that local sequential operations that will operate on
n/p sized data chunks, even for)(log p

nO algorithms,

 or so ISs would be trivial for each PE to run.

Many local sequential operations, such as all-sums, have
linear speedup, [25].

)(log pO

)/(pnO
In future work, we will experimentally measure

methods to execute the instruction streams. Also, more
work needs to be done concerning how the m instruction
streams can solve some problems faster in stream PRAM.
Maher Atwah’s algorithm for Convex
Hull completes in steps for randomized data
with a high probability [4]. This algorithm can now
function in priority CRCW stream PRAM(n,n,log n) in
the same time. We need to look into more cases such as
these, and we note that for the simple data parallel ‘if-
else’ or ‘case’ statements, we can now use the ISs to
compute all cases concurrently with the stream PRAM.

)log,,(nnnMASC
)log(log nO

Lastly, we would like to determine relationships
between stream PRAM, qsm(m), PPRAM, PRAM(m), and
BSP. Obviously there exists overlap, and more effort is
needed to determine time complexities for problems
solved on stream PRAM. We desire to eventually
determine simulations and costs for stream PRAM to
these similar models. Even more may be gained by the use
of the instruction streams beyond the regular non-IS
algorithms.

5. References

[1] Nael B. Abu-Ghazaleh, Philip A. Wilsey, Jerry Potter,

Robert Walker, and Johnnie Baker, "Flexible parallel
processing in memory: architecture + programming
Model,” In Proc. Third Petaflop Workshop, February
1999.

Node Contains:

Processing
Element/
Instruction
Stream,

Local Memory/
Shared Memory

…

Front End/ Terminal [2] A. Agbaria, Y. Ben-Asher, and I. Newman,
“Communication-processor tradeoffs in limited resources
PRAM,” In Proc. 11th ACM Symposium on Parallel
Algorithms and Architectures, France, May 1999, pages
74-82.

[3] S. G. Akl, Parallel Computing: Models and Methods,
Prentice Hall, New York, 1997.

[4] Maher M. Atwah and Johnnie W. Baker, "An associative
dynamic convex hull algorithm,” In Proc. Tenth IASTED
International Conference on Parallel and Distributed
Computing and Systems, October 1998, pages 250-254.

[5] Y. Aumann and A. Schuster, “Deterministic PRAM
simulation with constant memory blowup and no
timestamps,” In Proc. Third Symposium on the Frontiers
of Massively Parallel Computation, College Park, MD,
IEEE Computer Society Press, October 8-10 1990, pages
22-29.

[6] Johnnie W. Baker and Mingxian Jin, "Simulation of
enhanced meshes with MASC, a MSIMD model", In
Proc. 11th International Conference on Parallel and
Distributed Computing Systems, November 1999, pages
511-516.

[7] T. Blank and J. R. Nickolls, “A grimm collection of
MIMD fairy tales,” In Proc. Fourth Symposium on the
Frontiers of Massively Parallel Computation, McLean,

http://www.crhc.uiuc.edu/%7Eadnan/papers/ppram.ps.gz
http://www.crhc.uiuc.edu/%7Eadnan/papers/ppram.ps.gz

VA, October 19-21, 1992, IEEE Computer Society Press,
pages 448-457.

[8] G. E. Blelloch. “Programming Parallel Algorithms.”
Communications of the ACM, 39(3), March 1996.

[9] David Culler, R. Karp, D. Patterson, A. Sahay, K.E.
Schauser, E. Santos , R. Sub-ramonian and T. von
Eicken. “LogP: towards a realistic model of parallel
computation,” In Proc. Symposium on Principles and
Practice of Parallel Programming, San Diego, CA., May
1993, pages 1-12.

[10] Mary Esenwein and Johnnie Baker, "VLCD string
matching for associative computing and multiple
broadcast mesh", In Proc. IASTED International
Conference on Parallel and Distributed Computing and
Systems, 1997, pages 69-74.

[11] A. Falkoff, “Algorithms for parallel search memories,”
Journal of Associative Computing, March 1962, pages
488-511.

[12] P. B. Gibbons, Y. Mattias, and V. Ramachandran, "Can a
shared-memory model serve as a bridging model for
parallel computation?," In 9th Annual ACM Symposium
on Parallel Algorithms and Architectures, (Newport,
Rhode Island), June 1997, pp. 72-83.

[13] S. Hillis, “Data parallel algorithms,” Communications of
the ACM, 29(12), December 1986, 1170-1183.

[14] K. F. Hioe, “Asprol (Associative Programming
Language),” Master's project, Kent State University,
Math and Computer Science (MSB), August 1986.

