ASC PRIMER

Department of Mathematics and Computer Science
Abstract

ASC is a high level parallel language developed at the Department of Mathematics and
Computer Science, Kent State University for ASsociative Computing. An associative SIMD
emulator option has also been developed. The purpose of this paper is to present the basic
components of the language and in particular, to show how it works on the emulator. The
material for this paper is taken from Professor Potter’s publications [5], [6], [7], Hioe’s
[2] thesis, and Lee’s [3] thesis. The handbook consists of six chapters. The first chapter
discusses the background of ASC; the second chapter tells the user how to get started;
Chapters 3, 4 and 5 discuss the parallel operations of ASC; Chapter 6 presents the additional
features of ASC.

Acknowledgement: This document was prepaired through the efforts of many people.
In particular, Julia Lee and Dr. Chandra Asthagiri.

CHAPTER 1
The Background of ASC

1.1 Introduction

ASC is a parallel computer language developed at the KSU Department of Mathematics
and Computer Science of KSU for SIMD machines, namely the WAVETRACER (WT), and
the CONNECTION MACHINE (CM). An emulator has also been developed so that ASC
can be executed on any computer with C. The first pass of the compiler is the same for all
the machines but the second pass of the compiler is different for each machine. The first
pass produces a .iob file which contains the intermediate code which is the input for the
second pass, and a ./st file which shows the relationship between the source code and the
triple address intermediate codes. The second pass generates a .c file for the Connection
Machine and .c, .wt, .ex & -st.c file for the WT. The emulator option second pass does
not produce an output file. This handbook will provide ASC users with a quick reference
guide for executing programs. The bulk of the material is taken from Potter [7], Hioe [2],
Michalakes [4] and Lee [3]; the drawings are taken from Lee’s master’s thesis [3]. It is
assumed that the reader is familiar with the basics of computer programming.

1.2 SIMD Machines the Target Architecture

There are several ways to exploit parallelism. One of these is to partition the data and
let each block of data be processed by a particular processing element (PE). Here, each
PE holds its own data, and all the PEs can execute at the same time to process the data,
thus eliminating the CPU memory bottleneck that exists in sequential computers. Since
there is a one to one relationship between the processors and memories, large amounts of
data can be passed between the processors and memory. The same instruction is applied
to all the PEs by broadcasting the instruction to all the PEs. Moreover, all active PEs will
execute the same instruction at the same time on their own data, because cach PLE has its
own local memory. This type of computer is called the Single Instruction Multiple Data
(SIMD) computer. The SIMD computer consists of a Control Unit, a number of Processing
Elements, a number of Memory Modules and an Interconnection Network.

1.3 Associative SIMD Computers

An associative processor (such as the STARAN-E [9]), consists of a conventional se-
quential computer called the host, a sequential control and an array of processors. Each
processor in the array has its own local memory.

There are three basic components in a SIMD computer:

1. Memory

(a) Sequential Associative Processor Control Memory.

(b) Parallel Associative Array Memory.

2. A set of Processing Elements (PEs).

3. A Communication Flip Network.

The Control Memory stores the assembled instructions of the program and the array
memory stores the data. The array memory, the local memory for each of the processors,
provides content addressable and parallel processing capabilities. Each PE is associated
with a row of memory. The processing elements consists of three one bit registers, M, X
and Y. The M register is used to mask and to select which processors will carry out the
broadcast instruction. The X register is used for temporary storage and the Y register for
storing the result of a search operation.

1.4 The ASC Emulator

The ASC emulator is written in the C language. At this writing it emulates 300 pro-
cessors and a parallel array memory of 8000 bits wide. The emulator is constantly evolving
and therefore may act slightly different than described here. Questions and suggestions
concerning the emulator can be directed to potter@mecs.kent.edu

1.5 The Associative Computing Model

ASC is based on the Associative Computing Model of Potter[7]. Data items which are
related or associated are stored as one record and one such record is stored in the memory
allocated to one processor in the array. All similar records, one record per PE, may be
accessed in parallel. In associative computing, data records are referenced by describing
them (their contents) and not by naming them (their address). Since each memory cell has
its own processor, there is no need to move data from memory to a CPU. Thus, associative
programming promotes parallelism by maximizing the amount of data parallel processing.

The Associative Computing Model consists of a basic cycle of three phases :

‘¢ search, process, retrieve ’’

The search operation broadcasts the description of the desired object(s) of an association
to all the active processors. This allows all processors to search for the desired object(s)
in parallel. The processors which locate the desired object in the search phase are called
the active responders. The process phase consists of a sequence of operations which are
executed by the active responders. In the retrieve phase, values of specific items of the
active responders are retrieved and used in subsequent cycles. The basic search, process,
retrieve cycle can be nested and in any one cycle the process and/or retrieve phase may
be omitted [7]. When exiting a nested level, the group of active responders is restored to
the previous state.

CHAPTER 2
Getting Started

2.1 How to execute ASC programs on the emulator

In every modern comuting environment, there are networks of different computers. The
ASC user must be certain that he is logged on the specific host and in the specific directory
on which ASC has been installed. That is, if he wants to execute ASC on the Wavetracer,
he must be logged in on the WT host. If she wants to execute on the Connection Machine,
she must ber logged on the CM host. If she wants to emulate ASC on a specific machine,
the emulator (pass2) must have been compiled for that machine. Moreover, the user must
specify the correct option for the particular machine wanted. These are:

-9 for the Emulator
-cm for the CONNECTION MACHINE
-wt for the WAVETRACER

In order to execute ASC, login to the correct machine and directory and specify the
ASC command with the proper option and filename. All ASC source code programs must
end with an .asc extension. An example of an ASC invocation is:

hasc -e Myprog.asc
or
hasc -e Myprog.asc < Myfile.dat

If the ; Myfile.dat redirection is not specified, the program data must be entered in-
teractively. Whether using redirection or entering interactively, a blank line is required to
terminate input. If Myfile.dat does not end with a blank line, the system will sit waiting
for additional input. The user will think that nothing is happening. Kill the job and insert
a blank line and restart.

2.2 Program Structure

An ASC program can be identified as a main program or a subroutine (refer to Chapter
6 for subroutines). The first word is MAIN or SUBROUTINE followed by the program
name. This statement is then followed by the define statements, the variable declarations
and the program body. The last statement is the END statement. All statements end with
a semicolon. Note the program syntax is “ MAIN name declare body END;” and “SUB-
ROUTINE name declare body END;”. The order of the program structure is important,
which is as follows:

MAIN program name

defining constants;

4

equivalencing variables;
defining variables;
declaring associations;

body of program;
END;

2.3 Defining Constants

The DEFINE and DEFLOG statements are used to define constants. The DEFINE
keyword is used to declare scalar constants, whereas the DEFLOG keyword is used to
declare the logical constants. Scalar constants can be decimal, hexadecimal, octal or binary.
The letter X indicates hexadecimal, O denotes octal and B is for binary.

