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Abstract 
 
Parallel random access memory, or PRAM, is a now 
venerable model of parallel computation that that still 
retains its usefulness for the design and analysis of 
parallel algorithms. Parallel computational models 
proposed after PRAM address short comings of PRAM in 
terms of modeling realism of actual machines. In this 
work, we propose a multiple instruction stream 
partitioned PRAM, or “stream PRAM.” This model 
embodies the reality of a small number of parallel 
processors, each with local memory (which could also be 
small), where a problem is generally evenly distributed 
among all processing elements. Actual hardware 
configurations limit the number of shared memories 
which can be efficiently implemented. By allowing each 
shared memory to also act as an independent instruction 
stream, more functionality is possible with a small extra 
cost. The additional instruction streams provide limited 
asynchronous abilities and offer the flexibility of a 
reconfigurable network as well as allowing the processing 
elements to perform independent actions. Because the 
proposed stream PRAM allows variable sizes for 
processors, memory, and problem sizes, it is valuable for 
present as well as future parallelism.  
 
1. Introduction 

 
We suggest the addition of multiple instruction streams 

and performance parameters to the limited resource 
PRAM model which can also be called partitionable 
PRAM (PPRAM) [2]. We call the new model stream 
PRAM, and this model intends to embody a superset of 
limited resource PRAM.  

Limited resource PRAM (or PPRAM) models the 
bottleneck of shared memory. The PPRAM processors 
each have a local memory, which closely represents the 
reality of most of parallel computing done today [2]. 
PPRAM allows variable sizes for processors, memory, 
and problem sizes. It has been stated that by 
parameterization of each operation in PPRAM based on 

actual hardware measures, both scheduling of processors 
and run-time prediction are possible [2]. Models such as 
BSP and LogP contain this feature [9][30]; however 
PRAM contains a wealth of algorithmic research [3]. The 
authors believe that stream PRAM is a model suitable for 
fast algorithm design for both theory and practice and is 
compatible with many existing parallel systems and 
languages. 

For a stream PRAM algorithm to execute on real 
hardware without shared memory, we can simulate the m 
shared memories with p processors and the network 
between the processors. There are many ways to do this 
efficiently, and even if it is done with embedded calls to 
popular message passing libraries such as MPI or PVM, 
communication, average time parameters are obtainable 
[5][17][18]. Furthermore, processor and I/O benchmarks 
are easily discovered for any given cluster. Given these 
values along with the stream PRAM worst or average case 
times for computational and communication complexity, a 
programmer or compiler can select the best number of 
processors and determine with some accuracy, the running 
time of most well behaved programs [2]. Experimental 
results are forthcoming.  

 
1.1.  Simple PRAM 

 
There are three popular PRAM varieties to handle 

reading and writing conflicts: EREW, CREW, and CRCW 
[3].  An EREW PRAM does not allow two or more 
processors to either read or write to the same global 
memory location concurrently.  It is the most restrictive 
model.  The CREW PRAM allows more than one 
processing element (PE) to concurrently read from the 
same memory location, but only one PE may write to a 
global location at the same time.  CRCW is the most 
powerful PRAM that permits both concurrent reading and 
concurrent writing.  This paper deals mainly with priority 
CRCW although the EREW and CREW simulations are 
also derived. Priority CRCW allows the PE with the 
largest address to write its value when several PEs are 
writing to the same global memory. With combining 



CRCW, all PEs, which write to the same location, are 
combined by some arithmetic or logical operation such as 
addition [3]. 

