
Solving a 2D Knapsack Problem on an
Associative Computer Augmented with a Linear Network

Darrell R. Ulm and Johnnie W. Baker
Department of Mathematics and Computer Science

Kent State University Kent, OH 44242
dulm@mcs.kent.edu jbaker@mcs.kent.edu

Abstract

This paper describes a parallelization of the sequential dynamic programming
method for solving a 2D knapsack problem where multiples of n rectangular ob-
jects are optimally packed into a knapsack of size L �W and are only obtainable
with guillotine-type (side to side) cuts. The parallel algorithm is described and
analyzed for the associative model. The associative model (ASC) for parallel com-
putation supports a generalized version of an associative style of computing that
has been used since the introduction of associative SIMD computers in the early
1970's. In particular, this model supports data parallelism, constant time maximum
and minimum operations, one or more instruction streams (ISs) which are sent to
an equal number of partition sets of processors, and assignment of tasks to the ISs
using control parallelism. This algorithm runs in O(W (n+L+W)) time using O(L)
processors, where L �W for a 2D knapsack problem with a capacity of L�W . This
result is cost optimal with respect to the best sequential implementation. Moreover,
an e�cient ASC algorithm for this well-known problem should give insight to how
the associative model compares to other parallel models.

Keywords : 2D knapsack problem, associative computing, ASC parallel algorithms, optimization.

1 Introduction

A knapsack problem requires �nding a subset from a set of objects such that the sum of
the object pro�ts is maximized while not exceeding the knapsack size or violating any other
constraints. Such problems appear in computer science and operations research, e.g. in cutting
stock applications. The 2D problem is related to the well studied 0-1 knapsack problem which
has been solved e�ciently with linear systolic arrays[1].

Several 2D knapsack algorithms considering many problem constraints are known[2][3].
The problem examined herein is in the class NP, but it can be solved sequentially inO(LW (n+
L+W)) [2], where n is the number of objects, and L andW are the dimensions of the knapsack.
This running time is called pseudo-polynomial because in terms of the input size, the knapsack
capacity is encoded in only log2(L) + log2(W) bits. Past work on this problem has addressed
solutions for more complex models using the hypercube or the mesh with multiple buses
(MMB) networks[4][5].

2 The 2D knapsack problem

The 2D knapsack problem requires �lling an area of dimensions (L;W) with n rectangles of size
(li; wi) where i = 1; 2; : : : ; n. The pro�ts are non-negative values, �1;�2; : : : ;�n, associated
with each rectangle. With these parameters, the maximum pro�t of �1z1+�2z2+: : :+�nzn is
to be computed where zi is a non-negative integer such that the knapsack is partitioned into zi
multiples of rectangle i, having the size (li; wi) [2]. This cutting problem allows only recursive
side-to-side or guillotine cuts of the knapsack. Thus all cuts must be made perpendicular
from one edge of a rectangle to the other. Objects may have a �xed orientation or be allowed
to rotate 90o. An additional n objects of dimensions (wi; li) with pro�t �i, are added when
rotations are allowed. Algorithms to solve this type of problem include tree searching or
dynamic programming which this work uses[1][4][5][6].

The knapsack function F (x; y), derived from dynamic programming techniques, is com-
puted such that for a location (x; y), F (x; y) is the largest pro�t obtainable from the rect-
angle created by the X and Y axes and the point (x; y). It satis�es the following in-
equalities corresponding to the guillotine cutting restrictions: 0 � x � L, 0 � y � W ,
F (x; y) � 0, F (x1 + x2; y) � F (x1; y) + F (x2; y), F (x; y1 + y2) � F (x; y1) + F (x; y2),
F (li; wi) � �i (i = 1; : : : ; n)[2].