Format:
DEFINE(identifier, value);
DEFLOG(identifier, value);

For example:
DEFINE(Maxnum, 200);
DEFINE(MyHex, X’3FA’);
DEFINE(MyOct, 0°765');
DEFINE(MyBin, B?11001°);
DEFLOG(One, 1);
DEFLOG(Zero, 0);

2.4 Reserved Words

Reserved words cannot be redefined, so they must not be used as variable names. The
reserved words are given in an appendix.

2.5 Declaring Variables

To declare a variable in ASC, the data mode and the data type of the variable must be
indicated. The following paragraphs discuss the various modes and types of data.

ASC supports two modes of data items, namely scalar and parallel. Scalar data items
are stored in the sequential memory of the computer and the parallel data items are stored
in the parallel array memory. Scalar data items are stored in fixed length words (depending
of the word size of the host) whereas parallel data items have varying lengths depending on
the type of data. The keywords SCALAR and PARALLEL define the mode of the variable.
In addition, the character § indicates parallel mode or parallel operation.

ASC supports eight data types, namely integer(INT), hexadecimal(HEX), octal(OCT),
binary(BIN), unsigned(CARD), character(CHHAR), logical(LOGICAL) and index(INDEX).
Integers may occupy from 2 up to 2256 bits, but default to the word size of the host machine
(i.e. 32 bits for most mainframes and wrokstations, 16 bits for most PCs). When declaring
integers, users must determine the range of the variable since overflow of integer arithmetic
operations is not detected by ASC. A logical variable is 1 bit long and are used to store
values of either 1 or 0, TRUE or FALSE. An index variable also occupies 1 bit of memory
(parallel mode only). Index variables are important in ASC because they link the search,

6

process and retrieve phases [7]. These variables are used for parallel to scalar reduction (or
indexing) purposes when using any control structure dealing with parallel variables. When
used with a parallel field, the index variable refers to only one specific association entry at
a time.

Variable names start with a letter and are at most 32 characters long. Lower and
uppercase letters are indistinguisable (i.e. lower case are converted to uppercase). The
width of a variable can be specified by using a colon after the variable name followed by the
number indicating the field width. This is the general form of declaring variables names :

Format: data-type data-mode vari, var2 ;
For example:

INT SCALAR AA,B; ‘
INT PARALLEL Tail[$], Head[$], Weight[$];

INT FOUND:8[$]; /* 8 bit field */
CHAR PARALLEL Node[$];
HEX PARALLEL Code:4[$]; /* 4 bit field */

LOGICAL PARALLEL Found[$];
INDEX PARALLEL XX[$], YY[$];

Commas and spaces are used to separate lists of identifiers. In general, cither can be
used.

2.6 Multi-Dimensional Variables
ASC allows the user to specify multidimensional variables up to three dimensions.

INT PARALLEL AA[$,5]; /* two dimension parallel */
INT PARALLEL B[$, 5, 5]; /* three dimension parallel */
INT SCALAR C[3,5]; /* two dimensional scalar array */

The two dimensional parallel array AA, above,consists of 5 parallel arrays : AA[$,0],
AA[S$,1], AA[8,2], AA[$,3] and AA[$,4]. Note that array indicies start at zero and go to
n-1.

~J

Parallel Array AA :

AALS,0] AACS,1] AA[S,2] AA[$,3] AALS,4]

- - - - - - O > - - - e S > A - - - -

2.7 The DEFVAR Statement

The DEFVAR statement allows the user to define the location of a variable in memory
by defining the beginning of the field. This is helpful when the user needs to overlap two
or more variables. The DEFVAR statement must come before the variable declaration and
the second variable must be declared before the first variable.

Format: DEFVAR(varl, var2);
DEFVAR(varl, absolute address);

For Example:

DEFVAR (AA, B); /* define AA in terms of B */
DEFVAR (C,128); /* define where C begins */
HEX PARALLEL B:24[$];

HEX PARALLEL AA:4[$,6]; /* AA overlap with B x/

INT PARALLEL C[$]; /* declare C at location 128 */

An absolute address option is provided to allow interface to assembly language and host
machine native languages (i.e. C* on the CM, and MultiC on the WT). In general, it should
not be used by the beginning programmer.

2.8 The scalar IF statement

ASC has two kinds of IF statements, scalar and parallel. The scalar IF is similar in
function to the IF statements found in conventional languages; it is a branching statement.
When the IF statement evaluates to TRUE the body of the IF part is executed, otherwise
the body of the THEN part is executed. Note that the ELSE substatement is optional.

Format: IF scalar logical expression THEN
body
< ELSE
body >
ENDIF;
Example:
IF AA .EQ. 5 then
SUM = 0;
ELSE
B = SUM;

ENDIF;

The parallel IF is used for parallel searching and is discussed is section 4.2.

2.9 Establishing Associations Between Variables

Associations can be established for parallel variables by using a logical parallel vari-
able. Variables that are associated are related and can be referenced as a group using the
logical parallel variable. The parallel variables must be declared prior to establishing the
association.

Format:
ASSOCIATE varil, var2 WITH logical parallel variable ;

For example:
CHAR PARALLEL Node[$];
INT PARALLEL Level([$], Child[$];
LOGICAL PARALLEL Tree[$];

ASSOCIATE Node[$], Level[$], Child[$] WITH Tree([$];

Node [$] Level[$] Tree($]
R 0 i
A 1 1
B i 1
C 2 i
D 2 i
0 0 0
o] 0 0

In the example above, the parallel variables Node and Level are grouped as an association
by the logical parallel variable Tree.

2.10 The Use of Operators in ASC
The use of relational operators, logical operators and arithmetic operators is as follows:

2.10.1 Relational Operators

Less than : LT. or <
Greater than : .GT. or >
Less than or equal to : .LE. or <=
Greater than or equal to : .GE. or »>=
Equal to : .EQ. or ==
Not equal to : .NE. or I=

2.10.2 Logical Operators

Negation : .NOT. or !
Or : .OR. or I
And : .AND. or &%

Exclusive Or : .XO0R. or =

2.10.3 Arithmetic operators

Operation Operator Operand type Result type
Multiplication * real real
Multiplication * integer integer
Multiplication * real, integer real
Division / real, integer real
Division / integer integer
Division / real, integer real
Addition + real, integer real
Addition + integer integer
Addition + real, integer real
Subtraction - real real
Subtraction - integer integer
Subtraction - real, integer real
2.11 Parallel Arithmetic Operations

Arithmetic operations can be performed in parallel, which means that the operation
applies to all the active responders in one operation. In a sequential computer, this would
require a loop. For example, in Pascal, a FOR loop is needed to add a value into an array.
But in ASC only one operation is needed to process the whole array.