[15] Mingxian Jin, “Evaluating the power of the parallel
MASC model using simulations and real-time
applications", Ph.D. Dissertation, Department of
Computer Science, Kent State University, August, 2004.

[16] Mingxian Jin, Johnnie Baker and Kenneth Batcher,
"Timings for associative operations on the MASC
model", In Proc. 15th International Parallel and
Distributed Processing Symposium (Workshop in
Massively Parallel Processing), April 2001, abstract on
page 193, full text on CDROM.

[17] Anna R. Karlin and Eli Upfal. “Parallel hashing: An
efficient implementation of shared memory,” Journal of
the ACM, October 1988, 35(4):876-892.

[18] K. Li, Y. Pan, and S.-Q. Zheng. “Efficient Deterministic
and Probabilistic Simulations of PRAMs on Linear
Arrays with Reconfigurable Pipelined Bus Systems,” The
Journal of Supercomputing, vol. 15, no. 2, February
2000, pp. 163-181.

[19] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun,
C. Asthagiri, “MASC: An Associative Computing
Paradigm,” IEEE Computer, November 1994, pages 19-
25.

[20] J.L. Potter, Associative Computing - A Programming
Paradigm for Massively Parallel Computers, Plenum
Publishing, N.Y., 1992.

[21] Michael J. Quinn and Philip J. Hatcher, “Data-Parallel
Programming on Multicomputers,” IEEE Software, J.
Hatcher,” IEEE Software, 7(5), September 1990, 69-76.

[22] S.H. Noh, K. Dussa-Zieger, “Improving massively data
parallel system performance with heterogeneity,”
Frontiers of Massively Parallel Computation, 1992, Oct
19-21, 1992, McLean, VA, USA, pages 93-99.

[23] Michael Scherger, Johnnie Baker, and Jerry Potter, "An
object oriented framework for and associative model of
parallel computation", In Proc. 16th International
Parallel and Distributed Processing Symposium
(Workshop in Advances in Parallel and Distributed
Computational Models), April 2003.

[24] Michael Scherger, Johnnie Baker, and Jerry Potter,
"Multiple instruction stream control for an associative
model of parallel computation", In Proc. 16th
International Parallel and Distributed Processing
Symposium (Workshop in Massively Parallel Processing),
April 2003.

[25] Michael Scherger, Jerry Potter, and Johnnie Baker, "On
using UML to describe the MASC model of parallel
computation", In Proc. 2000 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA'2000), volume V, June 2000, pages
2639-2645.

[26] Darrell Ulm and Johnnie Baker, "Simulating PRAM with
a MSIMD model (ASC)", In Proc. International
Conference on Parallel Processing, August 1998, pages
3-10.

[27] Darrell Ulm and Johnnie Baker, "Solving a 2D knapsack
problem on an associative computer augmented with a
linear network", In Proc. International Conference on
Parallel and Distributed Processing Techniques and
Applications, 1996, pages 29-32.

[28] Mingxian Jin, Johnnie Baker, and Kenneth Batcher,
"Timings for Associative Operations on the MASC
Model", In Proc. 18th Intertational Parallel and
Distributed Processing Symposium (Workshop in
Massively Parallel Processing), April 2004.

[29] D. Ulm and J. Baker, “Virtual parallelism by self-
simulation of the multiple instruction stream associative
model,” In Proc. of the International Conference on
Parallel and Distributed Processing Techniques and
Applications, III, Sunnyvale CA, August 1996, pages
1421-1430.

[30] L.G. Valiant. “A bridging model for parallel
computation," Comm. ACM, 33:103-111, Aug. 1990.

[31] Robert A. Walker, Jerry Potter, Yanping Wang, and
Meiduo Wu, "Implementing associative processing:
rethinking earlier architectural decisions", In Proc. of the
15th International Parallel and Distributed Processing
Symposium (Workshop in Massively Parallel Processing),
April 2001, abstract on page 195, full text on CDROM.

[32] Hong Wang, and Robert A. Walker, "Implementing a
scalable ASC processor", In Proc. of the 17th
International Parallel and Distributed Processing
Symposium (Workshop in Massively Parallel Processing),
April 2003.

[33] Meiduo Wu, Robert A. Walker, and Jerry Potter,
"Implementing associative search and responder
resolution", In Proc. of the 16th International Parallel
and Distributed Processing Symposium (Workshop in
Massively Parallel Processing), April 2002, abstract on
page 246, full text on CDROM.

	
	
	Abstract
	2.1. PPRAM Background
	5. References

