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Weights for the following examples:
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• Return top k-ranked alignments
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/ non-intersecting

Fast Local Alignments
• Find all k alignments in the same time 

it takes to find a single alignment
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• Heuristic algorithms such as BLAST 
are faster, but not always the best 
alignments 

Local Sequence Alignment
Optimization Problem

• Maximize sub-sequence similarity 
(local alignment)

Smith Waterman algorithm
• Exact algorithm1, finds highest 
scoring local alignment

• Slow, uses dynamic programming 
method (DP) to get exact answer

• Heuristic algorithms such as BLAST 
are faster, but not always the best 
alignments 

Fig. 1. Exponential growth of sequence 
data means more to align with; speed 
as well as quality of information is vital.

Growth of the International Nucleotide 
Sequence Database Collaboration (INSDC)

Base pairs 
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base pairs 
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DDJB
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http://www.ncbi.nlm.nih.gov/Genbank/IMG/chart.gif

Parallel Model
The ASsociative (ASC) and Multiple 
ASsociative Computing (MASC) 
models2 are SIMDs with an associative 
property and some additional hardware 
features. 

ASC / MASC features
•Fast processing
•Constant time search/respond ops
•Constant time global reduction ops: 
max/min of processing elements (PEs) 
•A base of existing algorithms3

•Existing programming language and 
emulator
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Fig. 3. A high-level view of the ASC 
model. The MASC model includes 
more than one instruction stream.

Fig. 2. Proteins with three local non-
intersecting alignments.
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Fig. 4. Traditional Smith-Waterman DP 
table.  The dependency free anti-
diagonal that the ASC algorithm 
executes in parallel is highlighted.
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obtained at http://www.cs.kent.edu/~parallel. 
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Fig. 6. WorldScape Dual 64 PCI SIMD 
Board with 50 GFLOPS performance.

Fig. 5. Mapping the Smith-Waterman 
algorithm on ASC. 

Active PEs hold one character of S1 
and S2.  D is a parallel array of size |S1| 
+ |S2|.  D’s subscript represents a 
particular anti-diagonal.

S2 is stored in a systolic fashion to allow 
parallel computation of the values along 
the anti-diagonal. 

Active PEs compare their S1 value with 
each particular Dj value to compute the 
function d listed above (not shown).
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Extend Smith-
Waterman to MASC

Top k non-intersecting 
alignments

Extend to similar 
architectures 
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