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1. Introduction

ABSTRACT

This paper has two complementary focuses. The first is the system design and algorithmic development
for air traffic control (ATC) using an associative SIMD processor (AP). The second is the comparison of
this implementation with a multiprocessor implementation and the implications of these comparisons.
This paper demonstrates how one application, ATC, can more easily, more simply, and more efficiently
be implemented on an AP than is generally possible on other types of traditional hardware. The AP
implementation of ATC will take advantage of its deterministic hardware to use static scheduling. The
software will be dramatically smaller and cheaper to create and maintain. Likewise, a large AP system
will be considerably simpler and cheaper than the MIMD hardware currently used. While APs were used
for ATC-type applications earlier, these are no longer available. We use a ClearSpeed CSX600 accelerator
to emulate the AP solutions of ATC on an ATC prototype consisting of eight data-intensive ATC real-time
tasks. Its performance is compared with an 8-core multiprocessor (MP) using OpenMP. Our extensive
experiments show that the AP implementation meets all deadlines while the MP will regularly miss a
large number of deadlines. The AP code will be similar in size to sequential code for the same tasks and
will avoid all of the additional support software needed with an MP to handle dynamic scheduling, load
balancing, shared resource management, race conditions, false sharing, etc. At this point, essentially only
MIMD systems are built. Many of the advantages of using an AP to solve an ATC problem would carry over
to other applications. AP solutions for a wide variety of applications will be cited in this paper. Applications
that involve a high degree of data parallelism such as database management, text processing, image
processing, graph processing, bioinformatics, weather modeling, managing UAS (Unmanned Aircraft
Systems or drones) etc., are good candidates for AP solutions. This raises the issue of whether we should
routinely consider using non-multiprocessor hardware like the AP for applications where substantially
simpler software solutions will normally exist. It also raises the question of whether the use of both AP
and MIMD hardware in a single hetergeneous system could provide more versatility and efficiency. Either
the AP or MIMD could serve as the primary system, but could hand off jobs it could not handle efficiently
to the other system.

© 2012 Elsevier Inc. All rights reserved.

finding a predictable and reliable system to achieve free flight
which would allow pilots to choose the best path to minimize

The Air Traffic Control (ATC) system is a real-time system that
continuously monitors, examines, and manages space conditions
for thousands of flights by processing large volumes of data that
are dynamically changing due to reports by sensors, pilots, and
controllers, and gives the best estimate of position, speed and
heading of every aircraft in the environment at all times. The
ATC software consists of multiple real-time tasks that must be
completed in time to meet their individual deadlines. The Federal
Aviation Administration (FAA) has put tremendous efforts on
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fuel consumption and time delay rather than following pre-
selected flight corridors [45,61,83]. In the past, solutions to this
problem have been implemented on multicomputer systems with
records for various aircraft stored in the memory accessible to the
processors in this system. The dispersed nature of this dynamic
ATC system and the necessity of maintaining data integrity while
providing rapid access to this data by multiple instruction streams
(MIS) increases the difficulty and complexity of handling air traffic
control. It is difficult for these MIMD implementations to satisfy
reasonable predictability standards that are critical for meeting
the strict certification standards needed to ensure safety for
critical software components. Massive efforts have been devoted
to finding an efficient MIMD solution to the ATC problems since
1963.
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The most critical issue of free flight is conflict detection and res-
olution (CD&R). The performance of all CD&R algorithms available
depends on aircraft state estimation according to the comprehen-
sive survey of Kuchar and Yang [47]. The Kalman filter [9,20] is
the central algorithm for the majority of all modern tracking sys-
tems, known as « — B,«a — B — y filters. The major problem
with the single Kalman filter is that it does not predict well when
the aircraft makes an unanticipated change of flight mode such as
making a maneuver, accelerating, etc. [40-42,52]. Many adaptive
state estimation algorithms have been proposed [54,48,10,77]. The
Interacting Multiple Model (IMM) algorithm [19,51] runs two or
more Kalman filters that are matched to different modes of the sys-
tem in parallel. It uses a weighted sum of the estimates from the
bank of Kalman filters to compute the state estimate. IMM and its
variants have been applied to single and multiple aircraft track-
ing problems in [54]. However, it becomes inaccurate for tracking
multiple aircraft as the number of aircraft increases. Current MIMD
implementations of this algorithm are computationally very inten-
sive. Hwang et al. [41] proposed that the flight mode likelihood
function can be used to improve the estimation results of the IMM
algorithm. The likelihood function uses the mean of the resid-
ual produced by each Kalman filter. A heuristic algorithm in [52]
that evaluates correlation error values has been shown to provide
better results than the Kalman filter [52].

A comprehensive survey of the CD&R algorithms is presented
in [47]. Menon et al. [60] formulate conflict resolution as
a multi-participant optimal control problem. Using parameter
optimization and state constrained trajectory optimization, they
compute a conflict resolution trajectory for two different cost
functions: deviation from the original trajectory and a linear
combination of total flight time and fuel consumption. Their
method results in 3D optimal multiple-aircraft conflict resolution.
In general, the optimization process is computationally intensive
and is difficult to implement in real-time. In [46], Krozel
et al. propose one centralized strategy that is controller-oriented
and two decentralized strategies that are user-oriented. In the
centralized approach, a central agent analyzes the trajectories of
the aircraft and determines resolutions. In the two decentralized
strategies, each aircraft resolves its own conflicts as they are
detected. In [83], Yang and Kuchar propose a conflict alerting
logic based on sensor and trajectory uncertainties, with conflict
probability based on Monte Carlo simulation. Chiang et al. [25]
propose CD&R algorithms from the perspective of computational
geometry. Paielli and Erzberger [63] and Prandini et al. [69]
propose analytic algorithms for computing probability of conflict.
Many of the algorithms consider only two aircraft. For example,
Krozel et al. [46] show that neither their centralized nor
decentralized CD&R algorithms can guarantee safety for multiple
aircraft when the number of aircraft is growing. Furthermore,
many algorithms propose optimization schemes that are not
guaranteed to be completed within real-time deadlines. Due to the
increasing number of FAA problems, FAA is inviting proposals for
new and efficient CD&R [32]. A more extensive literature review
and detailed background information can be found in Chapters 2-3
of the author’s dissertation [84].

Instead of using the traditional MIMD approach, we implement
a prototype of the ATC system on an enhanced SIMD hardware sys-
tem called an associative processor (AP) or associative SIMD [ 11,59,
67,72], where interactions are much simpler and more efficiently
controlled, due in large part to avoiding the need to coordinate the
interactions of multiple instruction streams. We have chosen eight
key ATC tasks to use in our ATC prototype, namely report correla-
tion and tracking, cockpit display, controller display update, spo-
radic requests, automatic voice advisory, terrain avoidance, con-
flict detection and resolution (CD&R) and final approach (runway

optimization). The selection of the specific tasks was based on in-
formation in the following references: FAA Grants for Aviation Re-
search Program Solicitation [33], FAA’s NextGen Implementation
Plan [34], and the FAA 1963 ATC Specifications [35]. Ref. [35] indi-
cates that the tasks we selected were similar to the ones selected
in 1963 for implementation by industries interested in compet-
ing for the job of implementing ATC for FAA. Ref. [33] describes
the FAA’s efforts to improve the aircraft capacity of the airspace
while maintaining high safety standards and aircraft safety tech-
nology for conflict detection and resolution. These indicate that the
tasks of the type that we have selected are key to ATC implemen-
tation. Further, the NextGen plan [34] discusses the new standards
for ATC including developing capabilities in traffic flow manage-
ment, dynamic airspace configuration, separation assurance, su-
per density operations, and airport surface operations. The pur-
pose is to achieve a safe, efficient and high-capacity airspace sys-
tem. The following subtopics in [34] address current research that
needs improvement: comprehensive analysis of uncertainties in
the National Airspace System; air traffic management functional
allocation using advanced computing and networking; guarantee
safety of air-to-air and air-to-ground. The type of activities dis-
cussed there will require the use of tasks similar to the ones that we
have selected for implementation, which show that our eight ATC
tasks have already captured most of the workload of ATC, and noth-
ing major is missing that may impact the ATC performance. In our
careful search of literature for publications on ATC, the ones that
kept re-occurring in the ATC literature we found were all included
in the tasks we chose for our prototype to use for benchmarking.

Several of our previous papers [59,57,58,85] have used the AP to
manage ATC computation for an ATC sector. Similar SIMD parallel
approaches have been used for collision avoidance algorithms
between multiple agents for real-time simulations in [38]. We used
ClearSpeed CSX600 to emulate an AP in our previous work [86].
However, the assumed maximum number of aircraft being tracked
is 4000 IFR (instrument flight rules) aircraft and 10 000 VFR (visual
flight rules) aircraft, for a total of 14000 aircraft [86]. Because the
emulation tool CSX600 can only process a small number of aircraft,
an ideal AP system would have to be a lot larger than the CSX600.

Our paper [86] has implemented two ATC tasks, i.e., report
correlation tracking and conflict detection and resolution (CD&R)
on CSX600, and compared the performance of only one task, report
correlation and tracking, on both CSX600 and MIMD. However,
in the comparison tests, only one task was executed repeatedly,
without any competition from other tasks. Also, no adjustment
was included for the greater combined computational speed of
MIMD. In this paper, we not only implement the 8 tasks in
CSX600, but also schedule three tasks (report correlation and
tracking, terrain avoidance and CD&R) on both CSX600 and an
8-core MIMD with the fastest host-only version implemented
using OpenMP [62]. Our results show that some deadlines
are regularly missed by these tasks when implemented on a
MIMD, while the AP implementation meets all deadlines for
the tasks that can be statically scheduled. The results indicate
that the AP emulation has much better scalability, efficiency
and predictability than the MIMD implementation. Moreover, the
proposed AP solution will support accurate predictions of worst
case execution times and will guarantee that all deadlines are met.
The author’s dissertation [84] has a more complete explanation of
the consequences and implications for parallel computing in more
detail.

There are three basic types of parallel systems that have
been called SIMD. The first is the traditional SIMD and includes
the Goodyear Aerospace MPP, Thinking Machines CM-2, and the
MasPar. These parallel computers perform the same operation on
multiple data values simultaneously. The second type is called
vector machines or vector processing machines. They involve the
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Fig. 1. CSX600 accelerator board.

use of pipelined processors and include the large CRAY vector
machines. The third and most recent SIMD type are systems
that are sometime collectively called short vector machines.
They evolved from desktop computers as they became more
powerful and capable of supporting real-time gaming and video
programming. Our focus here is strictly on the traditional SIMD
type.

This paper is organized as follows. Section 2 gives an overview
of the CSX600 architecture and programming concepts. We
discuss emulating the AP on the CSX600 in Section 3. Section 4
discusses some issues concerning the property of AP. In Section 5,
the advantages of AP over MIMD are discussed. The overall
system design and static scheduling is illustrated in Section 6.
Section 7 describes the algorithms for 8 key ATC real-time
tasks implemented on CSX600, which can be mapped to AP.
Experimental results are presented in Section 8 and observations
and consequences of the preceding results are in Section 9. Finally,
Section 10 concludes this paper and discusses some work planned
for the future.