 
1.2.  Multiple instruction stream shared memory 

partitioned PRAM (or stream PRAM) 
 
This work proposes a PRAM model that has a limit on 

the shared memories. We call the model stream PRAM, 
which is a multiple instruction stream, partitioned PRAM.  
It is based on the PPRAM model by Agbaria, Ben-Asher, 
and Newman [2], and it is also derived from the MASC 
model defined by Potter and others [19][20]. The PPRAM 
model shows concisely how the memory bottleneck 
affects the speedup of algorithms, and the MASC model 
consistently defines multiple instruction streams in terms 
of modeling and hardware. The main contribution of the 
stream PRAM model is to allow multiple instruction 
streams to coordinate with PEs. While this may seem 
somewhat odd in terms of traditional PRAM, the extra 
hardware required is minimal, and what is gained is the 
flexibility of a reconfigurable network as well as MIMD-
like capabilities [16][24][28][31][32]. The hardware to 
actualize the ISs of stream PRAM may vary. 
Architectures such as the forthcoming “Cell” (by IBM, 
Sony, and Toshiba) ought to execute a stream PRAM 
algorithm with the limitations such as local memory size 
set accordingly. While it is possible to allow each PE to 
act as an independent asynchronous processor 
(Asynchronous PRAM), the aim of stream PRAM is to 
specify the number of different instructions being issued 
on the order of the number of shared memories. It is 
arguable that a small number of instruction streams is 
feasible to implement by either real hardware or by 
simulation on clusters with message passing 
[5][17][18][21][22]. Figure 1 shows the hierarchical 
evolution of the new model. 

 

 
Figure 1: Family tree of stream PRAM (dashed 
boxes represent hardware) 

 
We define a stream PRAM(p,m) machine as a 

collection of p sequential (RAM) machines and a set of m 
global shared memories that can also act as independent 
instruction streams. Each RAM of the PRAM has an 

instruction set, a local memory, and a specific address in 
the range [0..p-1]).  During one cycle of execution, each 
processor executes one of the m instructions on local data.  
An instruction can be a local computation, a read from a 
global memory [0..m-1], or a write into global memory 
[0..m-1].  Furthermore, it is assumed that npm ≤≤  
where n is the size of the problem being solved. Although 
this inequality is not necessarily required, it is reasonable 
to state in terms of the limitations of today’s hardware 
[2][7][12][26]. Most problems of size n solved on a 
stream PRAM will be split roughly into n/p sized data 
chunks, and each of the p RAM processors will work on 
their own data sequentially. Figure 2 shows a 
representation of the stream PRAM.   

We shall assume there is some network connecting the 
PEs to the shared memories/instruction streams. In terms 
of algorithmic work, we may either assume that this 
network takes O(1) time, or that the network has a latency 
to perform the various operation. The stream PRAM can 
employ any of the exclusive or concurrent paradigms for 
reading and writing: EREW, ERCW, CREW, and 
varieties of CRCW. We also note that data I/O occurs 
through the shared memories. While in a real architecture, 
data may enter through a network perhaps from a large 
slower memory, DRAM for example. By routing the data 
through the shared memories, we can represent this 
bandwidth limitation. Furthermore, in the case that the 
local memories of PEs of real hardware implementations 
are small, that is, when all the data for a program it too 
large even after distribution across the PEs, then data is 
streamed through the shared memories to the PEs as the 
algorithm is executing. In fact for a wide bus architecture 
where there are few PEs, data could stream to the PEs 
directly, with even more ISs than the number of shared 
memories [24]. 
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Figure 2.  The stream PRAM model (patterns denote 
IS-PE partitions) 

 
2. Related work 

 
Here we summarize some of the related models. 

Notably, PPRAM and MASC figure prominently into the 



design of stream PRAM.  The PPRAM model defined by 
Agbaria, Ben-Asher, and Newman is derived from earlier 
variations of PRAM [2]. Vishkin and Wigderson 
investigated a PRAM, usually called PRAM(m),  
where , strictly, and the input can be read 
concurrently by all processors from a global ROM. Later 
research showed a 

pm <

)( log
m

mn
θ  sort on PRAM(m) [2]. The 

primary difference between PRAM(m) and PPRAM is the 
ability of PRAM(m) to access data in  whereas 
PPRAM and stream PRAM must load in the data into 
each PEs local memory [2]. Also, PPRAM is somewhat 
similar to a shared-memory variant of BSP called qsm(m). 
Differences include the BSP-like ability of qsm(m) to 
compute in super-steps, as well as that fact the PPRAM 
allows all variants of PRAM, while the memory access of  
qsm(m) appears to be EREW only [12]. The focus of 
stream PRAM is to combine the scalability/speedup 
analysis features of the well-defined PRAM, along with 
the flexibility of using many instruction streams. In 
addition, the stream PRAM has the some abilities of the 
Asynchronous PRAM limited by the number instruction 
streams. 