For Example:

AA[$] = B[$] + C[$];

Before: After:
Mask AA[$] B[$] cI[$] Mask AA[S$] B[$] cC[$]
1 2 4 5 i 9 4 5
1 6 8 8 1 16 8 8
i 3 10 1 i 11 10 1
0 5 4 3 0 5 4 3
0 6 7 2 0 6 7 2
1 5 6 7 1 13 6 7

In this example, mask of 1 indicates active responders.
NOTE: Currently, the EMULATOR does not support real variables.

2.12 The Assignment Statement

The assignment statement is indicated by an equal sign. There are three types of
assignment in ASC, namely assigning to a scalar variable, assigning to a parallel variable
and assigning to a logical parallel variable. Any arithmetic expression that evaluates into
a scalar value can be assigned to a scalar variable; any parallel arithmetic expression can
be assigned to a parallel variable; and any logical parallel expression can be assigned to a
logical parallel expression. The data types must be the same on the left and the right hand
sides.

Format:
scalar variable = scalar expression

parallel variable = scalar expression or parallel expression
logical parallel variable = logical parallel expression

For example :
INT SCALAR K;

INT PARALLEL AA($], B[$];
LOGICAL PARALLEL USED[$];
INDEX PARALLEL XX[$];

K = AA[XX] + 5;

B[$] = AA[$] + 5;

B[$] = 3 + 5;

USED{$] = AA[$] .EQ. 5;

10

11

Given:
MASK AA($] BI($] USED[$] Xx[$]
1 7 12 0 0
1 5 10 1 0
1 3 8 0 0
1 9 14 0 1 mm
i 5 10 1 0
i 5 10 1 0
0 0 0 0 0
then

K = AA[XX] + 5 ,
is evaluated
K=9 + 5 = 14,

2.13 Comments, Delimiters and Program Lines

Comments are enclosed by the symbol /* and */ as in the C language. Tor example
the statement /* this is a comment */ will not be processed by the compiler, because it
indicates a comment. Delimiters that separate language elements are blanks, new lines and
comments. Furthermore ASC program lines must not exceed 132 characters or the result
will be unpredictable. Comments may be nested. Thus an unballanced number of comment
delimeters may cause an end of file error.

2.14 Embedded Assembler Code

This statement is used when the programmer wants to embed assembler code within the
ASC source program. This is useful only when the user is working on an actual machine
(i.e. CM or WT) instead of the emulator. The embedded statements must be preceded
by the keyword ASMCODE and terminated by the keyword ENDASM. As in the example
below, any legal C* (for the CM) or multiC (for the WT) is allowed. The user is responsible
for the correctness of those embedded codes.

For example:
ASMCODE
printf (‘‘This is an example\n’’);
ENDASM;

CHAPTER 3
Parallel Input and Output

3.1 The Parallel READ Statement

Parallel input in ASC is accomplished by the READ statement. It deals with the
contents of the parallel array memory; therefore it works only with parallel variables and
not with scalar variables. The association of variables must be established before the READ
statement is executed because the paralle]l variables are read as a group.

Format: READ parvarl, parvar2 IN 1logical parallel variable;

Example program :
MAIN Try1

CHAR PARALLEL Tail($], Head[$];
INT PARALLEL Weight[$];
LOGICAL PARALLEL Graph[$];

ASSOCIATE Tail[$], Head[$], Weight[$] with Graph[$];

READ Tail[$], Head[$], Weight[$] in Graph[$];

END;

3.2 The Input File

The input file for the parallel array is organized into columns. The position of the
columns corresponds with the position of the parallel variables in the READ statement. In
the Tryl program, for example there are 3 parallel variables that are read in. The input
file for this program could be as follows:

a b 40
a c 30
b a 38
b c 24
c a 26
c b 20

< BLANK LINE >

Note that a blank line is the terminator of the input file. The contents of the parallel array
memory after the READ statement are as follows:

12

TAIL HEAD WEIGHT

GRAPH[$]

(ol el s BN NN BN N 2N
cCOoUTe 0O UT

3.3 The Parallel PRINT Statement

O O =

13

Parallel output of variables in ASC is accomplished by the PRINT statement, which

deals with the contents of the array memory only and not with the scalar variables. The

PRINT statement displays a group of variables. Thus the parallel variables to be displayed

must be associated. The PRINT statement does not output user specified strings (i.e. text),

it only outputs the values of parallel variables. Printing strings or text and scalar variables

is accomplished by the MSG statement (see Section 3.4).

Format: PRINT parvarl, parvar2

Example program :
MAIN Try2

CHAR PARALLEL Tail[$], Head[$];

CHAR PARALLEL Weight[$];
LOGICAL PARALLEL Graph[$];

ASSOCIATE Taill$], Head[$], Weight[$] with Graph[$];

IN 1logical parallel variable;

READ Tail[$], Head[$], Weight[$] in Graph[$];

PRINT Tail($], Head[$], Weight([$] in Graph[$];

END;

The output file begins with the message dump of association and is followed by the

contents of the parallel variables printed in columns.

For example:

DUMP OF ASSOCIATION RESULT FOLLOWS:

TAIL, HEAD, WEIGHT,

a b
a c
b a
b c
c a
c b

3.4 The MSG Statement

40
30
38
24
26
20

The MSG statement is used for displaying scalar variables and messages. Variables are

displayed on the line following the message.

Format : MSG

For example:
MSG
MSG
MSG

"

14

string " list ;

The answers are " AA B[XX] B[$];
In the while loop the value of B is " B ;
Sampai bertemu lagi, Goodbye! " ;

The MSG statement may be used to dump parallel variables for debugging purposes.
When a parallel variable is specified, the contents of the field for the entire array is printed
regardless of the status of the active responders or association variables.

CHAPTER 4
Parallel Searching

Parallel searching in ASC can be accomplished by several different statements. These
include the SETSCOPE statement, the different IF statements and the ANY statement.
Each of them is discussed briefly in the following sections.

4.1 The SETSCOPE Statement

There are several ways to mark the set of active PEs. The simplest way is to use the
SETSCOPE statement. Here, masking is used to mark the active PEs (refer to section 1.3
for masking).

Format : SETSCOPE logical parallel variable ;
body
ENDSETSCOPE;

Example:
USED[$] = AA[$] .EQ. 5;

SETSCOPE USED [$]
TAIL[$] = 100;

ENDSETSCOPE;
or
SETSCOPE AA[$] .EQ. S5;
TAIL[$] = 100;
ENDSETSCOPE;
BEFORE: AFTER:
AA($] USED TAIL AA[$] USED TAIL
5 1 7 5 1 100
23 0 6 23 0 6
5 1 9 5 1 100
41 0 7 41 0 7

All the PEs whose USED bit has a value of 1 will set the TAIL ficld to 100.

4.2 The Parallel IF-THEN-ELSE Statement

The parallel IF-THEN-ELSE is different from the conventianal I statement, because
it is actually a masking statement and not a branching statement. This IF statement refers
to the active responders of the search process and both body parts of the IT statement are

15

16

excecuted. The parallel IF statement below illustrates the masking of the active responders
as follows [7]:

1. Save the mask bit of processors that are currently active.
2. Broadcast code to the processors to calculate the IF condition.