2. Overview of ClearSpeed CSX600

The ClearSpeed accelerator board shown in Fig. 1 is a PCle
card equipped with two CSX600 coprocessors. The CSX600 board
is a multi-core processor with two CSX600 coprocessors, each
with 96 processing elements (PEs) connected in the form of
a one-dimensional array. At present, we are only using one
of the two coprocessors in order to obtain a more SIMD-like
environment. This multi-core section is called a multi-threaded
array processor (MTAP) core, and the architecture is shown in
Fig. 2. The programmer only has to provide a single instruction
stream, and the instructions and data are dispatched to the
execution units that have two parts: one is a mono unit that
functions as a control unit and processes sequential instructions,
and the other is a poly unit that processes parallel instructions and
values and has 96 PEs. At each step, all active PEs execute the same
command synchronously on their individual data. Each PE has its
own local memory of 6 kB, a dual 64-bit FPU, its own ALU, integer
MAG, registers and I/O. The PEs operate at a clock speed of 210 MHz.
The aggregate bandwidth of all PEs is specified to be 96 GB/s, which
is for on-chip memory. Since the parallel bandwidth between the
PEs and their memory is (no. of PEs) x (memory-PE bandwidth of
each PE), this bandwidth increases as the number of PEs increase.
This provides an extremely wide bandwidth for SIMDs with a
large number of PEs. This allows SIMDs to avoid the von Neumann
bottleneck, since a large number of PEs can access their memory in
the same step without any slowdown due to message passing or
shared memory access time. Further information on the hardware
architecture can be found in the documentation [26].
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Fig. 2. MTAP architecture of CSX600.

The ClearSpeed accelerator provides the C" language as the
programming interface for the CSX600 processors. It is very similar
to the standard C programming language. The main difference
is that it introduces two types of variables, namely mono and
poly variables. The mono variables are equivalent to common
C variables and are used by the control unit. A poly value is a
parallel variable, with the ith value stored in the ith processor;
moreover, all these values are stored in the same memory location
in their respective processor. Further information on the associated
software can be found in the documentation [27,28]. Here we
will use three of the library functions for data transfer on the
ClearSpeed. The command memcpym2p copies from mono to poly
memory and the command memcpyp2m copies from poly to mono
memory. The third one, swazzle, moves data between adjacent PEs
using the swazzle network, which is a ring network connecting all
the processors together. More details of usages of library functions
can be found in the documentation [28,37].

3. Emulating the AP on the ClearSpeed CSX600

An associative processor (AP) [59,72] is a SIMD system with
several additional useful hardware enhancements that simplify
supporting the real-time ATC system. The first AP system was
designed by Kenneth Batcher and implemented in the Goodyear
Aerospace STARAN computer, which was specifically designed to
support ATC [12,55,72]. A second generation STARAN called the
ASPRO [56], also an AP designed at Goodyear Aerospace, was
used extensively by the Navy for Airborne Command and Control
Systems for over ten years [67].

The hardware enhancement that is required for an AP is
a broadcast/reduction network such as described in [44]. This
network supports the execution of the below operations, often
called the associative operations, in constant time. A list of the
associative operations follow [44,66,67,79]:

e Global MAX and MIN: Finds all instances where a maximal
(or minimal) value is stored by a processor at a fixed memory
location. The processors whose value is maximal (respectively
minimal) are active at the end of this operation and are
called responders. The remaining processors participating in this
activity are called non-responders.

e AND and OR: finds the global reduction of Boolean values stored
in the same memory location of each active processor.
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Table 1
Timings of associative functions.

Associative functions Timings in C" (us) Timings in assembly (jLs)

Max 5.257 3.654
Min 5.257 3.654
AND 7.024 NA
OR 7.364 NA
Associative search 29.2 NA
Any 0.281 NA
Nany 15.147 8.245
Get 13.116 7.876
Next 13.032 7.816
Broadcast 100 NA

e Associative search: finds all instances where a search pattern
is matched by the content stored by a processor at a fixed
memory location. The active processors whose content matches
the search pattern are the responders and the processors which
did not match the search pattern are the non-responders.

e Any-Responder: the ANY operation determines if there is at
least one responder after an associative search.

e Pick-One: selects one responder from the set of the responding
processors. Itisimplemented on ClearSpeed using their GET and
NEXT operations.

e Broadcast data or instructions from the control unit to PEs.

Because the CSX600 coprocessor is SIMD, only the associative
functions need to be emulated. These associative functions have
been implemented on the CSX600 efficiently, in both the C"
language introduced in Section 2 and assembly language supported
by CSX600 [85-87], mostly by Dr. Kevin Schaffer. To evaluate their
running time, we store 30 records in each PE and perform each
associative operation once for each of these 30 records. The timing
results in microseconds (s or 1078 s) are shown in Table 1. The
NA in the table means that either they cannot be implemented
in assembly or they are assembler commands. A command for an
associative search is not required as an associative search can easily
be made using the C" language and other associative commands.
Although they are not constant time, they are very efficient, and
establish that we can efficiently emulate an AP using CSX600. The
reason that these functions are not constant time on ClearSpeed
is that they are not supported by a broadcast-reduction network,
but instead with the swazzle (or ring) network. Clearly, the time
to use this network increases linearly as the number of processors
increases.

4. AP properties

We discuss some issues regarding AP properties in this section.
One is whether the methods used in data transfer of the ClearSpeed
emulator is similar to data transfer between PEs and control unit
memory in AP. The issue really comes down to whether the AP we
plan to use can make the necessary data transfers in sufficient time,
as there are no transfer properties assumed for AP. The AP model
is a general purpose computational model and does not make any
assumptions regarding how the interconnection network is used.
Often, the use of the interconnection network in an algorithm
can be avoided by using the above associative operations, leaving
the running time of this algorithm independent of the network
used. Also, the AP does not make any assumptions regarding how
data is transferred from the AP to outside buffers or between
the control unit memory and the parallel memory. Clearly, these
transfer times depend on the data size, and this increases as the
application size (e.g., the number of aircraft) increases. While it is
very efficient to transfer data between the mono and PE memory
in ClearSpeed, we do not know if this rate of transfer would
scale if a much larger ClearSpeed system is built. We must point
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Fig. 3. Flip network of AP.

out the important fact that most and probably all of the non-
AP SIMDs that have been proposed and built could not handle
the ATC requirement because of I/O limitations. However, the
previously built AP machines STARAN [12,55,72] and ASPRO [56]
overcame the I/O limitation by the MDA (multidimensional access)
memory [12,55,59,66,72] and the flip network (see Fig. 3). The
flip network is a corner turning network that provides access to
a slice of memory in a SIMD PE for I/O purposes [12,14,66]. The
flip network in STARAN and ASPRO was the key to providing high
speed I/O movement. The placement of the flip network between
processors and their memory allowed very fast movement of data
between an outside buffer and the ASPRO/STARAN PE parallel
memory. Corner-turned data and the assignment of one record
per processor allows multiple PEs to work together to transfer
large amounts of data rapidly between PEs and memories. The
flip network and MDA allow efficient movement of a record in
one PE to an outside buffer. More about this can be found in [66].
Moreover, Jerry Potter describes an alternate design in [66] that
allows multiple records to be transferred to an outside buffer.
So the transfer of data speed is not a bottleneck for building an
associative processor to accommodate realistic size ATC problems.
See references [12,11,13-16,59,73,81] to find more information
about how to implement AP hardware.

Another issue involving AP properties is how the constant time
operations can be supported in AP and how can we be sure they
actually run in constant time. The ATC problem is essentially a
dynamic database problem. Much of the data in this database
changes rapidly, with many parts being updated every one-half
second. In order to be able to update and process this data, we
need to have some functions that allow us to access, update,
change, and add or delete records in this dynamic database very
rapidly. In order to support these rapid database operations, we
require that these operations execute in constant time. These are
the additional functions we require a SIMD to possess in order
for it to be called an associative processor. Here “constant time”
is defined to be the time that the sequential RAM model requires
for a PE to access its memory, the time for AND or OR operations,
the time for addition or multiplication of word length numbers,
etc. However, there is an additional issue here that does not
arise for sequential constant time operations, namely that these
functions may involve reductions of vectors with a component
value from each processor. Clearly, if the number of processors is
allowed to increase without bound, such constant time reductions
are impossible. However, if we limit the number of processors
to a practical size (e.g., bound by the number of atoms in the
observable universe), it is shown in [44] that all of the constant
time functions required for an associative processor are possible.
However, these functions cannot use a typical interconnection
network, as use of these will require non-constant time. Instead
these constant time functions can be supported by use of a binary
(or n-ary for n > 2) broadcast-reduction tree with nodes that
have very limited computational capabilities. In fact, this is the
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way these constant time operations are supported in both STARAN
and ASPRO, which use a 4-nary tree for broadcasts and another
4-nary tree for reductions. The broadcasting/reduction network
on the STARAN is constructed using a group of resolver circuits
[12,11,13,16]. It is important to keep in mind that all of the above
basic operations are implemented in hardware. These features
make the AP model a unique parallel computation model that is
powerful and feasible. More information about this can be found
in [59,57,12,44].

The key to AP hardware design is (1) high memory-to-PE
bandwidth, and (2) low level synchronous operation supported
by the (i) elimination of branches in low level loops, and (ii) the
elimination of low level barrier synchronism. In the STARAN and
the ASPRO, these abilities where supported by corner turning
the data and assigning one record per processor, the multi-
dimensional array memory (and flip network) and mask register
hardware. Specifically, the mask register allows additional parallel
searching and processing on subsets of the original search with no
branching for special cases. After the search phase of an search,
process, retrieve (or SPR) cycle is complete, associative SIMDs can
either continue data parallel processing or select a single record to
process sequentially with essentially no overhead. These attributes
allow associative SIMDs to process all the records simultaneously
in a file using data parallelism. More information about this and
other issues addressed in this section can be found in the book
titled Associative Computing by Jerry Potter [66].

5. Advantages of AP over MIMD for ATC

Since SIMDs have only one instruction stream (IS) or con-
trol unit, control-type communication between processors is
completely eliminated. Communication between the IS and pro-
cessors occurs in constant time using its broadcast/reduction
network. Data communication between processors is completely
deterministic and a tight upper bound can be calculated for the
worst case. As a result, a numerical worst case time required for
communications can be accurately calculated. The AP has some
important advantages over MIMD including low overhead syn-
chronization, deterministic hardware, much faster communica-
tion, predictable worst-case running time, much wider “mem-
ory to processor” bandwidth, constant-time broadcasts and reduc-
tions, rapid I/0, and elimination of the following: race conditions,
data dependencies, shared resource management, sorting, index-
ing, cache and memory coherency problems, etc.

When solving a problem, MIMD systems often use software
to solve additional problems repeatedly which is not needed
in a sequential solution of the original problem. Examples of
these types of this “additional software” are dynamic scheduling,
load balancing, shared resource management, memory and cache
coherency management, preemption, synchronization, priority
inversion, sorting, indexing, multi-tasking and multi-threading
management software, etc. [58]. Several of these types of diffi-
culties were identified in scheduling periodic real-time tasks on
MIMD in [49]. A number of these are problems that have been
shown to be multiprocessor NP-hard problems (e.g., [36]). In [36],
the definition of multiprocessor is a parallel computer that uses
message passing or shared memory, so basically it is a MIMD. To
avoid confusion in this paper, we will treat multiprocessor and
MIMD as interchangeable terms when discussing NP-hard prob-
lems, as in [36]. SIMDs do not ordinarily need to use this additional
software. Most sequential solutions to a problem can usually be
used to create a similar AP solution with roughly the same number
of lines of code. AP solutions are often shorter and simpler than
the sequential solutions, as the constant-time associative search
AP property can be used to eliminate the use of sorting and linked
lists to organize and locate items. Also, the additional AP proper-
ties often allow simpler and more efficient solutions for problems
than with a SIMD that is not an AP.