3 The multiple IS associative computing model (ASC)

This section describes the associative model of computation presented in the IEEE Computer
article "ASC: An Associative Computing paradigm," which is based on work done at Kent
State University[7]. A more complete reference can be found in [7] and in this proceedings in
a paper entitled "Virtual Parallelism by Self Simulation of the Multiple Instruction Stream
Associative Model."[8]. In the most basic terms, the associative model (ASC) has an large
number of processing elements (PEs) and one or more instruction streams (ISs) that broadcast
their commands to partition sets in a dynamic partition of PEs. The number of ISs is normally
expected to be small in comparison to the number of PEs. The multiple ISs supported by
the ASC model allows greater e�ciency,
exibility, and recon�gurability than is possible with
only one IS. An ASC machine with j ISs and n PEs will be written as ASC(n; j). An IS sends
its instructions to the PEs over a bus, and the ISs should be considered to be local to the
PEs in terms of hardware. Each PE has a local memory and ASC supports the associative
processing concept which is to locate objects in the local memory of the PEs by content
instead of location. This is accomplished by having each active PE search a speci�ed �eld in
its local memory for a given data item in parallel. Each PE is capable of performing local
arithmetic and logical operations and the other usual functions of a sequential processor, but
each PE is assumed to be reasonably basic so that the maximum number of PEs can be
integrated on a chip. Additionally, the associative computer is assumed to be equipped with
an interconnection network between the PEs. While there is no restriction on the network
allowed for the ASC model, some of the most obvious choices are the 1D, 2D, and 3D mesh
because of their ease to implement in VLSI and their expandability[9][7]. A diagram of ASC
is shown in Figure 1.

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

P
E

N
E
T
W
O
R
K

Sequential
control 1
(IS #1)

Sequential

Instruction Streams

control j
(IS #j)

 Cells

Inactive Link
Active Link

N
E
T
W
O
R
K

I
S

Figure 1: The ASC Model

4 The parallel algorithm

A 2D knapsack algorithm for the single IS model with a 1D mesh (linear) network is presented
in this section. This simple network is needed to propagate pro�t values down the array as
the algorithm progresses. The 2D knapsack example shows how an algorithm with complex
parallel dependencies can be mapped e�ciently to the ASC model, and solved the problem
without the use of complex networks such as the hypercube. Also, this problem and other
problems implemented in ASC provides greater insight to how well the ASC model compares
to other parallel models.

The parallelization given in Figure 2 is accomplished by �rst noting that any at location
in the array, Fa;b is dependent on other Fi;j entries at lower subscripted positions. In fact,
the only values needed are those in row a and column j with j � b and those in column b and
row i with i � a. This data dependency prevents a row or column of F values from being
computed in parallel, but a diagonal set of F values can be calculated concurrently. Since
the number of diagonals traversed is O(L+W), O(maxfL;Wg) iterations are needed to scan
every diagonal.

Let Pi;j be a processor located inside the diagonal region, diag=2 � i + j � diag, where
diag is an integer denoting the current diagonal. The F value at this processor contributes
to calculating Fdiag�j;j and Fi;diag�i. The parallel variables Vi;j and Hi;j contain shifted Fi;j
values that are added to the current location for vertical and horizontal directions respectively.
In each iteration these values shift to the next location, and a new set of values is appended to
the shifting parallel variables Vi;j andHi;j. These shifting operations use 1D mesh connections
such that one horizontal shift for H is completed in unit time where there are O(W) horizontal
shifts required. Shifting V values inside each PE takes O(W) time as does scanning for the
largest F value in each PE. After the sums are collected in participating processors, the
maximum of all sums is computed from variables sumVi;j and sumHi;j for each row and
column, and the result is stored in the array location that row or column's diagonal. This is
done for vertical sums using the constant time ASC maximum function O(W) times, and in a
second step for horizontal sums, the PEs scanning through F values in O(W) iterations. Thus
for each column, the maximum of sumVdiag�j;j through sumV(diag�j)=2;j is computed, storing
the result in location Fdiag�j;j on the current diagonal. Likewise, a for each row the maximum
of sumHi;diag�i through sumHi;(diag�i)=2 is computed, saving the result in Fi;diag�i.

1 if (L < W)
swap(L;W)
for k 1 to n swap(li; wi)

2 for all processors Pi do in parallel
2:1 for j 0 to W do Fi;j 0 , Vi;j 0 , Hi;j 0
2:2 for k 1 to n

for j 0 to W do
if (i � lk and j � wk) Fi;j maxfFi;j ;�kg

3 diag 2
4 while (diag � L+W) do
4:1 for j 0 to W do

if (diag � i+ j and i > 0 and j > 0) Vi;j Vi�1;j, Hi;j Hi;j�1

4:2 for j 0 to W do
if (i � 2 + j = diag) Vi;j Fi;j
if (j � 2 + i = diag) Hi;j Fi;j

4:3 for j 0 to W do
if (diag=2 � i+ j � diag) sumVi;j Fi;j + Vi;j, sumHi;j Fi;j +Hi;j

4:4 for j 0 to W do
Fdiag�j;j ASCMax(sumVdiag�j;j; sumVdiag�j�1;j; :::; sumV(diag�j)=2;j)