3. Set the individual cell mask bit of the active processors to TRUE if its local condition
is TRUE. Set the mask bit of the active processors to FALSE otherwise.

4. Broadcast code for the TRUE portion of the "IF” statement.
5. Compliment the mask bits that are obtained in step 3.

6. Broadcast code for the FALSE portion of the "IF” statement,

Format: IF logical parallel expression THEN
body of then
< ELSE
body of else >
ENDIF;
Example:
IF (T[$] .EQ. 1) THEN /% search T .EQ. 1 */
T[$] = 0; /* process */
ELSE /* search T .NE. 1 */
T[$] = -1; /* process %/
ENDIF;
BEFORE: AFTER:
T ORIGINAL MASK T THEN MASK ELSE MASK
1 1 0 1 0
7 1 -1 0 1
2 1 -1 0 1
1 1 0 1 0

4.3 The IF-NOT-ANY statement

The IF-NOT-ANY statement is different from the IF-THEN-ELSE statement in that
only one body part is executed. The IF-NOT-ANY statement evaluates the conditional
expression and if there are one or more active responders, the TIHHEN statement block is
executed. On the other hand, if there is not even one active responder, the ELSE-NOT-ANY
statement block is executed. This statement is a masking statement, but when executing
the ELSENANY part, the mask used is the original mask existing prior to the I--NOT-ANY
statement.

Format:
IF logical parallel expression THEN

17

body of if
ELSENANY

body of not any
ENDIF;

For Example:
IF AA[$] .GE. 2 .AND. AA[$] .LT. 4 THEN /% set mask */

IF B([$] .EQ. 12 THEN /* search for B .EQ. 12 x/

cl$l =1; /* process %/
ELSENANY /* search for B .NE. 12 */
C($] =9; /* process x/
ENDIF;
ENDIF;
BEFORE: AFTER:
AA B C AA B C
1 17 0 i 17 0
2 13 0 2 13 9
2 8 0] 2 8 9
3 11 0 3 11 9
2 9 0 2 9]
4 67 0 4 67 0
0 0 0 0 0] 0
0 0O o0 0 0 0

4.4 The ANY Statement

The ANY statement is used to search all data items that satisfy the conditional expres-
sion. There must be at least one responder for the body statement to be performed. If
there are no responders the ANY statement does nothing (unless an ELSENANY is used).
The mask that is used to execute the body part is the original mask prior to the ANY
statement. Thus, all active responders are affected if the conditional expression of the ANY
evaluates to TRUE.

Format:
ANY logical parallel expression
body
< ELSENANY
body >
ENDANY;

For example:

IF AA[$] .GT. 7 THEN /* set mask x/

18

ANY AA[$] .EQ. 10

B[$] = 11;
ENDANY;
ENDIF;
BEFORE: AFTER:

MASK AA B MASK AA B
0 3 0 0 3 0
0 5 0 0 5 0
1 16 0 1 16 11
1 10 0 1 10 11
1 8 0 1 8 11
0 7 0 0 7 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

In the given example there are three responders to the IF statement in row 3, row 4 and
row 5. Therefore, the B column is changed from 0 to 11 at those rows.

The ANY statement can also be used with the ELSENANY clause as in section 4.3. If
there are no responders then the ELSENANY body part is executed.

Format:
ANY logical parallel expression
body
ELSENANY
body
ENDANY;
For example:
IF AA[$] .GT. 7 THEN /* set mask */
ANY AA[$] .EQ. 10
B[$] = 11;
ELSENANY
B[$] = 100;
ENDANY;
ENDIF;
BEFORE: AFTER:
MASK AA B MASK AA B
0 3 0 0 3 0
0 5 0 0 5 0

19

100

16
11

16
11

100

100

CHAPTER 5
Looping and Retrieving

5.1 The LOOP-UNTIL Statement

ASC supports a variety of control structures. The LOOP statement, used for loop-
ing, resembles the REPEAT UNTIL in Pascal, but it is more flexible, since the UNTIL
conditional test can appear anywhere in the body of the loop.

Format:
FIRST
initialization
LOOP
body 1

UNTIL (logical scalar expression)
(logical parallel expression)
(NANY logical parallel expression)

body 2
ENDLOOP;
For example :
FIRST
I =0;
LOOP

IF AA($] .EQ. I THEN
B[$] = AA[$] + 2;
ENDIF
I=1+1;
UNTIL I .GT. 10
ENDLOOP;

In this example, the variable I is initialized to zero and incremented each time it enters the
loop. At each iteration of the loop variable I is tested and if the test evaluates to true, then
the loop terminates.

The UNTIL expression may be scalar (as above) or paralle. If parallel, UNTIL exits
based on a responder test. It may contain an optional NANY keyword. Without NANY,
a parallel UNTIL will exit when responders are (first) detected. With NANY, the UNTIL
will exit when the no-responders condition is detected. Thus a parallel UNTIL statement
may be used to loop until all responders have been processed as in

UNTIL NANY C[$]

20

21

where C[$] represents a logical parallel expression. Both parallel and scalar UNTILs may
be used anyplace in the same loop.

5.2 The Parallel FOR-LOOP Statement

The FOR statement is used for looping and retrieving. It evaluates the conditional
expression and stores the resulting active responders in an index variable. This index
variable can then be used to retrieve a data item of an association. Active responders are
processed one after another until all the active responders have been processed. Note that
the logical expression must be in the parallel mode. For example:

SUM = 0;
FOR XX IN TAIL[$] .NE. 999
SUM = SUM + VAL[XX];

ENDFOR XX;

TAIL XX VAL
3 1 10 1ST TIME THRU LOOP: SUM = SUM + 10 = 10
5 1 20 2ND TIME THRU LOOP: SUM = SUM + 20 = 30
999 0 30
6 1 40 3RD TIME THRU LOOP: SUM = SUM + 40 = 70

Here, the index variable XX controls the loop. The loop is repeated only where XX contains
the digit 1 starting from the top to the bottom. At each iteration XX is used as a subscript
to retrieve the parallel variable VAL. The contents of XX is updated at the bottom of the
loop (The first one is changed to zero). So,the value of each of the parallel variable VAL is
accumulated in the scalar variable SUM for all the active responders.

5.3 The Parallel WHILE Statement

The WIIILE statement is similar to the FOR except that the WHILE rcevaluates the
conditional expression before each iteration.

