
Virtual Parallelism by Self Simulation

of the Multiple Instruction Stream Associative Model

Darrell R. Ulm and Johnnie W. Baker
Department of Mathematics and Computer Science
Kent State University: Kent, OH 44242 U.S.A.
dulm@mcs.kent.edu jbaker@mcs.kent.edu

Abstract

The ASC model for parallel computation supports a generalization of an associative
style of computing that has been used since the introduction of associative SIMD
computers in the early 1970's. In particular, this model supports data parallelism,
constant time maximum and minimum operations, one or more instruction streams
(ISs) which are sent to an equal number of partition sets of processors (PEs), and
assignment of tasks to the ISs using control parallelism. Since problems often need
more processors than a machine has, it is useful to have virtual processors simulated
by existing architectures. This paper shows how virtual parallelism is possible where
more PEs and ISs are simulated than the actual hardware possesses. The extra time
needed for an ASC(n,j) machine to simulate an ASC(N,J) machine where N � n
and J � j is O(N

n
+ J

j
+ min(N

n
; J) � min(n; J

j
)) while the extra space required

is O(N
n
+ J) per PE. The overall results provide an important step in de�ning the

usability of the ASC model in terms of both existing one IS machines and future
machines supporting multiple ISs.

Keywords : computational models, simulation, associative computing, ASC, data parallel, massively

parallel, SIMD, MSIMD, virtual parallelism, parallel algorithms

1 Introduction

Virtual parallelism allows the number of processors in terms of the programmers view to be
larger than the actual number of processors. Self simulation algorithms ensure that large
problems can be solved on a virtual machine without the user having to 'hard-code' his
program for the actual number of processors on the machine. Here we will show a method
for self simulation on an associative architecture with the possibility of having more than
one instruction stream. The simulation algorithm is general enough for the host architecture
to be essentially SISD, SIMD, or MIMD, and some comments are made later in this paper
concerning how well such a simulation would work in a distributed environment. In the case
where the host machine is actually the same model that the simulation uses (e.g. ASC or
MSIMD) the assumption is made that that the communication steps take constant time.
Times are also given considering times needed for the required communication on generic
networks.

2 The multiple IS associative computing model (ASC)

This section introduces the associative model of computation presented in the IEEE Com-
puter article "ASC: An Associative Computing Paradigm," which is based on work done at
Kent State University[1]. In this paper algorithms are investigated for ASC to simulate an
ASC machine with more processors and instruction streams. In the most basic terms, the
associative model (ASC) has an large number of processing elements (PEs) and one or more
instruction streams (ISs) that broadcast their commands to partition sets in a dynamically
recon�gurable partition of the PEs. A likely implementation of ASC is to have one electronic

or optical bus joining each IS to all PEs although many networks could be used to connect
these components. An ASC machine with j ISs and n PEs will be written as ASC(n; j).
The number of ISs is normally expected to be small in comparison to the number of PEs.
The multiple ISs supported by the ASC model allows greater e�ciency,
exibility, and recon-
�gurability than is possible with only one IS. Typically, an IS is not to be confused with a
host processor which sends its instructions rather ine�ciently to PEs over a loosely coupled
network; instead an IS sends its instructions to the PEs over a bus, and the ISs should be
considered to be local to the PEs in terms of hardware. Each PE has a local memory and
ASC supports the associative searching concept, which is to locate objects in the memory by
content instead of by location. This is accomplished by checking a speci�ed �eld of each active
PE for a given data item[2]. Each PE is capable of performing local arithmetic and logical
operations and the other usual functions of a sequential processor, but each PE is assumed
to be reasonably basic so that a maximum number of PEs can be integrated on a chip. It
is argued that this trade o� of complexity for more processors gives a better cost for perfor-
mance ratio over implemented MIMD system[3]. ASC is a model for a currently buildable,
massively parallel multi-purpose computer which is easy to program and can execute many
types of programs e�ciently. A parallel computer with these characteristics is greatly needed
if parallel computing is ever to be generally accepted by industry and the general public. The
ASC model is intended to standardize the meaning of associative computing and to provide
a basis for complexity analysis for associative algorithms. Moreover a programming language
(also called ASC) has been designed for ASC with one instruction stream and implemented
on several SIMD computers including Thinking Machine's CM-2, the Wavetracer, and the
Goodyear/Loral ASPRO. Plans are in the works for a distributed version of ASC that could
run on any UNIX system that supports ANSI-C and the MPI communication library. In
addition, an e�cient simulator has been implemented on both PCs and Workstations running
UNIX[4][1]. A wide range of di�erent types of algorithms and several large programs have
been implemented using the ASC language including a parallel optimizing compiler for ASC,
two rule-based inference engines, and an associative PROLOG interpreter[4][1].