6. ATC system design

6.1. ATC data flow

The overall system design for an ATC system is shown in
Fig. 4. The executive box controls the single instruction stream
of AP using static scheduling. All control paths are from ATC
in the executive box to all of the tasks, e.g., report correlation
and tracking, etc. Controller input simulates sporadic requests,
e.g., weather change, controller input, etc. Radar reports data
are transferred from the host to the CSX600 PEs. Tracks are
simulated from flight plans in the PEs. The radar reports and tracks
are used for report correlation and tracking task. The outputs
of tracking task are used for cockpit display, controller display
update, terrain avoidance, conflict detection and resolution (CD&R)
and final optimization. The results of terrain avoidance, CD&R
and final approach are used for cockpit display and controller
display update. The results of terrain avoidance and CD&R are used
for automatic voice advisory that transfers results to automatic
voice advisory driver in the host and produces voice output. The
resolution advisories of CD&R task are sent to controllers.

6.2. Static scheduling

The eight ATC real-time tasks can be statically scheduled on the
CSX600 using the static schedule for the AP discussed in [59,86,87].
The eight tasks and the periods used for each are (1) report cor-
relation and tracking is executed every 0.5 s; (2) cockpit display,
(3) controller display update and (4) sporadic requests are exe-
cuted every second; (5) automatic voice advisory is executed every
4s; (6) terrain avoidance, (7) conflict detection and resolution, and
(8) final approach are executed every 8 s. An 8 s period is split into
16 one-half second periods. Task 1 is executed during each half-
second period. Tasks 2 and 3 are executed during the 1st, 3rd, 5th,
7th, 9th, 11th, 13th, and 15th half-second periods. Task 4 is exe-
cuted during the 2nd, 4th, 6th, 8th, 10th, 12th, 14th and 16th half-
second periods. Task 5 is executed in the 4th and 12th half-second
periods. Task 6 is executed in the 8th, task 7 is executed in the 14th
and task 8 is executed in the 16th half-second period.

6.3. Scaling up from CSX600 to a realistic size AP

We use the present ClearSpeed System to show that our ATC
solution is feasible. However, our purpose is to propose building
an AP whose size is appropriate for ATC, not a larger CSX600 board
or multiple CSX600 boards because some of the “disadvantages”
in MIMD systems may show up in a system with multiple CSX600
boards. As described in Section 1, our ideal AP has at least 14,000
PEs with only one aircraft per PE. Moreover, the memory size
and speed of the PEs and of the control unit can be chosen to
optimize the ability of this large AP to handle the realistic size ATC
system. Although we are unable to prove it is possible to build this
ideal AP using our CSX600 simulation, STARAN and ASPRO have
already met the goal of supporting 14,000 aircraft simultaneously
[12,59,57]. A similar processor, the MPP [12,11,13-16], with 16,384
PEs, was delivered in 1982. While the MPP was not an AP as it did
not have the hardware reduction network, this feature could easily
have been included. Even larger SIMD machines have been built.
In particular, Thinking Machines CM-2 was delivered in 1987 and
had 64K processors. Paracel developed a parallel processor with
one million processors that was generally believed to be a SIMD.

Fig. 4 shows the overall system design and data flow based
on AP architecture. Our solutions to ATC tasks for the CSX600
in Section 7 are easy to implement on the AP with 14,000 PEs.
Refs.[12,59,57] have timing results of previous AP with 16,000 PEs.
For example, Table 3 in [59] shows that the STARAN AP executed
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Fig. 4. Overall ATC system design.

a similar set of ATC procedures in 4.52 s, leaving 3.48 unused
seconds remaining. That table is simplified to be Table 2 in this
paper, which provides worst case execution times for statically
scheduled ATC tasks with 14,000 total aircraft, 12,000 sensor
reports/s, 6000 controllers and 8 s major period. The data transfer
of large records in real-time is not their bottleneck because an
AP can bring data in and out efficiently (please see details in
Section 4). Additional reasons that the AP model can solve the ATC
problem efficiently are its constant time associative operations,
SIMD execution style, and extremely wide memory bandwidth.
These have eliminated a number of difficulties that have to be
handled in MIMD architectures. So an AP with 14,000 PEs using
modern technology can be built and can easily meet all of the
deadlines, as this has already been done in the past with older
technology.

7. AP solution for ATC tasks implemented on CSX600

This section describes the algorithms for each of the eight
real-time tasks, report correlation and tracking, cockpit display,
controller display update, sporadic requests, automatic voice
advisory, terrain avoidance, conflict detection and resolution
(CD&R) and final approach (runway optimization). The solutions
are implemented on the CSX600 architecture, but it is easy to scale
up from 96 PEs to an AP with 14,000 PEs using similar algorithms.

Table 2

Statically scheduled solution time for worst case environment of ATC.
Tasks Period (s) Proc time (s)
Report correlation and tracking 0.5 1.44
Cockpit display 1.0 0.72
Controller display update 1.0 0.72
Aperiodic requests (200/s) 1.0 0.4
Automatic voice advisory 4.0 0.36
Terrain avoidance 8.0 0.32
Conflict detection and resolution 8.0 0.36
Final approach (100 runways) 8.0 0.2
Summation of tasks in a period 4.52

The best algorithm will always depend on the exact architecture of
the AP. For instance, the use of the swazzle network in CSX600 is
more efficient here but in a true AP, ordinarily each radar would
be broadcast from the host to all PEs simultaneously, as this can be
done in constant time on a true AP.

7.1. Report correlation and tracking

The main idea of this task is from [29,59,57]. The report
correlation and tracking task is executed every 0.5 s. The input
data are radar reports that are simulated in the host and track
records in PEs. If total time consumed is considered, this is easily
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the ATC task that consumes the most time, as it is performed much
more frequently than the other tasks. It is challenging because
each report has to be compared with each track, and some aircraft
are changing flight mode. We use the SIMD architecture to do the
task. First, we create a box for each report and each track and
check whether they intersect. It is very efficient because of the
features of AP. Second, increase the box sizes of tracks that have
not correlated with any reports and then check again because some
aircraft might accelerate or perform a maneuver at that time. The
details of this task are shown in Algorithm 1. This task can be done
both accurately and within deadline because of the SIMD features
of the CSX600.

Algorithm 1 Algorithm for Aircraft Tracking

1: Radar reports are transferred from host to mono memory, then
distributed from mono to PEs.

2: fori = 1 — 96 in parallel do

3:  Boxes are created around each radar report and each track in
each PE to accommodate report and track uncertainties.

4:  Check intersection of each report box with every track box in
each PE.

5. If there is an intersection, the radar report and the track are
correlated. The match_count of this report is incremented,
which indicates that it correlates with one track, and its ID
and positions are entered into the correlated track’s record.

6:  All radar reports in each PE are transferred to the next
PE using the ring/swazzle network, and steps 3 to 6 are
repeated.

7: end for

8: After the 96 iterations, all reports have been compared with all
tracks. A track that is not produced by noise might not correlate
to any reports because the aircraft that it corresponds to is
maneuvering.

9: Double the box sizes of tracks that have not correlated with
any reports to increase their probability of intersecting a report
box and repeat steps of for loop above to compare them with
uncorrelated reports.

10: Triple the original box sizes of tracks that have not correlated
yet, and run the algorithm again.

11: After 3 rounds, if there are still any uncorrelated reports, they
are used to start new tracks for potentially new aircraft in this
sector.

If a track created for a potentially new aircraft does not correlate
with any aircraft after several passes through Algorithm 1, it
is viewed as being due to noise and dropped. Note that if this
algorithm were to be executed on an AP, it would probably be
modified so that each radar report would be broadcast in constant
time to all PEs and processed prior to broadcasting the next
radar report to the PEs. The modification of the algorithms in this
section to run on an AP will be easy but will depend on the exact
architecture of the AP.

The altitude and the aircraft ID information is obtained from
beacon or secondary radar. Further information about this is
included in Section 8.2.7.

7.2. Cockpit display

First the associative operation PickOne is used to select one
aircraft. Next, the broadcast operation is used to broadcast the
X,y and altitude coordinates of the plane picked in the previous
step. For each of its aircraft records, each processor computes the
x-distance, y-distance and altitude distance between the location
of its aircraft and the location of the aircraft broadcast. Then the
processor identifies the aircraft that are approaching this aircraft.
This is done by using the conflict detection algorithm covered in

Section 7.6.1, find all aircraft that will be within 2 x 2 nminxand y
and within 1000 ft in altitude in 2 min. Next, transfer these selected
aircraft’s identity, x, y positions, altitude, velocity, heading, conflict
information, etc. to the display server. Finally, use the conflict
resolution algorithm in Section 7.6 to obtain a conflict advisory and
transfer it to the server. This algorithm uses the SIMD architecture
to parallelize the computation and to improve its efficiency.

7.3. Controller display update

This task is similar to cockpit display. We transfer the updated
flight identity, positions, altitude, speed, heading, etc. from PEs to
the ClearSpeed server, which plays the role of the controller display
in this simulation. It uses the SIMD architecture to speed up the
display process.

7.4. Automatic voice advisory

Automatic Voice Advisory (AVA) automatically advises an
uncontrolled flight (VFR) of near term conditions of other
aircraft and terrain by voice. This task is simulated by having
the ClearSpeed server print advisories of conflict detection and
resolution, terrain avoidance tasks, etc. For example, if there is an
aircraft that is approaching the aircraft called, the message might
be “aircraft at 4 miles ahead, 4500 ft above, in 1 min”; if the aircraft
called is heading for a terrain, the message might be “terrain,
4 miles, 3100 ft ahead”. We use an AP style of computation to do
this efficiently.

7.5. Sporadic requests

Sporadic requests include information requests or changes
in data. For example, aircraft have to avoid an area that has
bad weather, aircraft make maneuvers to avoid bad weather,
or controllers make a request for runway usage, etc. This task
is executed once every second. Although the requests are not
processed immediately, they are processed very quickly. We
simulate this task as follows. We first process the next unprocessed
sporadic task (assuming there are more than one). If it is to divert
aircraft so they will miss a storm area, all affected aircraft will be
processed using the associative operation PickOne to select one
aircraft to redirect at a time.

7.6. Conflict detection and resolution (CD&R)

7.6.1. Conflict detection

This paper considers a conflict to occur when two aircraft are
predicted to be within a distance of three nautical miles in x
and y and within 1000 ft in altitude. To assure timely evaluation
we let the detection cycle be eight seconds, and we determine
the possibility of a future conflict between any pairs of aircraft
within a five minute “look ahead” period (i.e., 300 s). The input
data is from the track records in the PEs. We copy each track’s
ID, 3D position X;, Y; and H;, and velocity V; and V), at time t
to the following variables, respectively, ID, X, Y¢, He, Vi and V.
in the poly structure trial in PEs. Initialize their time_till which is
the aircraft’s earliest collision time with other aircraft to 300.00.
The intuitive idea is to compare each trial aircraft with all the
other ones, but we use the CSX600 architecture to parallelize the
computation. The details of the conflict detection algorithm are
shown in Algorithm 2 (see Fig. 5), which is also known as Batcher’s
algorithm.
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Fig. 5. Conflict detection.

Algorithm 2 Algorithm for Conflict Detection

1: fori = 1 — 96 in parallel do
2:  ifforeach trial and track record in each PE, their flight IDs are
different and altitudes are within 1000 feet then

3: Project their positions 5 min ahead, add 1.5 to each xand y
coordinate to provide a 3.0 minimum miss distance in each
dimension. The x dimension case is shown in Fig. 4.