Format:
WHILE index variable IN logical expression
body
ENDWHILE index variable ;

For example:

SUM = 0;

WHILE XX IN AA[$] .EQ. 2
SUM = SUM + B[XX];
IF C[XX] .EQ. 1 THEN

22

IF AA[$] .EQ. 2 THEN

AA($] = 5;
ENDIF;
ELSE
AA[XX] = 7;
ENDIF;
ENDWHILE XX;
BEFORE: AFTER:

AA B C AA B C
1 17 0 1 17 0
2 13 0 7 13 0]
2 8 1 5 8 1
3 11 1 3 11 1
2 9 0 5 9 0
4 67 0 4 67 0

As shown, the parallel variable AA is tested at the beginning of each iteration. Inside the
loop the parallel variable AA is changed. The iteration is terminated when the conditional
expression evaluates to false or no responders.

The programmer must insure that the logical expression will eventually evaluate to flase
or no responders or the while loop will not terminate and may hang up the system. It
is advisable for undebugged while statements to include a counter to limit the number of
iterations. For example,

X IN AA[$] .EQ. 2 .and. I .GT. O
= I-1;
M = SUM + B[XX];
C[xX] .EQ. 1 THEN

/* I FORGOT TO UPDATE AA[xx] */
ELSE

I
SU
IF

AA[XX] = 7;
ENDIF;
ENDWHILE XX;
IF I .LE. O THEN
MSG "BUG IN WHILE STATEMENT";
ENDIF;

5.4 The NEXT Statement
The NEXT statement is used to retrieve the ”topmost” memory word of the active
responders masked by a logical parallel variable. After retrieving, the topmost bit of the

logical parallel variable is set to zero. NEXT is almost always used within a looping struc-
ture. NEXT may contain an ELSENANY substatement.

23

Format:
NEXT parallel index variable IN logical parallel variable

body
< ELSENANY
body >

ENDNEXT parallel index variable;

For example:
INT PARALLEL AA[$], B[$];
LOGICAl PARALLEL USED[$];
INDEX PARALLEL XX[$1;

USED[$] = AA[$] .EQ. 4
NEXT XX in USED[$]

B[XX] = -1;
ENDNEXT XX;

BEFORE: AFTER:

- o o - - " - WDt " - - o - - . - =, - o -

»b:-b»hto»b»h»—a

PO, PFPr OO

NNNMNDNDMDNNONON
-

~N b b O D e

= O =+ O OO0

NNNNDNNNAN

In this example, USED is the logical parallel variable and the topmost bit that contains the
digit 1 is in the second row. Therefore, at the second row the contents of variable B are
changed to -1 and the digit of the variable USED is reset to zero. Note that

NEXT XX IN AA[$] .EQ. 4

is not allowed.

55 The GET Statement

To access the value of a specific item in the memory of an active processor, the GET
statement is used. It evaluates the logical parallel expression and uses the index parallel
variable to mark the first of the active responders which meet the specified condition. In
the body of the GET statement the index parallel variable is used to access the specific
item. If there are no responders the body of the GET statement is not executed. Get may
also contain an ELSENANY substatement.

24

Format:
GET index parallel variable IN
logical parallel expression
body
< ELSENANY
body >
ENDGET index parallel variable

For example:

GET XX IN TAIL[$] .EQ. 1

VAL[XX] = 0;
ENDGET XX;
BEFORE: , AFTER:
TAIL VAL TAIL VAL
10 100 10 100
1 90 1 0
2 77 2 77
i 83 1 83

THE FIRST RESPONDER IS THE SECOND ENTRY, SO VAL[$] IS CHANGED.

Here, the topmost of the active responders is in row 2, so the variable VAL is changed in row
2. The index parallel variable is not updated by GET, so if GET is in a loop, it will select
the same responder on every iteration unless if the values of the logical parallel expression
are explicitly changed.

CHAPTER 6
Programming At Large

6.1 Modular Programming : The CALL statement

The subroutine protocol in ASC differs from other languages. In most languages the
variables in the calling routine are mapped onto variables in the called routine by their
position. In ASC, the actual mapping between fields are specified explicitly. The notation
is similar to the UNIX/C file redirection. Suppose subroutine X is calling subroutine Y;
Variables AA[$], B[$], and C[3] are in X and variables M[$] and N[$] are in Y; and AA[$]
and B[$] are to be mapped onto M[$] and N[$] as input data; and Variable O[$]in Y returns
data to variable C[$] in X ; then the call would be :

subroutine X
/* declare variables AA, B, and C here */

CALL Y M[$] < AA[$] N[$] < B[$] o[$] > c[$]
end;

Any number of variable/fields may be mapped and they may be specified in any order. The
formal syntax is as follows:

Grammar:

sub-call := CALL sub-id args;

args = in-arg args | out-arg args | e

in-args := destination-field < source-field-expression

out-arg := source-field-expression > destination-field
Format:
CALL subroutine called-fieldl < calling-fieldl ... calling-fieldn > called-fieldn;

Example: CALL BITO AA[$] < B[$] .GT. 5;

6.2 Using Subroutines

Subroutines are identified by the keyword SUBROUTINE in the program heading and
the structure of the subroutine is the same as the main program (see Chapter 2). The
emulator requires the user to put the subroutine and the main program in separate files.
All the subroutine files must be named with a suffix .asc (just as the main program has
the suffix .asc), and must be compiled before the main program. The -wt and -cm options

require that the subroutines be in the same file as the main program (conventional single
file C style).

25

26

Variables are shared between the main program and the subroutines using the INCLUDE
capability (see section 6.3). In this case the main program and the subroutines allocate the
same memory flelds to the shared variables like COMMON variables in FORTRAN. In
ASC, all variables must be declared in the main program. There are no variables local to a
subroutine.

Format:
SUBROUTINE subroutine name
body
<RETURN>;
END;

For example:

PROGRAM MAIN
DEFVAR(AA,B);
INT PARALLEL B[$];
INT PARALLEL AA[$];

body
END;
SUBROUTINE SUB1 /* in a separate file */
DEFVAR(AA,B);
INT PARALLEL B($];
INT PARALLEL AA[$];
body
END;

Subroutines conclude with the END statement but may have an optional RETURN
statement. The END statement automatically generates a RETURN statement.

6.3 The INCLUDE File

The INCLUDE file statement is especially useful when using subroutines. All the DEF-
VARs and the declaration of common variables are put into a particular file. Then this file
can be included in the ASC program and subroutines by using the INCLUDE statement.

Format : #INCLUDE filename.h

For example :
SUBROUTINE SUB1;
#INCLUDE MyFile.h

body
END;

MyFile.h contain the DEFVARs and the variable declaration, in our example,
as follows:

27

DEFVAR(AA,B);
INT PARALLEL AA[$];
INT PARALLEL B[$];

6.4 The MAXVAL and the MINVAL Functions

The MAXVAL function returns the maximum value of the specified item among ac-
tive responders, whereas the MINVAL function returns the minimum value. Consider the
following example:

IF (TAIL{$] .NE. 1) THEN /% set mask */
K = MAXVAL(VALUE[$1);

ENDIF;
TAIL VALUE MASK
7 90 1
1 12 0
5 170 {wmm= 1 Value of K is 170
3 99 1

IF (TAIL[$] .NE. 1) THEN /% set mask */
K = MINVAL(VALUE($]);

ENDIF;
TAIL VALUE MASK
7 90 1
1 12 0
5 70 <---- 1 Value of K is 70
3 99 1

6.5 The MAXDEX and the MINDEX Function
The MAXDEX function returns the index of an entry where the maximum value of
the specified item occurs, among the active responders. This index is also used to retrieve

the related fields. If a minimum value is desired instead of a maximum value, then the
MINDEX function is used.