)1(O

 
2.1. PPRAM Background 

 
The PPRAM model is capable of computing several 

operations with a reasonable amount of speedup 
considering the limitations made by the model, and thus 
also the hardware. The work “Communication-Processor 
Tradeoffs in Limited Resource PRAM” shows that for 
many important problems, the time complexity scales 
exclusively with either the number of PEs or the amount 
of shared memory [2]. In the rest of this section we 
summarize some of the results from [2]. They showed that 
for summation, routing, k-selection, Boolean threshold, 
and list-reversal, that the time is , where 
the scaling is occurring either in terms of m or p, if the 
logarithmic factors are ignored [2]. However, some 
problems can be only be solved in approximately 

 eliminating factors of log. For the O(n/m) time 
complexity, the number of shared memories is the 
communication bottleneck when m is strictly smaller than 
p [2].  The work cited also notes that a PPRAM(p,1) 
simulates a PPRAM(p,m) in a simple fashion with a 
deterministic overhead of O(m) [2]. The cost to simulate a 
CRCW-PRAM(p,pc), where  is some constant with 
a CRCW-PPRAM(p,m) is 

)//( mppnO +

)/( mnO

1≥c
)2))(log*log(loglog( ppO m

p  
with a high probability [2].  

We shall use the notation of PPRAM(n,p,m) for 
solving a problem of size n with p processors and m 
shared memories. Given this, summing up n memories on 
PPRAM(n,p,m) takes )log//( mmppn ++θ  time with 

the upper bound being true for the CREW model [2]. A 
EREW-PPRAM(n,p,m) can solve integer sorting, and k-k 

routing in ))2,min(log( log
log

k
m

m
n pO   time where pnk /=  

[2]. The list reversal problem requires )log/( mmn +θ  
time, when pnm /< , for the priority EREW-
PPRAM(n,p,m) model [2].  Lastly, k-selection is solvable 
with a PPRAM(n,p,m) in 

)log)loglog/(/( p
n

m
p mmppnO ++  steps [2]. When 

implementing algorithms on clusters or other parallel 
machines, the authors of [2] indicate that for the given 
hardware, an effective number of shared memories can be 
found with measurement.  

 
2.2. MASC Background 

 
This section describes the associative model of 

computation presented in the IEEE Computer article 
''MASC: An Associative Computing Paradigm,'' which is 
based on work done at Kent State University [19].  Also, 
see [1][4][6][10][15][16][20][23][24][25][26][27][28][29] 
[31][32][33].  The vast majority of existing platforms 
already efficiently support MASC, and there is an actual 
one IS language called ASC [14][20].  Currently work by 
D. R. Ulm is underway to build a C++ data-parallel class 
library, called ZIPPAR (downloadable from 
www.sourceforge.net), which is eventually to incorporate 
MPI and PVM for communication so that the  stream 
PRAM paradigm, using data-parallel methods, will be 
easily portable to many platforms.  

A frequent criticism of SIMD programming is that 
many processing elements (PEs) may be idle during 
if-else or case statements. The instruction streams provide 
a way to concurrently process conditional statements by 
partitioning the PEs among the instruction streams (ISs) 
[19]. The associative model (MASC) has an array of PEs 
and one or more ISs that each broadcast their instructions 
to the mutually exclusive sets in a partition of the PEs. 
Here we define partition as the collection of disjoint sets. 

Most applications require a small number of ISs in 
comparison to the number of PEs (with no firm 
restrictions).  An MASC machine with j ISs and n PEs is 
written as MASC(n, j). Each PE (or cell) has a local 
memory, and MASC locates objects by content or location 
in the combined local memory of the PEs [20].  This is 
accomplished by searching a specified field of each PE for 
a given data item.  Each PE is capable of performing local 
arithmetic and logical operations and the usual functions 
of a sequential processor other than issuing instructions. 
Figure 3 shows the MASC model. 