4: Calculate the min_x, max_x, min_y and max_y for mini-
mum and maximum intersection times in x and y dimen-
sions, as shown in equations (1)-(4).

5: Find the largest minimum time time_min and smallest
maximum time time_max across the two dimensions using
equations (5) and (6).

6: If time_min is less than time_max, there is a potential

conflict between the aircraft whose ID is trial.ID and
another aircraft whose ID is track.ID.

7: If time_min is less than trial.time_till, then trial.time_till is
updated to time_min.
8: endif

9:  All trial records in each PE are passed along the swazzle/ring
network to the next PE and the above steps are repeated to
calculate trial.time_till(trial, track).

10: end for

11: After 96 iterations, all trial records have been compared with
all track records. The time_till of each trial is its soonest collision
time with another track.

The following formulas are used in Algorithm 2:

. |trial X. — track.X;| — 3
min_x = - (m
[trial.Vy. — track.Vy|

_ |trial. X. — track.X;| + 3

max _x = 2
|trial. Ve — track.Vy| )
. |trial.Y, — track.Y;| — 3
min_y = - (3)
|trlal.VyC - track.Vy[|
|trial.Y. — track.Y;| + 3
max_y = —— (4)
|trlal.VyC — track.Vyt|
time_min = max{min _x, min _y} (5)
time_max = min{max _x, max _y}. (6)

7.6.2. Conflict resolution

We use the SIMD architecture of CSX600 to do conflict reso-
lution accurately and efficiently. Conflict resolution will occur as
quickly as possible after conflict detection has been executed, so
that each aircraft will have an updated time_till value. In practice,
conflicts should be reasonably rare. First, we find which aircraft

have the shortest conflict time. This is the trial aircraft that will
make the initial heading change. Next, the PEs will evaluate
in parallel different trial trajectories for the trial aircraft. These
trajectories will be created by changing the direction of the current
trajectory of the trial aircraft both clockwise and counterclockwise
inincrements of 5°, up to a maximum increment change of 30°. The
various trajectories are rotated through all processors using the
ring (or swazzle) network, and the conflict detection algorithm is
used to determine the longest time before each trajectory collides
with another aircraft. Finally, the maximum of the collision times
of all trajectories is determined and used as the best heading
change that the trial aircraft can make. If more than one of the best
heading change are found, the one with the minimal degree is used.
If two have the same degree changes (e.g., +10° and —10° change),
one of them is arbitrarily chosen. Although conflicts cannot be
fully resolved theoretically, it runs very well in our simulation and
during our tests, all conflicts are resolved after several rounds. In an
actual implementation, any unresolved conflicts could be resolved
by changing the altitude of a plane that still has a conflict after
Algorithm 3 is executed.

The algorithm for conflict resolution is described in Algorithm 3.
The input data are the tracks and trial records in PEs. Each PE
can have 1-17 tracks and trial records. Algorithm 3 is based on
the CSX600, not an AP. The AP could handle collision avoidance
in a much simpler manner, due to its ability to do a constant-
time broadcast [59,57,58]. For an AP, the conflict resolution can
be included as part of conflict detection. Proceeding one aircraft at
a time, each selected aircraft’s trajectory information is broadcast
(in constant time) to all other aircraft and any potential conflict
is immediately corrected as follows. The heading of the initial
aircraft is altered by perhaps an increment of 10° and immediately
rechecked for a conflict. This procedure continues until a conflict
free path with all other aircraft is found with the heading being
altered a maximum of 30°. This method is more efficient on an
AP since the broadcast of trajectory information of one aircraft’s
trajectory information can be done in constant time.

7.7. Terrain avoidance

Terrains are lines that make a box shape that encloses a terrain
height, e.g., a TV tower is a 1.0 by 1.0 nm box with a height
equal to 3100 ft. All terrains and tracks are entered in each PE.
Terrain avoidance is as challenging as the report correlation and
tracking task. The terrain avoidance algorithm in Algorithm 4 is
similar to the conflict detection algorithm. The challenge is the
computational intensiveness and we use the CSX600 architecture
again to speed up this computation.

7.8. Final approach (runways)

The final approach task is to optimize runway usage. Each flight
has a flight plan that specifies its departure terminal, planned
departure time, its destination terminal, and planned arrival time.
The runways that occur in the region being managed by an ATC
system could be distributed among the processors. Each processor
manages the information for the runways assigned to it. Here, we
assume that there are 96 runways in the sector being managed by
this ATC system and assign one runway to each processor. The PE
assigned to a runway collects aircraft departure times from this
runway and arrival times to this runway and sorts the times. The
PEs will instruct the aircraft to increase or decrease their speed to
optimize runway usage and also optimize fuel cost. The last step is
currently done by controllers manually.
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Algorithm 3 Algorithm for Conflict Resolution

Algorithm 4 Algorithm for Terrain Avoidance

1: In parallel, find the minimum time_till of all trial records
sequentially in each PE.

2: Compute the global minimum time_till by taking the minimum
of the local time_till value in each PE.

3: Use the pick-one command to select a processor whose local
time_till is equal to the global time_till, and transfer the
trajectory record of an aircraft in this PE whose time_till is
minimal to the mono memory.

4: Create array projectedpath[11] in mono memory, copy the
best trial aircraft’s ID and positions to each of the records of
projectedpath[11], initialize collision_time, the soonest collision
time with other aircraft to oo.

5: Each of the projectedpath[i] represents a path where the best
aircraft makes a different heading change from left to right
5°-30° in increments of 5°, alternating between left and right
(e.g., 5°, —5° 10° —10° etc.). This will allow numerous
different possible paths for the trial aircraft to be evaluated in
parallel.

6: Transfer the projectedpath[0], ..., projectedpath[11] from
mono memory to the PEs in parallel with each PE receiving
one projectedpathli].

7: fori=1— 96 do

8:  Each projectedpath is compared to all aircraft records in each
PE with a different ID (so that the trial aircraft will not
compare to itself) unless their altitudes differ by more than
1000 feet.

9:  Calculate minimum and maximum intersection times in
x and y dimensions using the earlier conflict detection
equations (1)-(4).

10:  Use equations (5) and (6) to get time_min and time_max. If
time_min is less than time_max, there is a potential conflict
between the aircraft whose ID is the trial ID and this path.

11:  Check whether time_min is less than the collision_time of
this projectedpath, if so, this projectedpath.collision_time is
updated to time_min. If no conflict is found, the time is not
updated and nothing needs to be done.

12:  The projectedpath records in each PE are then passed to the
next PE along the ring network to compare with the records
in the neighbor PE.

13: end for

14: After 96 iterations, all projectedpath records have been com-
pared to all the other aircraft.

15: Find the maximum projectedpath.collision_time across all PEs.
This path is the best scenario.

16: Change the best trial aircraft’s x and y velocity according to the
best scenario path, display the resolution advisory and change
the flight plan in the host.

7.9. Implementation of algorithm issues

One issue that needs attention is the implementation of these
algorithms on real machines. Since our ClearSpeed accelerator has
96 processors on a SIMD chip, the execution of ATC tasks is faster
if at most one record of each type is stored on each processor. For
example, if there are at most 96 aircraft being tracked at any time,
then these can be processed simultaneously in data parallel fash-
ion. However, if there are 100 planes being tracked, then at least 4
processors will have to manage the records for two planes each.
For example, when executing the tracking algorithm, all planes
with two records will first check their first plane’s location against
a radar location and then the four PEs managing two aircraft
records will check their second plane’s location against the radar
location. During the time the 4 processors check their second
plane’s location against the radar location, the other 92 proces-
sors without a second aircraft record are inactive. The result is that

1: fori=1— 96 do
2: if for each terrain and track record in each PE, the track
record’s height is lower than the terrain record’s then
3: Project the track record’s position to 2 min in the future,
add 1.5 to each x and y edge of the future position to
provide a 3.0 minimum miss distance. The terrain records
are 1.0 by 1.0 nm boxes.

4: Calculate the minimum and maximum intersection times
in both x and y dimensions.
5: Set time_min to be the larger of the two minimum

intersection times in both x and y dimensions in step
4. Similarly, set the record time_max to be the larger of
the two maximum intersection times in both x and y
dimensions in step 4.

6: if time_min < time_max then

7: There is a potential conflict between the track and the
terrain.

8: end if

9: endif

10:  All track records in each PE are passed to the next PE and
steps 2 to 8 are repeated.
11: end for
12: After 96 iterations, all track records have been compared with
all terrain records for terrain avoidance.

having even one processor contain two aircraft records will about
double the time required to process the aircraft records. More gen-
erally, if the maximum number of aircraft records in the processors
is k then the time to execute the tracking algorithm will be about k
times larger than if there were at most 1 record per processor. As a
result, when a new aircraft record is created, it should be added to
one of the processors that currently has a minimum number of air-
craft records. This can be easily and efficiently accomplished using
the MIN AP function.

8. Experimental results

This section describes the results of a set of preliminary experi-
mental results that were conducted to achieve four different goals.
First, the experiments provide a proof-of-concept for the proposed
ATC system implementation based on the CSX600. Second, the per-
formance and scalability of the proposed approach will be evalu-
ated by performing a comparison between the CSX600-based im-
plementation and the fastest host-only version implementation
using OpenMP [62] on a state-of-the-art multiprocessor server sys-
tem with 8 cores. Similar experiments using OpenMP have been
used in image processing algorithms on GPUs [64]. Third, these ex-
periments will provide some initial evidence for the claim that the
proposed AP-based ATC system implementation exhibits greater
efficiency and a huge increase in the degree of predictability when
compared to the MIMD-based solution. Fourth, we show that our
model of ATC that consists of eight selected tasks can meet the
deadlines for the hard real-time ATC tasks.

8.1. Experimental setup

We are creating a solution for a prototype of ATC since our
implementation cannot manage the number of aircraft in a real-
world situation. In order to have information about flights that
we can control, we simulate the real-world situation by generat-
ing aircraft flights in a three dimensional airspace of 1024 by 1024
nautical miles (nm) and 1000-10,000 ft in altitude. The initial posi-
tions and realistic velocities of the aircraft are generated randomly
and trajectories of aircraft consist of a constant velocity mode and
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a coordinated turn mode. A random amount of error is added to
the location of each plane to create the radar reports. Since we
control this entire process, we can generate different numbers
of aircraft to test algorithms and test the limits on the number
of aircraft that can be processed fast enough to meet deadlines.
Unlike live FAA flight data, when two aircraft are on a collision
course, we can alter the flight path of one aircraft to eliminate this
problem.

The emulation of the AP solution of ATC uses the ClearSpeed
CSX600 accelerator board and is implemented using the C"
language as described in Section 2. The alternative implementation
was on an Intel Dual Processor Xeon E5410 Quad Core 2.33 GHz
system with 32 GB of main memory and 2 x 6 MB of L2
cache (for each CPU). This system has a total of 8 cores. The
implementation was done in C using the gcc compiler version 4.1.3.
Both machines’ power are similar because their peak performance
in doing some embarrassingly parallel computations [82] are
almost the same, e.g., Mandelbrot set [27,21]. So our comparison
is fair. In this section, MIMD will usually be used to refer to this
specific machine. Occasionally, it will refer to a generic MIMD, but
these instances should be clear from the context. A single threaded
implementation on a single core of the multicore is called STI. We
denote the multi-threaded implementation on the multicore by
MTI. We have carefully tuned the OpenMP codes to achieve a good
performance, e.g., avoid false sharing, maximize parallel regions,
ensure the efficient use of cache, avoid poor load balance problems,
etc. Additional information about the techniques used to obtain
highly efficient OpenMP programs are given in Chapter 2.5 in [84].