For example:

IF (TAIL[$] .NE. 1) THEN /* set mask x/
HEAD[MINDEX(VAL[$])] = -1; /* get index and use it */
ENDIF;
BEFORE: AFTER:
MASK TAIL HEAD VAL TAIL HEAD VAL
i 8 4 100 8 4 100
i 5 3 80 5 3 80

28

1 7 5 20 <-=-- 7 -1 20 <----
1 6 9 70 6 9 70
0 1 5 10 1 5 10
0 1 4 1 1 4 1

In this example, a minimum value for the VAL parallel variable is found in the third row.
So the contents of the HEAD variable in the third row is changed to -1.

6.6 The COUNT Function

The function COUNT() returns the number of active responders (See Section 6.9 for an
explanation of them(]).

For example:

IF TAIL[$] .EQ. 1 THEN /* mask */

K = COUNT(THEM([$]); /* get the number */

END;
TAIL MASK Value calculated for K is 3

5 0

1 1

3 0

1 1

1 1

6.7 The Nthval and the Nthdex Function

The Nthval function returns the Nth value (the smallest is the first) of an item and
Nthdex returns the index variable of that entry.

Example : NUM = NTHVAL(CA[$], 3); /* third smallest */
ENTRY = B[NTHDEX(A[$],3)]; /* associated entry */

6.8 Inter-Process Communication

The current version of ASC supports a one dimensional CPU , and two dimensional
memory configuration. So a two dimensional array declaration

INT PARALLEL ARR[$, 512];

would be mapped onto memory in rows and columns. The inter-column communication is
achieved by specifying a variable or constant expression in the second column index.

Example: Adding adjacent columns, element by element in parallel

ARR[$,I] + ARR[$,I+1]

29

Inter-row communication is achieved by specifying a variable or constant expression in the
first dimension index (”+” is a shift down, ”-” is a shift up).

Example: Adding column I to column J with every element
shifted one row

ARR[$+1,I] + ARR[$,J]

For more about Inter-process communication see Chapter 3 of Associative Computing [7].

6.9 ASC Pronouns and Articles

To be closer to natural language ASC supports the use of associative pronouns and
articles. The associative pronouns are THEM, THEIR and ITS and the associative articles
are A and TIE,

THEM refers to the most recent set of responders to a logical parallel expression from a
search; THEIR is a possesive form of the $ notation; And ITS is an automatically declared
parallel index variable. ITS is updated to the most recent index assignment in a FOR,
WHILE, NEXT or GET statement. The generic index variable EACII can be used in
non-nested statements.

Example:
IF AA[$] .GT. 100 THEN
K = COUNT(THEM[$]);
ENDIF;

IF NODE[$] .GT. 100 THEN
IF THEIR LEFTCHILD[$] .LT. 50 THEN

FOR XX in NODE[$] .GT. 100
IF ITS LEFTCHILD .LT. 50 THEN

ENDIF;
ENDFOR XX;

FOR EACH NODE[$] .GT. 100
IF ITS LEFTCHILD .LT. 50 THEN

ENDIF;
ENDFOR EACH;

TIIE refers to the last value of a parallel variable which was reduced to a scalar. Suppose
AA[XX] is reduced most recently then TIIE AA may be used as an alternate form of AA[xx].
The indefinite article A refers to the first entry of an associaton and its used is similar
to a get. (NOTE, this document was initially prepaired before the indefinite article feature

30

was included. As a result it used A[] as a variable name. However, A is now a reserved word.
An attempt has been made to change all A[] to AA[], but some may have been missed. In
all examples, A[], if present, should be read as AA[].)

Example: GET XX in NODE[$]
K = NODE[XX];
ENDGET XX;

is the same as : K = A NODE; or
K = NODE[A];
6.10 Dynamic Storage Allocation
ASC provides dynamic storage allocation by the ALLOCATE and the RELEASE state-
ments. When a new association entry is needed, memory is allocated by the ALLOCATE
statement. And the release statement returns the cell to idle status. In general, several
association entries may be released simultaneously.

Format : ALLOCATE index-variable IN association name;
statement-block
ENDALLOCATE index-variable;

RELEASE conditional expressidn FROM association-name;

Example: ‘
ALLOCATE XX IN T[$]
AA[XX] = 100;
ENDALLOCATE XX;

RELEASE AA[$] .EQ. 100 FROM T[$];

Note that the scope of the index variable is limited to the statement-block. READs auto-
matically allocate memory. One cell for every row input.

6.11 The ASC Monitor

ASC has a performance monitor that calculates the number of scalar and parallel
operations. The performance monitor can be turned on and off anywhere in the program
by the following statements:

PERFORM

1]

1 means monitor is on.

PERFORM

0 means monitor is off.

The values of the scalar and parallel variables can be printed anywhere using the MSG
statement as follows:

31

MSG ” Perform Scalar, Parallel 7 SC_PERFORM PA_PERFORM;

The statement enclosed by quotation marks is a message display; the SC_.PERFORM is
the counter for scalar operations and PA_.PERFORM is the counter for parallel operations;
the value of the counters will be printed on the line following the message. Note that
the monitor is automatically turned off during the execution of I/O operations. If the
performance monitor is on when the program ends, the value of PA-PERFORM and SC-
PERFORM are automatically printed.

For example:
MAIN Trymon
INT SCALAR K;
INT PARALLEL AA[$], B[$]1;
INT PARALLEL USED($];
INDEX PARALLEL XX[$];

LOGICAL PARALLEL LG[$];
ASSOCIATE AA[$], B[$] WITH LG[$];

READ AA[$], B[$] IN LG[$]1;

K =0;
PERFORM = 1; /* monitor on x/

WHILE XX IN AA[$] .GT. 0 DO

IF AA[$] .EQ. B[$] THEN
AA[$] = B[$] - 5;
ENDIF;

K=K+ 1;
ENDWHILE XX;

PERFORM = 0; /* monitor off */
MSG " MONITORING SCALAR, PARALLEL" SC_PERFORM PA_PERFORM;

PRINT AA[$], B[$] IN LG[$];
END;

6.12 ASC Recursion : The STACKWHILE-RECURSE Construct

ASC does not support general recursion in keeping with the concept of natural language.
However, the STACKWHILE-RECURSE construct is useful when layers of nesting of logical
parallel expression are needed. A recursive while construct allows ” nesting ” to a level as
deep as the data requires and as the internal stack will allow. Moreover, the compactness
of the recursive form greatly reduces the amount of repetitious programming effort. For
example, in order to implement a depth first tree search the STACKWHILE-RECURSE
construct would be useful. For more explanation about how to use the STACKWHILE-
RECURSE construct, see chapter 5 of Associative Computing [7].