 



 
Figure 3. The MASC model 

 
Cells may be active, inactive, or idle.  Active cells execute 
the program which is broadcast from the IS that it is 
currently listening to. An inactive cell is considered in a 
group of IS cells, but does not execute instructions until 
the IS instructs inactive cells to become active again.  Idle 
cells are currently inactive, not listening to any IS, and 
contain no essential program data but may be re-assigned 
as an active cell later [26]. 

ISs can be active or idle.  An active IS issues 
instructions to a group of cells.  An idle IS is not assigned 
to any PEs and is waiting until another IS forks, 
partitioning its PEs between itself and a new previously 
inactive IS. All PEs may be assigned to one of the ISs 
using local data and comparisons.  If an IS broadcasts 
some value to a set of PEs, the PEs could set this value to 
their active IS in the next instruction cycle, or choose not 
to switch.  That is, a PE can change the IS to which it 
listens dynamically [29]. 

MASC supports data parallel reduction operations: 
AND, OR, MIN and MAX;  one or more instruction 
streams (ISs), each of which is sent to a distinct set in a 
dynamic partition of the processors; broadcasting from the 
ISs; and task assignment to ISs using control parallelism 
or data locality which allows PEs to switch ISs based on 
local data [26].  There are three networks, real or virtual, 
shown in Figure 3: the PE interconnection network, the IS 
interconnection network, and the network between the 
PEs and ISs.  

To ensure running time predictability of the data 
parallel model on actual machines, parameters describe 
the running time for the basic operations of the MASC are 
as follows [24]: 

 
I.Tnet is the time to perform a routing of a word between 

all PEs, that is sending a word from each PE to any 
other PE location.   

II.Tcomp is the time to perform a sequential PE local 
operation indexed.  

III.Tcomm is the worst-case time for an IS to write or read 
data to or from one PE.   

IV.Tsync is the maximum time for an IS communication or 
to synchronize ISs. 

V.Tbroad is the time to broadcast, and r is the time to do a 
data reductions and, or, min, max involving active 
PEs.   
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VI.Tred is the time to perform a reduction operation with 
data on a set of PEs. 

VII.TI/O is the time to input or output data from or to an 
external source to PEs. 

VIII.The variable p is the number of PEs. 
IX.The variable j is the number of ISs. 

 
The MASC model simulates PRAM with constant time 

overhead when the PRAM algorithm requires the same 
order of shared memories as MASC ISs [26]. Table 1 
shows relationships between MASC and PRAM. In short 
the ISs of MASC can act like shared memories where a 
MASC ‘IS broadcast’ operation simulates the concurrent 
read of a PRAM [26][29]. Also, a MASC ‘IS-reduce’ 
operation simulates the PRAM concurrent write [26][29]. 
Because MASC completes most of its work in the local 
memories of the PEs, the MASC machine more closely 
resembles PPRAM rather than PRAM.  Specifically, 
MASC is almost equivalent to the priority-CRCW 
PPRAM with the exception that the PPRAM does not 
include multiple instruction streams. As is seen in Table 1 
MASC(p,m) simulates the priority-CRCW(p,m) PRAM 
with O(1) overhead. The next section show the results of 
merging PPRAM with the multiple instruction streams of 
MASC.  

 
Table 1. MASC times to simulate PRAM and also for 
PRAM to simulate MASC [26] 

Machine: Is Simulated By: 
Priority-CRCW(p,m) MASC(p,m) 
In Time: O(1) 

Priority-CRCW(p,m) MASC(p,j),  mj ≤
In Time: Probabilistic O(min(p/j, m/j)), Deterministic O(m/j) 

Priority-CRCW(p,m) MASC(p,j), , with a PE network mj ≤
In Time: Probabilistic O(min(p/j, m/j, net_route_(p, m)), 
                Deterministic O(min( p/j, net_route(p, m)) 
                         (net_route(p,m)) is time to simulate PRAM with 
                         known network methods for a given network. 
 