8.2. Experiment results

8.2.1. Comparison of performance on STI, MIMD and CSX600

We scheduled the tasks of report correlation and tracking,
terrain avoidance and CD&R on both machines. The report
correlation and tracking is executed every 0.5 s, the terrain
avoidance every 1 s, and the CD&R task every 2 s. The deadline
for each task occurs at the end of each of its periods. None of the
tasks can start their executions before their release times and all
of them must complete their executions before their deadlines.
Each approach was executed for a varying number of aircraft,
ranging from 96 to 1824 in increments of 96. For each number of
aircraft in the given range, each approach was executed for 100
times. The major period is 2 s and contains one CD&R period, two
terrain avoidance periods, and four report correlation and tracking
periods. If any of the three tasks misses its deadlines during a major
period, we say that the execution has missed its deadline during
this period.

We execute the three tasks under all three approaches, CSX600,
MTI and STI. The comparisons of maximum execution times are
shown in Figs. 6-8. All of these graphs show a significant speedup
of the performance of the MTI implementation over the sequential
STI implementation so the parallel code for MTI has good speedup.
Section 8.2.2 shows the difference between MTI and SIMD more
clearly in its three figures.

8.2.2. Comparison of performance on MIMD, CSX600 and STARAN
Timing results for tracking and correlation, CD&R, terrain
avoidance and display processing tasks for the STARAN are given in
[12,59,57]. It only takes 0.11 s to execute the tracking task for
2000 aircraft for the STARAN. The AP in the following four figures
stands for STARAN specifically. Fig. 9 compares timings of the
tracking task for the MIMD, CSX600 and STARAN. It only takes
0.1 s to execute the terrain avoidance task for 2000 aircraft in
the STARAN. Fig. 10 compares timings of the terrain avoidance
task for the MIMD, CSX600 and STARAN. It only takes 0.28 s to
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execute the CD&R task for 2000 aircraft in the STARAN. Fig. 11
compares the timings of the CD&R task for the MIMD, CSX600
and STARAN. It only takes 0.16 s to execute the display processing
(controller display update) task for 2000 aircraft for the STARAN.
Fig. 12 compares timings of this task for the MIMD, CSX600 and
STARAN. Although we do not have a modern AP system to test, with
today’s advanced architecture, we believe that it would execute the
ATC tasks more quickly and accurately and at least as predictably,
compared to the STARAN.

The comparisons between MTI and CSX600 in Figs. 9-12 are fair,
as both are small systems and are doing the entire job. However,
the comparisons between the CSX600 and the STARAN are not
fair, as the STARAN has only one aircraft per PE, while the CSX600
has an increasing number of aircraft. The CSX600 curves in the
three graphs above make it appear that this system is more like
a MIMD than an AP, due to the fact that the number of records per
processor is increasing. Section 8.2.3 will explain how to compare
STARAN with CSX600 fairly and demonstrate how closely our
CSX600 emulates the STARAN.
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8.2.3. How close to the AP is our CSX600 emulation of the AP

This section illustrates how closely our CSX600 emulation of
the AP performance is to AP performance. Figs. 13 and 14 shows
the timings of tracking and CD&R tasks for the total number of
aircraft increasing from 10 to 384, i.e., number of aircraft per PE
is 1, 2, 3 and 4 in CSX600. We can see that the execution time
is basically linear when the maximum number of aircraft per PE
does not change, and there is a gap when the maximum number
of aircraft per PE increases. Moreover, the slope of each of the line
segments is reasonably close to the slope of the STARAN over that
interval. These results show that our CSX600 emulation is closely
tied to STARAN, and it emulates the solution of STARAN the best
when the maximum number of aircraft in each PE is 1.

As explained in Section 8.2.2, the comparison between STARAN
and CSX600 is unfair, so we provide a fairer way to compare them.
We will use the CSX600 to emulate a Super-CSX600 with enough
processors to match the upper bound of the number of planes
so that there is at most one aircraft per PE on it. The CSX600 is
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Fig. 12. Comparison of display processing task of MTI, CSX600 and STARAN.
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Fig. 14. Time of CD&R for number of aircraft from 10 to 384.

still paying a price for having to do extra moves between mono
memory and parallel memory in emulating the Super-CSX600. The
CD&R execution time for the Super-CSX600 is obtained by adding
the non-parallel computation time to the quotient of the parallel
execution time divided by the maximum number of aircraft per
PE. The results in Fig. 15 show that the Super-CSX600 is basically
linear and reasonably similar to the STARAN, but the cost increases
faster for the former due to greater overhead, such as data transfer
between mono memory and processors, the non-constant cost of
the associative functions, disadvantages of hardware compared to
STARAN, etc. There is a significant difference between the AP and
the Super-CSX600, but it is dwarfed by the difference between
their curves and the MTI curves.

8.2.4. Comparison of predictability on CSX600 and MIMD

The preceding results demonstrate that the performance of
CSX600 is better than that of STI and MTI. We next focus on the
predictability of the execution times, which is an important factor
in guaranteeing that all the ATC processing can be performed
within the specified time bounds. We measure the Coefficient



M. Yuan et al. /. Parallel Distrib. Comput. 73 (2013) 256-272 267

m
x
[0}
[e]
25 * £l
* S
=
2 * 3
* )
* 5 eMTl
15 w
¢ 2 W Super-CSX600
* S
1 * 2 AAP
’ wv
o
05 +2 —_—
ﬁo;""",.nnuul
ol mnnARD : : , ,
0 500 1000 1500 2000 2500

Number of Aircraft

Fig. 15. Comparison of MTI, STARAN and Super-CSX600 with at most one aircraft
per PE.

0.16
Coefficient of Variation (Logarithmic Scale) 9o
0.14 e
o.
0.12 g
=X
0.1 2
L
0.08 - 2 =—CSX600
[=}
0.06 = a1
a
0.04 5
’ <
3
0.02 3
=]
0 A b A 4 o o o o o o o & b @ ldldl D -~
0 500 1000 1500 2000

Number of Aircraft

Fig. 16. Predictability of execution times for report correlation and tracking task.

01 Coefficient of Variation (Logarithmic Scale) IS

0.9 W g
o,

0.08 - g

0.07 o

0.06 5

0.05 2 ——CSX600
3

0.04 E

0.03 g

0.02 3
2

0.01 E

0 0—0—0—0—0—0—0—0—0—0—0—0 == ‘C —0—0 ,
0 500 1000 1500 2000

Number of Aircraft

Fig. 17. Predictability of execution times for terrain avoidance task.

of Variation (COV), which is a common normalized measure of
dispersion, and is defined as the ratio of the standard deviation to
the mean. The smaller the value is, the lower the variance is and
so the higher the predictability is. Unlike the standard deviation,
the COV is dimensionless, so we think that it is a better tool to use
to compare predictability than standard deviation. The COV of the
three tasks are shown in Figs. 16-18. Note that the y-axis in these
figures uses a logarithmic scale. The results clearly show that the
COV values for CSX600 are several orders of magnitude below the
ones for MTI. In addition, the increased variability of MIMD will not
be compensated for by the running time as shown in Figs. 9-11, as
the MIMD running time increases much more rapidly than CSX600
and AP. Again this is because of the advantages of AP over MIMD
mentioned in Section 5. These scenarios are true for not only less
than 8000 aircraft, but also for large scales such as 14,000 aircraft.

8.2.5. Comparison of missing deadlines on CSX600 and MIMD
Last, we compare the number of major periods that have missed
their deadlines for both CSX600 and MTI. The scheduling was

0.25
Coefficient of Variation (Logarithmic Scale) I
e
02 - &
Ed
e
0.15 g
)
g —#—CSX600
01 Z —m-MTI
53
<
0.05 3
2
o 0ttt 2
PEVST o o o o S
0 . T T )
0 500 1000 1500 2000

Number of Aircraft

Fig. 18. Predictability of execution times for conflict detection and resolution task.

90 2
5
80 o
o
70 [e]
>
60 o
o
50 =2
2 =#—CSX600
40 =
o == MTI(SSE
30 a (56)
@
20 o
]
10 o
=
0 2

0 500 1000 1500
Number of Aircraft

Fig. 19. Number of iterations missing deadlines when scheduling three tasks.

Table 3
Performance of one flight/PE.

Tasks Exec time (s) Proc time (s)
Report correlation and tracking 0.00552 0.08832
Cockpit display 0.00272 0.02177
Controller display update 0.00276 0.02209
Sporadic requests 0.00155 0.01244
Automatic voice advisory 0.00544 0.01088
Terrain avoidance 0.00782 0.0782
Conflict detection and resolution 0.01301 0.01301
Final approach (96 runways) 0.00837 0.00837
Total 0.25508

described at the beginning of this section. The results are shown
in Fig. 19. When the number of aircraft increases, the number
of deadlines missed by the MTI execution increases dramatically.
However, the CSX600 does not miss any deadline during each
major period.

8.2.6. Timings for 8 tasks

In this section we will show that ClearSpeed can perform all the
required tasks in our ATC prototype and meet all deadlines for each
major period. Table 3 shows the performance of one flight per PE,
which is the closest scenario to the AP. The execution time (s) is the
time that is spent to execute this task once. The processing time (s)
is the total time that is spent for this task in an 8 s period. We can
see that all tasks can be done within their deadlines. The total used
time is 0.25508 s, which is only 3.19% of the available time of 8 s.

Table 4 lists the worst case timings of eight tasks for 10
aircraft per PE running on the CSX600, which is the maximum
number that can be scheduled because each PE only has 6 K
of memory. The total processing time is 10.4018 s while the
maximum time required by ATC is typically 10 s [59,57,61,34,32].
Since a 10.4 s cycle is only slightly larger than a 10 s cycle,
the performance results are relatively good and demonstrate the
scalability of this implementation on the CSX600. We can conclude
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Table 4

Performance of eight tasks for ten flights/PE.
Tasks Exec time (s) Proc time (s)
Report correlation and tracking 0.3409 5.4544
Cockpit display 0.1705 1.364
Controller display update 0.1825 1.46
Sporadic requests 0.0987 0.7896
Automatic voice advisory 0.1586 0.3172
Terrain avoidance 0.2386 0.2386
Conflict detection and resolution 0.5182 0.5182
Final approach (96 runways) 0.2598 0.2598
Total 10.4018

that the CSX600 implementation can meet all deadlines that can
be statically scheduled. The ClearSpeed CSX700 provides a larger
SIMD system with 192 processors and can double the number of
aircraft supported by the CSX600. With a faster 250 MHz clock
speed, the CSX700 should either meet or come close to meeting
a 10 s deadline for execution of the major period.

The reason that we use 96 in Tables 3 and 4 is that 96
is the maximum we can use without increasing the CSX600
running time of this task by a factor of about 2. Also, this larger
number demonstrates the advantage of using a SIMD for a more
computationally intensive problem and should be enough to
include all of the runways in airfields under the control of an ATC
center. The bound of 100 runways is used in both [59,57]. We have
also tested executions for 10 runways, which is more practical for
an airport size application (as opposed to an entire ATC sector). The
result is almost the same since the maximum number of runways
per processor is 1 in both cases. This shows that our approach is
not only appropriate for large scale applications but also for small
scale applications. This is not a limitation of our approach.

8.2.7. Video and actual STARAN demos

In a contract with FAA, Goodyear Aerospace gave a demonstra-
tion in 1971 in Knoxville, TN. This unit used a content-addressable
memory built with magnetic wire to demonstrate automatic track-
ing, conflict detection and resolution, terrain avoidance, and auto-
matic voice advisory using only about 4500 instructions. This unit
was a predecessor to the STARAN.