32

Format: STACKWHILE parallel-index IN log-par-expr
body1
RECURSE stack-list THEN bodya ENDRECURSE;
body2
ENDRSTACKWHILE parallel-index;

6.13 Complex Searching : The ANDIF and ANDFOR Statements

Complex searching addresses searching techniques needed to accomodate rule based
pattern matching. A matching rule can be expressed in an associative parallel form using
ASC ANDIF and ANDFOR statements. The nested ANDIF and ANDIFOR constructs can
be envisioned as tree searches to a fixed depth, with different search and action specification
at every level.

Format : ANDIF logical parallel expression THEN
body
ENDANDIF;
ANDFOR logical parallel expression
body
ENDANDFOR;

In the body no control statements are allowed. Note that there is also no else substatements.
For more explanation about how to use the ANDIF and ANDFOR constructs, see chapter
6 of Associative Computing [7].

6.14 ASC Debugger
A debugger for ASC on the UNIX is being developed. It should be available in 1992.

BIBLIOGRAPHY

[1] Eisenberg, Ann, (1982) Effective Technical Communication, Mc.Graw-Hill Inc.

(2] Hioe, K.H., ASPROL (Associative Programming Language), Master’s Thesis, Kent
State University, August 1986

[3] Lee, J.L., The Design and Implementation of Parallel SIMD Algorithms
for the Travelling Salesperson Problem , Master’s Thesis, Kent State University, De-
cember 1989

[4] Michalakes, John, ASP-VMS Handbook, Kent State University
(5] Potter, J.L. (1985) The Massively Parallel Processor, MIT Press

(6] Potter, J.L. (1987) ” An Associative Model of Computation ”, Proceedings of the

Second International Conference on Supercomputing, Volume III May 4-7, 1987, pp
1-8

[7] Potter, J.L. (1992) ” Associative Computing ”, Plenum Publishing Inc., New York,

(8] Price, Jonathan (1984) How to Write a Computer Manual The Benjamin/Cummins
Publishing Company Inc.

[9] STARAN-E Reference Manual, Ger - 16422, Goodyear Aerospace Corp., November
1977

33

APPENDIX A

/* written by John Michalakes for the ASPRO Emulator in 1987 x*/
/* modified by Julia Lee for the ASC Emulator in 1990 */

/* modified by Chandra Asthagiri to use ‘next’ correctly x*/
MAIN SORT

DEFLOG (ONE, 1);

DEFLOG (ZERO, 0);

INT PARALLEL BEFORE[$]; /* numbers before sorting */

INT PARALLEL AFTER[$]; /* numbers after sorting */
LOGICAL PARALLEL DONE($], INDATA[$], STORE([$];

INDEX PARALLEL XX[$], YY[$];

INT SCALAR ITEM; /* temporary variable */

ASSOCIATE BEFORE[$], AFTER[$] WITH INDATA[$];

DONE[$] = ZERO; /* initialize done to zero %/
READ BEFORE[$] IN INDATA[$]; /* input numbers */
STORE[$] = INDATA[$];

PERFORM = 1; /* turn on monitor %/
WHILE YY IN (.NOT. DONE[$] .and. INDATA[$])
IF (.NOT. DONE[$]) THEN
ITEM = MAXVAL(BEFORE[$]); /* find largest */
DONE[MAXDEX(BEFORE[$])] = ONE; /* mark done */
ENDIF;

NEXT XX IN STORE[$]
AFTER[XX] = ITEM; /* put largest in next word */
ENDNEXT XX;
ENDWHILE YY;

PERFORM = 0; /* turn off monitor */

PRINT BEFORE[$], AFTER[$] IN INDATA[$]; /* display sorted numbers */
MSG ' SCALAR AND PARALLEL OPERATIONS " SC_PERFORM PA_PERFORM;

END;

34

APPENDIX B

/* The Parallel Minimum Spanning Tree */
main mst

deflog (TRUE, 1);
deflog (FALSE, 0);

char parallel tail[$], head[$];

int parallel weight[$], state[$];

char scalar node;

index parallel xx[$];

logical parallel nxtnod[$],graph($],result($];

associate head[$],tail[$],weight[$],state($] with graph[$];
read tail($] head[$] weight[$] in graph($];

setscope graph([$]
node = tail[mindex(weight([$])];
endsetscope;

if(node .eq. tail[$]) then state[$] = 2; else state[$] =3; endif;
while xx in (state[$] .eq. 2)
asmcode

printf('node = %c\n",NODE);
endasm;
if(state[$] .eq. 2)then nxtnod[$] = mindex(weight[$]); endif;
node = head[nxtnod[$]];

state[nxtnod[$]]1=1;

if(head[$] .eq. node .and. state[$] .ne. 1) then
state[$] = 0;

endif;

if(state[$] .eq. 3 .and. node .eq. tail[$]) then
state[$] = 2;
endif;
nxtnod[$] = FALSE; /* must clear when done for next iteration */
endwhile xx;

if (state[$] .eq. 1) then result[$]l= TRUE ; endif;
print tail[$] head[$] weight[$] in result[$];

end;

35

APPENDIX C

/* PARALLEL NEAREST NEIGHBOR TO SOLVE THE TSP PROBLEM */
/* WRITTEN BY JULIA LEE 1989 */

e - o G . 0 - - O D - D S O Y A D W D WD O S W G D -

/* ALGORITHM PARALLEL NEAREST NEIGHBOR :
FOR ALL ENTRY IN THE ATTRIBUTE TABLE
START-NODE <- TAIL (MINIMUM EDGE)
CURRENT-NODE <- HEAD (MINIMUM EDGE)
ADD THE MINIMUM EDGE TO THE PATH
REPEAT
FOR ALL TAIL[$] EQUAL CURRENT-NODE
CURRENT-NODE <- HEAD (MINIMUM EDGE)
ADD MINIMUM EDGE TO THE PATH
UNTIL ALL NODES ARE IN THE PATH
CONNECT CURRENT-NODE TO START-NODE

x/
main nn
int parallel taill[$], /* ATTRIBUTE TABLE WITH FIELDS
head[$], /* TAIL, HEAD AND WEIGHT
weight[$],
tour[$], /* PARALLEL ARRAY TO MARK TOUR
out[$]; /* TO MARK UNNECESSARY EDGES
int scalar start_node, /* STARTING NODE
current_node, /* CURRENT_NODE
num_node, /* NUMBER OF NODES
prev, /* PREVIOUS NODE
i;
logical parallel graph[$]; /* LOGICAL FOR INPUT/OUTPUT
associate taill[$], /% ASSOCIATIONS FOR INPUT/OQUTPUT
head[$],
weight[$],
tour[$],

out[$] with graph($];