MASC(p, 1) Priority-CRCW(p,1) 
In Time: O(1) 

MASC(p, 1) CREW(p,1)  or EREW(p,1) 
In Time: O(p),  due to reductions/broadcasts 

MASC(p,m) Priority CRCW (p, m) 
In Time: O(m), due to instruction streams, or 
                O(1),  if instruction set is finite, (no user defined) 

 
3. The stream PRAM model 

 
The stream PRAM model adds multiple instruction 

streams roughly as defined by MASC to the PPRAM 



model. The ISs are appended onto the existing m shared 
memories of the PPRAM. By only allowing one IS, the 
stream PRAM can simulate any PPRAM algorithm in 
constant time if the stream PRAM model has concurrent 
read capability. 

The model is envisioned as executing in the following 
three cycles: 
1. Instruction Send Phase: Each IS sends the next 
instruction to the set of PEs that are part of that stream’s 
‘working group.’ For stream PRAM this is accomplished 
by each PE concurrently reading from a particular 
memory/IS. Thus for the CREW and CRCW variants, this 
can be accomplished in O(1). The EREW and ERCW 
variants must simulate the concurrent read, which requires 

time with  extra memory. Since an 
algorithm that needs O(t) time with m shared memories 
can easily be simulated with m’≤m  shared memories in 

)(log pO )( pmO +

)( ' tO m
m  time [3], then we need )log( pO m

pm+  steps to 
simulate the extra memory, equating to the overhead of 

)log( pO m
p in the worst case (since p>m). An alternative 

method takes m steps, that is for i=0 to m-1 each 
processor  reads from shared memory ((j+i) 
mod m). Each processor now has every possible 
instruction, and each read is exclusive, so this second 
method completes in O(m). For a small number of shared-
memories/instruction streams this is fairly practical [24]. 
Thus a hybrid algorithm for EREW or ERCW can 
complete phase 1 in 

10 −≤≤ pj

))log,(min( pmO m
p . One may be able 

to do better, since the PPRAM can sum up p memories in 
only )log( mO m

p +  [2], but this question is left open for 
future efforts. Still, any stream PRAM that has concurrent 
read can complete this phase in O(1). Interestingly, the 
architectural work done for MASC and PRAM (notably 
for PRAM in Akl’s book[3]) has shown there is much 
evidence that concurrent reading is quite possible in 
hardware [3][16][28][31][32][33]. The cost for phase 1 is 
the cost for a concurrent read, or . CRT
 
2. Synchronous Execution of Operations: The PEs of any 
variant of stream PRAM now perform the operation 
loaded in phase 1. Each PE may execute one of the m 
potentially different instructions. It is assumed that these 
instructions will complete in O(1) time for simple 
operations or O(f(n/p)) time for an operation, f(), which is 
a sequential function. Phase 2 finishes when the PE with 
the slowest operation completes. Thus, there needs to be 
an implicit barrier synchronization at the end of this 
phase. The time needed is the average cost for each CPU 
instruction times the number of instructions plus the 
synchronization cost, or SYNCp

n
SEQUENTIALCPU TfTT +× ))(( , 

where ))(( p
n

SEQUENTIAL fT  may often be O(1) for simple 

operations. 
 
3. Next Instruction Determination Phase: Each PE now 
decides which instruction stream it will execute next. 
Based on data and conditions local to each PE, a PE 
selects from which stream it will read in Phase 1. Note 
that the ISs do not directly dictate this. Phase 3 has a cost 
of constTCPU × . 
 
4. Goto Phase1. 

 
One stream PRAM execution cycle is 

constTTfTTT CPUSYNCp
n

SEQUENTIALCPUCR ×++×+ ))(( . For 

large n the sequential operations dominate. The special 
cases of EREW and ERCW stream PRAM(n,p,m) that 
always use only one (or constant) IS, but have m shared 
memories, can actually complete Phase 1 in 

)log( mO m
p +  with a modification of the summation 

algorithm from [2]. Instead of adding several values, one 
value is replicated with a 1-to-p broadcast. A concern of 
the reader at this point may be that the seemingly more 
powerful stream PRAM is only more powerful if 
concurrent read is allowed. This is actually true. The 
definition of the stream PRAM model states that each IS 
is grouped with a shared memory. The benefit is that the 
model still consists of only two layers of resources, the 
processors and the shared-memories/instruction-streams. 
Because exclusive read model stream PRAM PEs cannot 
concurrently read data from the shared memories, the PEs 
can also not concurrently read the next instruction. The 
authors and much previous literature believe that the 
exclusive read model is excessively restrictive 
[3][5][16][28][32][33]. If an architecture can afford 
multiple instruction streams, it probably ought to also 
have concurrent read. Table 2 lists some of the nicely 
behaving simulations. 
 