4:5 maxi 0
4:6 for j 1 to W do

if (maxi < sumHi;diag�1�j) maxi sumHi;diag�1�j

4:7 Fi;diag�i maxi
4:8 diag diag + 1

Figure 2: (L,1)ASC Implementation of the 2D Knapsack Algorithm

5 Algorithm analysis

Analysis of the running time of the algorithm can be found by examining the steps in Figure
2. Step 1 takes O(n) time to scan through the objects while 2:1 needs O(W) to initialize the
F , V , and H values since each of the L PEs holds these arrays of size W . Step 2:2 computes
static pro�t maximums wherever an object will �t. This requires scanning the L parallel
arrays of size W for each of the n objects, which requires O(nW) time. The outer loop in step
4 scans O(L+W) diagonals. Sub-steps 4:1, through 4:6 each take O(W) steps because of the
looping through the parallel arrays. The maximum function for ASC in step 4:5 completes in
constant time. The asymptotic time to read the input of O(n) objects is no greater than the
running time of the algorithm itself. Thus the total execution time of the ASC algorithm is
O(n) +O(nW) +O(W (L+W)) which reduces to O(W (n+L+W)). Preliminary run-times
on the Wavetracer indicate that the analytical time accurately predicts the actual runtime on

a SIMD machine.
The bene�t of the associative version is that the number of processors is cost-optimal

in relation to the sequential dynamic programming algorithm when the dimensions of the
rectangular knapsack are asymptotically the same. That is, even though the speed of the
resulting program is not as great as the CRCW PRAM version (i.e. O(n+L+W) with LW
PEs), the cost (i.e. the number of processors times the parallel execution time) equals the
running time of the sequential version.

6 Summary

In this paper an algorithm for the 2D knapsack problem is given for the associative model
with one IS augmented with a linear array network. This algorithm has a time complexity of
O(W (n+ L+W)) and requires O(L) processors, where L � W . Table 1 shows comparative
results for this algorithm and previous implementations. Lastly, by adding a su�cient (and
non-constant) number of instruction streams to the model, a knapsack algorithm with a
better runtime should be possible. Though there is not space here to make an adequate
presentation, it is conjectured that ASC(LW,j) with a mesh network can solve the problem in
O((n+ L+W)max(L;W)=j).

Table 1: Comparative Running Times for the 2D Knapsack Algorithm
Model Time Processors Cost Optimal

Sequential O(LW (n+ L+W)) 1 [2]
CRCW PRAM O(n+ L+W) O(LW) YES[4]

2D Mesh O(Max(L;W)(n+ L+W)) O(LW) NO[4]
Hypercube O((log2Max(L;W))(n+ L+W)) O(LW) NO[4]
MMB O(n+ L+W) O(LW) YES[5]

ASC(L; 1) + 1D Mesh O(W (n+ L+W)) where L �W O(L) YES

References

[1] R. Andonov V. Aleksandrov. A systolic linear array for the knapsack problem. Parallel
and Distributed Processing, 17:285{299, 1991.

[2] P.C. Gilmore and R.E. Gomory. Multistage cutting stock problems of two or more dimen-
sions. Operations Research, 13:94{120, 1965.

[3] J.C. Herz. Recursive computational procedure for two-dimensional stock cutting. IBM J.
Res. Develop., 16:462{469, 1967.

[4] P.Y. Wang D. Ulm. Solving a two-dimensional knapsack problem on simd computers. In
International Conference on Parallel Processing, volume 3, pages 181{184, 1992.

[5] D. Ulm and J.W. Baker. Solving a two-dimensional knapsack problem on a mesh with
multiple buses. In International Conference on Parallel Processing, volume 3, pages 168{
171, 1995.

[6] P.Y. Wang. Two algorithms for constrained two-dimensional cutting stock problems.
Operations Research, 31(3):573{586, 1983.

[7] J. Potter J. Baker S. Scott A. Bansal C. Leangsuksun C. Asthagiri. Asc: An associative
computing paradigm. IEEE Computer, pages 19{25, November 1994.

[8] D. Ulm and J.W. Baker. Virtual parallelism by self simulation of the multiple instruction
stream associative computer. In Proceedings of the International Conference on Parallel
and Distributed Processing, Sunnyvale CA, August 1996.

[9] J.L. Potter. Associative Computing | A Programming Paradigm for Massively Parallel
Computers. Plenum Publishing, N.Y., 1992.