As a result of the successful performance of the experimental
magnetic SIMD at Knoxville, Goodyear developed a production
AP named STARAN. The STARAN system had array modules
containing 256 PEs and 1028 bits of storage per PE. The system was
programmed by 5 people in 5 months and consisted of 4017 AP
assembly instructions, and about 1600 instructions for the control
processor [72]. It was delivered for demonstration in 1972 at the
International Air Exposition at Dulles Field, and performed as a
control center processor. The Edwards AFB radar was used as radar
input. All radar data was tracked automatically. Kenneth Batcher
provides a detailed account of this demonstration in the “Air Traffic
Control” section of [12].

Radar data used in tracking aircraft takes two forms. Both are
on a rotating platform (very often the same platform). The first is
primary radar which sends out a pulse that is reflected from the
target and provides range and azimuth of the target. The second is
secondary or beacon radar that sends a message asking the aircraft
transponder to reply with one of several possible replies. Usually
the beacon requests the aircraft transponder to reply with identity
or altitude. Range is also measured along with azimuth. Currently
beacon radar is the main signal used in tracking aircraft. Using the
altitude data from the beacon radar allow the aircraft to be tracked
in three dimensions. Position is provided by the target range and
azimuth and the altitude data from the beacon radar allows the
aircraft to be tracked in three dimensions.

In the STARAN automatic tracker in 1972, both primary and bea-
con signals were used for tracking. It is often found that the primary

radar gives a more precise measurement — thus a more precise
track in 3-D. The STARAN automatic tracker would have tracked all
of the 9/11 aircraft after they turned off their beacon. In the future,
hackers could generate false beacon signals, which can be detected
and ignored if automatic primary radar tracking is used.

NexGen will use GPS positions from each aircraft to provide
even better tracking. Additionally, automatic primary tracking can
be used with GPS tracking to detect aircraft trying to avoid being
tracked or false aircraft signals.

A movie film was taken of the demonstration in 1972. The per-
son appearing in this film is Will Meilander. A data block is con-
nected to each plane. These data blocks are repositioned when
needed to avoid having two of them intersecting. A conversion of
some parts of this film to DVD, called here the initial video, was
made in 1987 and is available for viewing at [78] and at the sup-
plementary appendix at the end of the article. The “voice over” nar-
ration was added in this video by Will Meilander. An improved ver-
sion called the second video will also be posted at both of these sites
as soon as possible. The video shows automatic primary and bea-
con radar tracking, conflict detection and resolution, and display
processing. The demonstration uses 256 flight plans to develop the
primary and beacon radar reports. Initially, a ten second major pe-
riod was used, but later the system clock was first sped up to pro-
cess major periods in one second and later in one-tenth of a sec-
ond. The speedup of the system clock by 100 times real time is the
equivalent of 25,600 tracks in real time. The real-time, the 10 times
speedup, and the 100 times speedup are all captured on the video.
What was demonstrated by STARAN in 1972 cannot be done in any
ATC system in the world today.

9. Observations and consequences of the preceding results

A recent paper in IEEE Computer [53] observes that the widely
accepted RAM model for sequential computation is the reason for
the huge progress that has occurred in sequential computation
over the past 60 years and observes that a single widely acceptable
model for parallel computation could result in similar successes
in parallel computation. It describes several features that this
parallel model and its target architectures should satisfy, including
encouraging parallel solutions to applications that are easy to
use, energy efficient, scalable, and highly portable. Moreover, the
pitfalls and problems that are identified as desirable to avoid in
software production are data dependences, race conditions, load
balancing, false sharing, deadlock and non-predictability.

Parallel programming should be as simple and intuitive as se-
quential programming. Sequential programming is a deterministic
and predictable process that arises intuitively from the way pro-
grammers solve problems using algorithms. The general program-
mer should not be required to have an in-depth understanding of
the latest developments in hardware design in order to write effi-
cient programs. The current complexity of designing high quality
parallel programs makes the process of redesigning and rewriting
applications both time-consuming and expensive. The result is that
most legacy applications are still waiting to be parallelized. These
and related issues are discussed further in [53].

The associative computational model ASC introduced in [67]
was designed to support algorithm development for the AP
and satisfies all of the above desired characteristics. While the
name ASC in [67] originally applied to both APs and multi-APs
(which allowed multiple instruction streams), the name ASC was
later restricted to the single instruction stream AP and the model
for multi-APs was called MASC. Comparisons between the power of
these models and other well-known computational models were
given in [79]. Possible implementations for MASC are discussed
in [22,24,23]. A possible implementation of a multi-threaded
associative processor is also investigated in [73].
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Next, we consider whether AP can solve a wide range of
problems, or whether it is primarily useful in solving only ATC-
type problems. A language (also called ASC) with a primer, com-
piler, and Windows emulator has been designed for ASC [65,66].
Many algorithms have been designed for the ASC model and
software projects for the AP platform (often using the ASC lan-
guage) in order to demonstrate the versatility of the ASC model
and the AP system. These include graph algorithms [43,66,67],
convex hull [4-7], string matching [30,31], sequence alignment
[74,75], NP-complete [50,80], databases [17,18], parallel compilers
[1-3], supporting functional and logic-based languages [8,71,76],
and supporting expert system languages [39,68,70]. In [12], Ken-
neth Batcher lists fast Fourier transform, sonar post-processing,
string search, file processing, air traffic control, image processing,
data management, position locating and reporting, bulk filtering,
and radar processing as STARAN applications, and for the first five
of these, provides a comparison of the STARAN'’s performance on
this application with several other systems. Additional applica-
tions are discussed in [66]. This wide range of AP algorithms and
software demonstrate the versatility of the AP to solve a wide range
of applications.

The extra problems that MIMDs have to solve as part of their
solution to the original problem require a lot of extra work. In
addition to the extra problems discussed earlier, the extra work
that MIMDs have to do to support the integrity and the ACID
properties of a database requires substantial additional work.
This requires additional software support that typically involves
many of the same types of support software discussed earlier
such as synchronization, dynamic scheduling, critical sections of
code, sorting, indexing, etc. Also this extra work may involve a
substantial increase in communications. All of these problems
become much more difficult to handle when the database is
dynamic, as records typically have to be added or transferred
frequently, and massive updates occur frequently, e.g., every 0.5 s.
In contrast, the AP (and SIMDs in general) stores all information
about an object such as an aircraft in the local memory of
the processor this object is assigned to. This processor executes
essentially all of the computations regarding that object, so
updates to the database involving this object only require changes
to the local memory of that processor.

The graphs in Section 8 of this paper show that the magnitude
of this extra work dramatically slows down the time required for
MIMDs on ATC-type problems. However, there is nothing highly
unusual about the solution to ATC problems, except their hard
deadlines. While the heavy real-time nature of the ATC problem
and the extremely dynamic database that must be maintained
exacerbates the extra work that MIMDs are required to do to solve
this problem, this just increases the magnitude of this extra work. It
is still the case that for most non-trivial applications, MIMDs have
to use a huge amount of extra software and do a huge amount of
extra work when compared to SIMDs.

The hardware cost of building a large AP should be much
cheaper than building a MIMD that has the capability of solving
the same problems due to the simplicity of the AP hardware.
While many applications may be reasonable to solve on a MIMD,
on important large scale problems that will be expensive and
challenging to develop a MIMD solution, it may be considerably
cheaper and much more satisfactory to have an appropriate size
AP built to handle the problem. The history of the ATC problem
provides an excellent justification for considering this alternate
approach. The ongoing MIMD ATC solution is widely known for its
repeated shortcomings, in spite of the fact that a very large scale
project to redevelop this system has been launched about once
every ten years for the past 50 years.

10. Conclusions and future work

In this paper, we provided a solution for ATC on the AP and
established the feasibility of this solution by showing if this so-
lution is mapped onto the Clearspeed CSX600 emulator of the
AP, then this solution works on the AP system. Without many of
the previous details of the AP solution, we were able to recre-
ate a large portion of this earlier implementation. This imple-
mentation used static scheduling, which is possible due to the
deterministic SIMD architecture. This AP ATC software also avoids
the inclusion of solutions to the following types of problems
(or calls to library functions which solve these problems): load
balancing, shared resource management, synchronization, pre-
emption management, sorting, indexing, cache and memory co-
herency management, false sharing, priority inversion handling,
race conditions, data dependencies, deadlocks, etc. In particular,
this solution avoids use of solutions or approximate solutions to
any of the numerous multiprocessor NP-hard problems of the type
given in [36]. The solution used is very similar to a sequential so-
lution for this problem, both in style and in code size. As a result,
the size of this software solution is only a very small fraction of the
size of the MIMD solutions to the ATC problem. This results in a
dramatic drop in the cost in both the cost of creating and in main-
taining this software when compared to the MIMD solutions that
have been given to the ATC problem.

Further, the AP hardware easily scales to handle larger problem
sizes by either increasing the maximum number of records stored
in each processor (which will slow down the run-time) or by build-
ing a larger AP computer with more processors, which is easy to
do. Based on the simplicity of the architecture of the STARAN and
ASPRO, which are the only APs that have been built, building a
larger AP system should be both easy to do and much cheaper to
build than a MIMD system of comparable size. The CM-2 Connec-
tion Machine was a SIMD computer built by Thinking Machines in
1987 that had over 64 K processors. Paracel developed a parallel
processor with one million processors, which was generally be-
lieved to be a SIMD. It would seem reasonable to expect that an
AP with a million processors could easily be built currently.

The AP’s ability to easily handle the ATC problem would also
enable it to easily handle many other real-time problems, both
large and small. As a result, this research is relevant not only to the
ATC problem, but also to numerous other important applications
that involve real-time problems with hard deadlines. For example,
command and control systems such as an air defense system would
be natural candidates. Other examples may include embedded
real-time systems as well.

The ATC problem is a large dynamic database problem. The AP
excels in handling the ATC since it was designed to handle real-
time dynamic database activities rapidly. For example, locating
records with a particular property, reading a value from this record,
changing a value in this record, and determining whether a record
with a certain property exists are actions that can be done in
constant time. By use of the flip network and the multidimensional
access memory, large pieces of records can be moved into parallel
memory or copied from parallel memory in constant time, making
it possible to enter and to ship these records elsewhere rapidly. The
AP’s capability of handling dynamic databases makes it very useful
for numerous other applications.

At this point, a large number of applications that an AP can
handle well have been mentioned. The types of applications
that APs (and more generally SIMDs) are usually considered to
be unable to handle well include multitasking applications that
involve multiple tasks that have to be processed concurrently,
like ATC. The ATC type of application is normally considered
to require a MIMD-type solution. APs cannot execute different
tasks simultaneously. Our solution to ATC involves executing all
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instances of each task synchronously. For example, the report
correlation and tracking algorithm can be executed simultaneously
for all aircraft. This paper presents strong evidence that the AP is
much better at handling the ATC-types of programs than MIMDs.
A key reason for this is that the AP solution does not require
the tremendous amount of additional software that is required
for the MIMD solution, e.g., dynamic scheduling, load balancing,
shared resource management, memory and cache coherency
management, preemption, synchronization, priority inversion,
sorting, indexing, and multi-tasking and multi-threading software.
Also, the AP hardware has important advantages over the MIMD
hardware including constant-time broadcasts and reductions,
rapid I/O, low overhead synchronization, deterministic hardware,
much faster communications, predictable worst case running time,
and much wider “memory to processor” bandwidth. Many real-
time problems can be handled in a similar manner to the ATC
problem, as ATC is very standard model for real-time problems
and is discussed in most real-time textbooks. However, the AP can
also handle applications which are not real-time but are similar to
ATC in that they involve multiple tasks that have to be processed
repeatedly. In the AP, each task can be handled by executing all
current instances of that task simultaneously.