Table 2. Simulations of stream PRAM and MASC 
Simulation In Extra Time 
Priority-CRCW PPRAM(n,m) 
Simulated by: MASC(n,m) 

O(1) 

MASC(n,m) 
Simulated by: Priority CRCW  
                         PPRAM(n,m) 

O(m), to simulate ISs 
Or O(1) for  constant 
number of ops. 

PPRAM(n,m) 
Simulated by: Priority CRCW  
                         stream PRAM(n,m) 

O(1) 

MASC(n,m) 
Simulated by: Priority-CRCW  
                         stream PRAM(n,m) 

O(1) 

Priority-CRCW stream PRAM(n,m) 
Simulated by: MASC(n,m) 

O(1) 

 



From Table 2 and what has been shown concerning 
stream PRAM properties, it is apparent that there is a 
strong relationship between MASC and stream PRAM. 
Specifically, priority-CRCW stream PRAM(n,p,m) is for 
all intensive purposes equivalent to MASC(n,p,m). 
Therefore any MASC algorithms already discovered will 
function in priority-CRCW stream PRAM in O(1) steps 
when the number of stream PRAM shared memories is on 
the same order as the number of instruction streams in 
MASC. Also, MASC can execute any existing stream 
PRAM or PPRAM algorithms with constant overhead 
[4][6][8][10][13][15][20][27][29]. 

 
4. Predictability, simulation on real systems, 
and future directions 

 
Recent work to define the circuitry for the MASC 

model has shown that it is well within the realm of 
implementation [1][24][31][32][33]. By implication, the 
implementation of stream PRAM and PPRAM is also 
quite possible. The authors believe that clusters of 
workstations can support the stream PRAM paradigm 
with average time predictability [2][5][17][18][21][22]. 
Previous work in limited-resource PRAM show good 
results with PPRAM, BSP, and qsm(m) [2][30][12]. The 
extra overhead to run the m ISs ought to require only a 
slight amount of overhead when considering parallel 
slackness and many large problems where pn >>  [9]. 
Figure 4 shows one naive method to execute the ISs. 
 

 
Figure 4: Simulation of stream PRAM on a cluster. 

 
 If we wish to use only a constant or log number of ISs, 

then each processor, PE that is, could keep track of all ISs. 
Given that local sequential operations that will operate on 
n/p sized data chunks, even for )(log p

nO  algorithms, 

 or so ISs would be trivial for each PE to run. 

Many local sequential operations, such as all-sums, have 
linear speedup,  [25]. 

)(log pO

)/( pnO
In future work, we will experimentally measure 

methods to execute the instruction streams. Also, more 
work needs to be done concerning how the m instruction 
streams can solve some problems faster in stream PRAM. 
Maher Atwah’s algorithm for  Convex 
Hull completes in steps for randomized data 
with a high probability [4]. This algorithm can now 
function in priority CRCW stream PRAM(n,n,log n) in 
the same time. We need to look into more cases such as 
these, and we note that for the simple data parallel ‘if-
else’ or ‘case’ statements, we can now use the ISs to 
compute all cases concurrently with the stream PRAM.  

)log,,( nnnMASC
)log(log nO

Lastly, we would like to determine relationships 
between stream PRAM, qsm(m), PPRAM, PRAM(m), and 
BSP. Obviously there exists overlap, and more effort is 
needed to determine time complexities for problems 
solved on stream PRAM. We desire to eventually 
determine simulations and costs for stream PRAM to 
these similar models. Even more may be gained by the use 
of the instruction streams beyond the regular non-IS 
algorithms.  
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