/ ¥Rk ok kR ook kokkkkkkk INPUT ATTRIBUTE TABLE sokokskokoksokokok ok

read tail[$] head[$] weight[$] in graph($];

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/

*/

36

37

/ Rk kR ook kokokok ok kokkok FIND SMALLEST EDGE skoskokdodokokokokkok ko ok /

if (graph[$]) then
start_node = tail[mindex(weight[$])]; /* SAVE START */
current_node = head[mindex(weight[$])];

tour [mindex(weight[$]1)] = 1; /* ADD EDGE TO PATH =/

out[mindex(weight[$])] = 1;

num_node = maxval(taill[$]); /* GET NUMBER OF NODES */
endif;

if (head[$] .eq. start_node) .and.
(tail[$] .eq. current_node) then

out[$] = 1; /* DELETE REVERSE */
endif;
if (tail[$] .eq. start_node) .or. (head[$] .eq. start_node) then
out[$] = 1; /* DELETE UNNEC EDGES */
endif;

if (head[$] .eq. current_node) then

out[$] = 1; /* DELETE UNNEC EDGES */
endif;
/#xxwknrxx REPEAT UNTIL ALL NODES ARE IN THE PATH sokskkkskkks/
first

i=1;

loop
prev = current_node;

[Hdokkkkdokodokkokdokkokok BRANCH TO NEAREST NEIGHBOR sk kookokoksokskokkokok /

if (tail[$] .eq. current_node) .and. (out[$] .ne. 1) then
current_node = head[mindex(weight[$]1)];
tour [mindex(weight[$]1)] = 1; /% ADD EDGE TO THE PATH */
out[mindex(weight[$])] = 1;

endif;

if (head[$] .eq. prev) .and.

(tail[$] .eq. current_node) then
out{$] = 1; /* DELETE REVERSE */

endif;
/* ELIMINATE UNNECASSARY EDGES */
if (tail($] .eq. prev) then
out[$] = 1;

38

endif;

if (head[$] .eq. current_node) then
out[$] = 1;

endif;

i=1i4+1;

until i .eq. num_node /* END REPEAT UNTIL =/
endloop;

/aooksokaokkkkkkx LAST NODE ADDED TO START NODE skokskskskokoksksdkokskokk sk k /

if (tail[$] .eq. current_node) .and. (head[$] .eq. start_node) then
tour[$] = 1; /* get the last leg */
endif;

print tail[$] head[$] weight[$] tour($] in graph[$];
end;

ASC Program Format:

main program_name
define constants

define variables
variable declarations
association declarations

body
end;

Reserved Words:

a/an
allocate
any
andbody
andif
andfor
andthen
asmcode
associate
call
count
define
deflog
defvar
during
else
elsenany
end
endandbody
andandfor
endandif
endany

endallocate
endasm
endfor
endget
endif
endifany
endloop
endnext
endrecursewhile
endsetscope
endstack
for

fstcd

get

if

ifany

in

include
index

int

its

APPENDIX D
ASC Tables

logical
loop
mindex
maxdex
minval
maxval
msg

next

nany
nthdex
nthval
nxtcd
parallel
pa.perform
perform
prevcd
print
procedure
real
recursewhile
release

return
scalar
scin
sc_perform
scot
setscope
stack

stop
subroutine
the

their
them

then
trncd
trnacd
until
while

with
#include

39

Operators:

Relational Operators:

scinp(atom,sc,bi,pred,he

scot(atom,sc,bi)
scot8(atom,sc,bi)
scotl(atom,sc,bi)
scotp(atom,sc,bi)
scst(atom,sc,bi,list)
scst8(atom,sc,bi,list)
scstl(atom,sc,bi,list)

structure
structure
structure
structure
structure
structure
structure
structure

Less than .1t <
Greater than .gt. >
Less than or equal .le. <=
Greater than or equal .ge. >=
Equal .eq. =
Not equal .ne. t=
Logical Operators:
Not .not. !
Or or. ||
And .and. &&
Exclusive Or .xor. °°
Arithmetic Operators:
Negation -
Addition +
Subtraction -
Multiplication *
Division /
Functions:
fstcd(code) - first structure code (left most child)
nxtcd(code) - next structure code (right sibling)
prvcd(code) - previous structure code (left sibling)
trncd(code) - truncate structure code (parent)
trnacd(code) - truncate all structure code (root)
maxdex(field) -~ index to maximum value of a field
mindex(field) - index to minimum value of a field
maxval(field) - maximum value of a field
minval(field) - minimum value of a field
nthval(field,n) - nth value of a field
nthdex(field,n) - nth index of a field
scin(atom,sc,bi) - structure code input (4 bit)
scin8(atom,sc,bi) - structure code input (8 bit)
scinl(atom,sc,bi) - structure code input (list)

ad_flag,tid,pred_flag)

code input (Prolog)
code output (4 bit)
code output (8 bit)
code output (list)
code output (Prolog)
code constant (4 bit)
code constant (8 bit)
code constant (list)

scstp(atom,sc,bi,pred,head_flag,tid,pred_flag,list)

- structure code constant (Prolog)

41

ASC Statements:

int

char

logical

real scalar variable(:width)([,dimension,...]), ..]
card parallel variable(:width)[$(,dimension,...)], ..];
bin

hex

oct

allocate index_variable in association_name;
statement_block
endallocate index_variable;

allocate n index_variable contiguously in association[$];

any conditional_expression
statement_blockl

(elsenany
statement_block2)
endany;
associate iteml,item2,... with association_namse;

call subroutine called_fieldi<calling_fieldl .
calling_fieldn>called_fieldn;

deflog "("identifier, boolean_constant")";

defvar "("identifier, decimal_constant nyn,
variable(+ decimal_constant)

define "("identifier, constant")";

for index_variable in parallel_conditional_expression
statement_block1l

(elsenany
statement_block?2)

endfor index_variable;

get index_variable in parallel_conditional_expression
statement_blockl

(elsenany
statement_block2)

endget index_variable;

if conditional_expression then

statement_blockl (else statement_block?2)
elsenany
endif;
(first
statement_block)
loop

until scalar_expression
until nany parallel_expression
endloop;

msg (handle) delimitertextdelimiter variable_list;
g

next index_variable in parallel_variable
statement_blockl

(elsenany
statement_block?2)

endnext index_variable;

print (handle) itema[$] ... itemn[$] in
logical_parallel_expression;

read (handle) itema[$] ... itemn[$] in association[$];

read (handle) item[$] ... contiguously in association($];

readnl (handle) itema[$] ... itemn[$] in association($];

release conditional_expression from association_name;
reread (handle) itema[$] ... itemn[$] in association($];

setscope logical_parallel_expression
statement_block
endsetscope;

while index_variable in parallel_conditional_expression
statement_block
endwhile index_variable;

42