A natural application area for APs is controlling fleets of
unmanned aircraft systems (UASs). In fact, the ATC system
developed here with the ClearSpeed CSX600 could be expanded to
manage flight control for a small fleet of 96-960 UASs (depending
on the number of tasks performed, the size of the records
stored, etc.) in applications such as (1) patrolling areas such as
international borders and reporting unusual activities; (2) early
identification of forest fires, and during actual fires, maintaining
updated information about regions that are burning, threatened,
etc.; and (3) surveillance of agriculture crops and performing
functions like spraying when needed, turning water on at various
locations when plants need water, etc. The ClearSpeed CSX700
provides a larger SIMD system with 192 processors and roughly
a 20% faster clock time for processors should more than double
the capabilities of the CSX600. As ClearSpeed SIMD accelerators
are well-known for their very small power consumption, size, and
weight, it should be possible to build an AP that also has similar
characteristics. For example, it should be possible to build an AP
that requires less power than a light bulb and have a sufficiently
low weight that would enable it to be easily deployed in the field
and still be able to control 1000 UASs in the immediate vicinity.
Since UASs will soon be permitted to enter airspace controlled by
FAA, many avionics experts expect the total aircraft in the skies
to rapidly increase in numbers as the anticipated civilian use of
UASs explodes. Since the demands on our ATC system are likely
to increase at a much more rapid pace than in the past, the FAA
should quickly initiate an investigation into the use of APs for ATC
and how to best integrate the APs into the FAA system.

The ClearSpeed has been used extensively as an accelerator to
MIMD systems. In several cases, supercomputers increased their
ranking in the top 500 by adding multiple ClearSpeed accelerators
to their system. MIMD processors could hand off problems that
the SIMD accelerator could compute more efficiently and perform
other work while waiting for ClearSpeed to return the solution. It
may be useful to investigate whether the use of both AP and MIMD
hardware in the same system could also prove to be beneficial.
Either system could serve as the main system, but would have the
option of handing off problems to the other system that it could not
handle efficiently. Such a system would need to be able to convert
from one mode to the other efficiently or else transfer data from
one system to the other efficiently. Perhaps such a combination
might be useful in larger systems that were expected to handle a
wide range of problems efficiently.

A possibly important extension to our current research would
be to consider an implementation of ATC on NVIDIA hardware,

which has many SIMD PE groups on its chips. A NVIDIA system with
the latest FERMI chip has a lot in common with the MTAP approach
of ClearSpeed. Implementing the CSX600 ATC algorithms on this
architecture would provide useful information about its ability
to provide another useful platform to use for the types of real-
time applications mentioned earlier. Another potential project
is to investigate implementing our prototype on other parallel
systems, e.g., a Convex with FPGA reconfigurable hardware, a
Cray System vector processor, IBM’s Cell processor, etc. A more
complete discussion of conclusions and future work has been
described in the author’s (i.e., Mike Yuan’s) dissertation [84].

Acknowledgments

The authors wish to express their gratitude to ClearSpeed for
their gift of the ClearSpeed CSX600 accelerator to use in this
research and to Darren Kerybson and then CTO John Gustafson for
expediting our obtaining this accelerator. They wish to thank Dr.
Kevin Schaffer for allowing us to use the high quality software he
developed to perform the associative operations on the ClearSpeed
CSX600. They also wish to thank Dr. Frank Drews at Ohio
University, Dr. Jerry Potter who is an emeritus faculty at Kent State,
and Dr. Oberta Slotterbeck at Hiram College for useful discussions
that contributed to this work and to the anonymous referees of this
paper for their valuable comments.

Appendix. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jpdc.2012.05.009.

References

[1] C. Asthagiri, J. Potter, Associative parallel lexing, in: Proceedings of the 6th
International Parallel Processing Symposium, IPPS, 1992, pp. 466-469.

[2] C. Asthagiri, ]. Potter, Parallel compilation on associative processors, in: Pro-
ceedings of the IFIP WG10.3 Working Conference on Parallel Architectures and
Compilation Techniques (PACT), North-Holland Publishing Co., The Nether-
lands, 1994, pp. 315-318.

[3] C.Asthagiri, ]. Potter, Parallel context-sensitive compilation, Software-Practice
and Experience 24 (9) (1994) 801-822.

[4] M. Atwabh, ]. Baker, An associative dynamic convex hull algorithm, in: Proc.

of the Tenth IASTED International Conference on Parallel and Distributed

Computing and Systems, Las Vegas, NV, 1998, pp. 250-254.

M. Atwah, J. Baker, An associative static and dynamic convex hull algorithm,

in: Proc. of the 16th International Parallel and Distributed Processing

Symposium, IEEE Workshop on Massively Parallel Processing, Ft. Lauderdale,

FL, Abstract on p. 249, full text on CDROM, 2002.

M. Atwabh, J. Baker, S. Akl, An associative implementation of Graham’s convex

hull algorithm, in: Proc. of the Seventh IASTED International Conference on

Parallel and Distributed Computing and Systems, 1995, pp. 273-276.

M. Atwah, J. Baker, S. Akl, An associative implementation of classical convex

hull algorithm, in: Proc. of the Eighth IASTED International Conference

on Parallel and Distributed Computing and Systems, Chicago, IL, 1996,

pp. 435-438.

A. Bansal, J. Potter, Exploiting data parallelism for efficient execution of logic

programs with large knowledge bases, in: Proceedings of the 2nd International

IEEE Conference on Tools for Artificial Intelligence, 1990, pp. 674-681.

[9] Y. Bar-Shalom, T.E. Fortmann, Tracking and Data Association, Academic Press,

1988.

[10] Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques and
Software, Artech House, Boston, Massachusetts, 1993.

[11] K. Batcher, STARAN/RADCAP hardware architecture, in: Sagamore Computer
Conf. on Parallel Processing, 1973, pp. 147-152.

[12] K. Batcher, STARAN parallel processor system hardware, in: National
Computer Conference and Exposition, AFIPS74, New York, NY, 1974,

. 405-410.

[13] K. Batcher, The multi-dimensional access memory in STARAN, in: Sagamore
Computer Conf. on Parallel Processing, 1975, pp. 167-168.

[14] K. Batcher, The flip network in STARAN, in: International Conf. on Parallel
Processing, 1976, pp. 65-71.

[15] K. Batcher, STARAN series E, in: International Conf. on Parallel Processing,
1977, pp. 140-143.

[16] K. Batcher, The multi-dimensional access memory in STARAN, IEEE Transac-
tions on Computers C-26 (2) (1977) 174-177.

[17] P. Berra, Some problems in associative processor applications to database
management, in: Proceedings of the National Computer Conference and
Exposition, 1974, pp. 1-5.

5

[6

[7

[8



M. Yuan et al. /. Parallel Distrib. Comput. 73 (2013) 256-272 271

[18] P.Berra, E. Oliver, The role of associative array processors in database machine
architecture, IEEE Transactions on Computers 4 (1979) 53-61.

[19] H.Blom,Y.Bar-Sharlom, The interacting multiple model algorithm for systems
with Markovian switching coefficients, IEEE Transactions on Automatic
Control 33 (8) (1988) 780-783.

[20] H.A.P.Blom, R.A. Hogendoorn, B.A. vanDoorn, Design of a multisensor tracking
system for advanced air traffic control, in: Y. Bar-Shalom (Ed.), Multitarget-
Multisensor Tracking: Application and Advances, Vol. 2, Artech House, 1990,
pp. 31-63.

[21] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, Parallel
Programming in OpenMP, first ed., Morgan Kaufmann, 2000.

[22] W. Chantamas, ]. Baker, A multiple associative model to support branches in
data parallel applications using the manager-worker paradigm, in: Proc. of
the 19th International Parallel and Distributed Processing Symposium (WMPP
Workshop), 2005, pp. 266-273.

[23] W. Chantamas, ]. Baker, A software implementation of a cycle precision
simulator of a multiple associative model, in: Proc. of the IASTED PDCS 2010,
Marina del Rey, CA, November 2010, (724), 8 pages, Informatics 2010.

[24] W. Chantamas, ]. Baker, M. Scherger, An extension of the ASC language
compiler to support multiple instruction streams in the MASC model using
the manager-worker paradigm, in: Proc. of the 2006 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA
2006), 2006, pp. 521-527.

[25] Y.-J. Chiang, ].T. Klosowski, C. Lee, ].S.B. Mitchell, Geometric algorithms
for conflict detection/resolution in air traffic management, in: 36th IEEE
Conference on Decision and Control, San Diego, CA, 1997, pp. 1835-1840.

[26] Clearspeed technology plc. Clearspeed whitepaper: CSX processor architec-
ture, 2007. URL: http://www.clearspeed.com/docs/resources/.

[27] Clearspeed technology plc. Clearspeed whitepaper: clearspeed software
description, 2007. URL: https://support.clearspeed.com/documents/.

[28] Clearspeed technology plc. CSX600 runtime software user guide, 2007.
URL: https://support.clearspeed.com/documents/.

[29] E. Eddey, W. Meilander, Application of an associative processor to aircraft
tracking, in: Proceedings of the Sagamore Computer Conference on Parallel
Processing, Springer-Verlag, 1974, pp. 417-428.

[30] M. Esenwein, String matching algorithms for an associative computer,
Master’s Thesis, Department of Computer Science, Kent State University, 1995.

[31] M. Esenwein, J. Baker, VLCD string matching for associative computing and
multiple broadcast mesh, in: Proc. of the IASTED International Conference on
Parallel and Distributed Computing and Systems, 1997, pp. 69-74.

[32] FAA grants for aviation research program solicitation, 2011. URL: http://www.
tc.faa.gov/logistics/grants/.

[33] FAA grants for aviation research program solicitation No. FAA-06-01, 2011.
URL: http://www.tc.faa.gov/logistics/grants/solicitation/97solict.doc.

[34] FAA's nextgen implementation plan, 2011. URL: http://www.faa.gov/nextgen/
media/ng2011_implementation_plan.pdf.

[35] Federal aviation agency 1963 ATC specifications, 1963. URL: http://www.cs.
kent.edu/parallel/papers/FAAspecifications.pdf.

[36] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, New York, 1979.

[37] J. Gustafson, B. Greer, Clearspeed whitepaper: accelerating the intel math
kernel library, Tech. Rep., 2007. URL: http://www.clearspeed.com/docs/
resources/ClearSpeedIntelWhitepaperFeb07.pdf.

[38] S. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, P. Dubey, Clearpath:
highly parallel collision avoidance for multi-agent simulation, in: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), ACM,
2009, pp. 177-187.

[39] T. Hasten, An OPS5 implementation on a SIMD computer, Master’s Thesis,
Department of Computer Science, Kent State University, 1987.

[40] 1. Hwang, H. Balakrishnan, K. Roy, C. Tomlin, Multiple-target tracking and
identity management in clutter for air traffic control, in: Proceedings of the
AACC American Control Conference, Boston, MA, 2004.

[41] 1. Hwang, J. Hwang, C. Tomlin, Flight-mode-based aircraft conflict detection
using a residual-mean interacting multiple model algorithm, in: Proceedings
of the AIAA Guidance, Navigation, and Control Conference, Austin, Texas, 2003.

[42] 1. Hwang, C. Tomlin, Protocol-based conflict resolution for finite information
horizon, in: Proceedings of the AACC American Control Conference, Anchorage,
Alaska, 2002.

[43] M. Jin, ]. Baker, Two graph algorithms on an associative computing model,
in: International Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA, Las Vegas, 2007, p. 7.

[44] M. Jin, ]. Baker, K. Batcher, Timings for associative operations on the MASC
model, in: Proc. of the 15th International Parallel and Distributed Processing
Symposium, IEEE Workshop on Massively Parallel Processing, San Francisco,
CA, 2001, pp. 193-200.

[45] S. Kahne, 1. Frolow, Air traffic management: evolution with technology, IEEE
Control Systems Magazine 16 (4) (1996) 12-21.

[46] ]. Krozel, M. Peters, K. Bilimoria, C. Lee, J. Mitchell, System performance char-
acteristics of centralized and decentralized air traffic separation strategies,
in: Fourth USA/Europe Air Traffic Management Research and Development
Seminar, 2001.

[47] J. Kuchar, L. Yang, A review of conflict detection and resolution modeling
methods, IEEE Transactions on Intelligent Transportation Systems 1(4) (2000)
179-189.

[48] D. Lainiotis, Partitioning: a unifying framework for adaptive systems I:
estimation, Proceedings of the IEEE 64 (1976) 1126-1142.

[49] K. Lakshmanan, S. Kato, R. Rajkumer, Scheduling parallel real-time tasks
on multi-core processors, in: Proc. of the 31st IEEE Real-Time Systems
Symposium, RTSS’10, San Diego, CA, 2010, pp. 259-268.

[50] J. Lee, Developing parallel SIMD algorithms for the traveling salesman
problem, Master’s Thesis, Department of Computer Science, Kent State
University, 1989.

[51] X.Li,Y.Bar-Shalom, Design of an interacting multiple model algorithm for air
traffic control tracking, IEEE Transactions on Control Systems Technology 1 (3)
(1993) 186-194.

[52] K. Liu, Composition of Kalman and heuristic tracking algorithms for air
traffic control, Master’s Thesis, Department of Computer Science, Kent State
University, 1999.

[53] A. Marowka, Back to thin-core massively parallel processors, IEEE Computer
Journal 44 (12) (2011) 49-54.

[54] E. Mazor, A. Averbuch, Y. Bar-Shalom, J. Dayan, Interacting multiple model
methods in tracking: a survey, IEEE Transactions on Aerospace and Electronic
Systems 34 (1) (1998) 103-123.

[55] W. Meilander, STARAN an associative approach to multiprocessing, in: Mul-
tiprocessor Systems, Infotech State of the Art Reports, Infotech International,
1976, pp. 347-372.

[56] W. Meilander, ASPRO-VME Hardware/Architecture, eR3418-5 LORAL Defense
Systems, 1992.

[57] W. Meilander, ]. Baker, M. Jin, Predictable real-time scheduling for air traffic
control, in: Fifteenth International Conference on Systems Engineering, 2002,
pp. 533-539.

[58] W. Meilander, J. Baker, M. Jin, Importance of SIMD computation reconsidered,
in: Proc. of the 17th International Parallel and Distributed Processing
Symposium, IEEE Workshop on Massively Parallel Processing, Nice, France,
2003.

[59] W. Meilander, M. Jin, ]J. Baker, Tractable real-time air traffic control
automation, in: Proc. of the 14th IASTED International Conference on Parallel
and Distributed Computing and Systems, PDCS, Cambridge, MA, 2002,
pp. 483-488.

[60] P. Menon, G. Sweriduk, B. Sridhar, Optimal strategies for free flight air traffic
conflict resolution, Journal of Guidance, Control, and Dynamics 22 (2) (1999)
202-211.

[61] M. Nolan, Fundamentals of Air Traffic Control, third ed., Brooks, Cole,
Wadsworth, 1998.

[62] OpenMP Website, 2010. URL: http://openmp.org/wp/.

[63] R.Paielli, H. Erzberger, Conflict probability estimation for free flight, Journal of
Guidance, Control, and Dynamics 20 (3) (1997) 588-596.

[64] K. Park, N. Singhal, M. Lee, S. Cho, C. Kim, Design and performance evaluation
of image processing algorithms on GPUs, IEEE Transactions on Parallel and
Distributed Systems 22 (1) (2011) 91-104.

[65] ]. Potter, ASC Software, includes a Primer, Windows Compiler, and Windows
Emulator, 1992. can be downloaded at: URL: http://www.cs.kent.edu/
~parallel/.

[66] J. Potter, Associative Computing: A Programming Paradigm for Massively
Parallel Computers, Plenum Press, New York, 1992.

[67] ]. Potter, ]. Baker, S. Scott, A. Bansal, C. Leangsuksun, C. Asthagiri, ASC: an
associative-computing paradigm, Computer 27 (11) (1994) 19-25.

[68] J. Potter, M. Rivett, T. Hasten, Rule-based systems on SIMD computers,
in: Proceedings of ROBEXS, 1987, pp. 198-204.

[69] M. Prandini, J. Hu, J. Lygeros, S. Sastry, A probabilistic approach to aircraft
conflict detection, IEEE Transactions on Intelligent Transportation Systems 1
(4) (2000) 199-219.

[70] B. Reed, The ASPRO parallel inference engine (P.LE.): a real time production
rule system, Tech. Rep. 85-6048, 1985.

[71] B. Reed, An implementation of LISP on a SIMD parallel processor, in: First
annual aerospace applications of Al, Dayton, 1985, pp. 81-90.

[72] J.A.Rudolph, A production implementation of an associative array processor —
STARAN, in: The Fall Joint Computer Conference, FJCC, Los Angeles, CA, 1972.

[73] K. Schaffer, R. Walker, A prototype multithreaded associative SIMD processor,
in: Proceedings of the 21st International Parallel and Distributed Processing
Symposium (IPDPS)-Workshop on Advances in Parallel and Distributed
Computing Models, APDCM, Long Beach, CA, 2007, p. 228.

[74] S. Steinfadt, ]. Baker, SWAMP: Smith-Waterman using associative massive
parallelism, in: IEEE Workshop on Parallel and Distributed Scientific
and Engineering Computing, 2008 International Parallel and Distributed
Processing Symposium, IPDPS, Miami, FL, 2008.

[75] S. Steinfadt, M. Scherger, J. Baker, A local sequence alignment algorithm
using an associative model of parallel computation, in: Proc. of IASTED
Computational and Systems Biology, CASB 2006, Dallas, TX, 2006, pp. 38-43.

[76] G. Steele, W. Hillis, Connection machine lisp: fine-grained parallel symbolic
processing, in: Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, ACM, New York, NY, 1986, pp. 279-297.

[77] D. Sworder, ]. Boyd, Estimation Problems in Hybrid Systems, Cambridge
University Press, 1999.

[78] The initial video of the performance of the STARAN on ATC is posted at URL:
http://www.cs.kent.edu/~jbaker/ATC/ and http://youtu.be/liNwZhdKbVs. This
is a 1987 reproduction of part of the original 16 mm film made in 1972. We
plan to post an improved version called the second video here as soon as
possible, 2012.

[79] J. Trahan, M. Jin, W. Chantamas, ]J. Baker, Relating the power of the
multiple associative computing model (MASC) to that of reconfigurable bus-
based models, Journal of Parallel and Distributed Computing 70 (2010)
458-466.

[80] D. Ulm, J. Baker, Solving a 2D Knapsack problem on an associative computer
augmented with a linear network, in: Proc. of the International Conference on
Parallel and Distributed Processing Techniques and Applications, Sunnyvale,
CA, 1996, pp. 29-32.



272 M. Yuan et al. /. Parallel Distrib. Comput. 73 (2013) 256-272

[81] R. Walker, J. Potter, Y. Wang, M. Wu, Implementing associative processing:
rethinking earlier architectural decisions, in: Proceedings of the 15th
International Parallel and Distributed Processing Symposium, Workshop on
Massively Parallel Processing, San Francisco, CA, abstract on page 195, full text
on accompanying CDROM, 2001.

[82] B. Wilkinson, M. Allen, Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers, Prentice Hall, 1999.

[83] L.Yang, J. Kuchar, Prototype conflict alerting logic for free flight, AIAA Journal
of Guidance, Control, and Dynamics 20 (4) (1997) 768-773.

[84] M. Yuan, A SIMD approach to large-scale real-time system air traffic control
using associative processor and consequences for parallel computing, Ph.D.
Thesis, Department of Computer Science, Kent State University, 2012.

[85] M. Yuan, J.W. Baker, F. Drews, W. Meilander, Efficient implementation of air
traffic control (ATC) using the clearspeed CSX620 system, in: Proc. of the 21st
IASTED International Conference on Parallel and Distributed Computing and
Systems, PDCS, Cambridge, MA, 2009, pp. 353-360.

[86] M.Yuan,].W.Baker, F. Drews, L. Neiman, W. Meilander, An efficient associative
processor solution to an air traffic control problem, in: Large Scale Parallel
Processing IEEE Workshop at the International Parallel and Distributed
Processing Symposium, IPDPS2010, Atlanta, GA, 2010.

[87] M. Yuan, J. Baker, W. Meilander, K. Schaffer, Scalable and efficient associative
processor solution to guarantee real-time requirements for air traffic control
systems, in: Large Scale Parallel Processing IEEE Workshop at the International
Parallel and Distributed Processing Symposium, IPDPS (2012), Shanghai,
China, 2012, pp. 1682-1689.

Man (Mike) Yuan is currently a Ph.D. candidate in
computer science at Kent State University. He also
received his M.S. in computer science from the University
of Western Ontario in 2003 and his B.S. in computer
science from Hefei University of Technology, China in
2001. His research interests include: high performance
computing, parallel algorithms, parallel and distributed
computing, associative SIMD computing, and real-time
systems, e.g., large scale real-time air traffic control using
associative SIMD. He has published papers in IEEE IPDPS
and various other international conferences. He is a
member of both ACM and IEEE Computer Society.

Johnnie W. Baker received his B.A. degree from Hardin-
Simmons University and his M.S. and Ph.D. degree in
mathematics from the University of Texas at Austin. He
was a faculty member at Florida State University prior to
joining the faculty at Kent State University in 1973. Besides
computer science, he has published in mathematics,
computational chemistry, and bioinformatics. Baker’s
current research interests in parallel computing include
parallel algorithms, parallel modeling and simulation,
associative SIMD processors (AP) and multi-AP (or MASC)
computing, and real-time air traffic control using an
associative processor. He has refereed for many conferences and journals, served as
an editor for Parallel Processing Letters for over 15 years, been a continuous member
of the organizing committee of both the Massively Parallel Programming and the
Large Scale Parallel Processing workshops at the IPDPS Conference, and regularly
been a member of several conference and workshop programming committees. He
is a member of both ACM and IEEE Computer Society.

Will C. Meilander received his B.S. degree in 1942. He
joined the US Naval Research Laboratory and installed
techniques for rendering German U-boats relatively use-
less. He spent 10 years in Civil Service, and joined
Goodyear Aerospace in 1952 after studying the “Whirl-
wind” computer system at MIT. He worked with analog
and digital computers and systems and received several
patents in the area. He led the Computer Development
group in developing STARAN and ASPRO. After retiring in
1983 he became a professor (adjunct) at Kent State Univer-
sity in the Computer Science arena. He taught computer
architecture and database management with emphasis on simultaneous parallel
processing systems. He retired from Kent State in 2003. His current interest is real-
time database design technology offering Associative Processor systems that greatly
exceed current real-time multiprocessor capability.