Furthermore, the associative computer is assumed to be equipped with an interconnection
network between the PEs[5]. There is no restriction on the networks allowed for the ASCmodel
and the network could potentially be the mesh, shu�e-exchange, Batcher's Flip Network,
hypercube, or the De-Brujiun network[6]. However, some of the most obvious choices are a
linear array or a mesh because of their ease to implement in VLSI and their expandability. It
is also reasonable that there is some network connecting the ISs however it is not necessary
since IS communications could be handled through the network connecting the ISs to the PEs.
While all of the algorithms and programs mentioned at the end of the preceding paragraph
were implemented without the use of any network, numerous associative programs using one
IS have also been implemented using a network. The fact that the algorithms and programs
mentioned in the preceding paragraph have been implemented without the use of a network
illustrate that the simplest ASC model is quite powerful. In the remainder of this paper, we
will not assume the ASC model has a network, which will determine how well the single IS
and the multiple IS models without an interconnection network perform self simulation. A
diagram of ASC is shown in Figure 1.

3 Simulation of a parallel model

When the simulation of a model is performed, there are various operations to consider. For
parallel models, the operations that need to be simulated are parallel execution of processors
and the data movement between processors[7][8]. These operations are de�ned by mapping
processor resources from one model to another in terms of the operations that need to be sim-
ulated. When the time complexity of each operation performed in a cycle of the simulation is
divided by the complexity to perform the same operations on the machine being simulated,
the maximum resulting time gives the slowdown of the simulation and also an indication of the
relative powers of the two machines [9][10][11][12][13]. The crucial operations for simulation
of the associative model (ASC) are speci�ed in the following text. Assumptions concerning
control parallelism and IS synchronization times are also given in order to simplify the sim-
ulation somewhat[3]. Another form of simulation is self-simulation (e.g., virtual parallelism)
which is useful when real problems exceed the size of a machine and virtual processors are

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

P
E

N
E
T
W
O
R
K

Sequential
control 1
(IS #1)

Sequential

Instruction Streams

control j
(IS #j)

 Cells

Inactive Link
Active Link

N
E
T
W
O
R
K

I
S

Figure 1: The ASC Model

needed by an algorithm since no machine can have an in�nite number of processors. Self-
simulation shows how e�ciently a parallel machine can execute an algorithm for a problem
requiring more processors than are available[14]. A diagram showing an example of ASC
virtual parallelism is shown in Figure 2.

Memory PE

Memory PE

Memory PE

Memory PE
VIS 5

 Instruction Streams (ISs)
& Virtual ISs (VISs)

& Virtual Cells (VPEs)
 Cells (PEs+ memory)

Sequential

Control -1

(IS #1)

Sequential
Control -2
(IS #2)

VIS 2

1

2

3

4

5

Memory PE

VPE VPE VPE VPE

VPE VPE VPE VPE

VPE VPE VPE VPE

VPE VPE VPE VPE

VPE VPE VPE VPE

1

2

3

4

6

0

7

8

9

10

11

5

12

13

14

15

16

17

18

19

VIS 0

VIS 4

VIS 1

VIS 3

Figure 2: Example of Self Simulation on the ASC Model

4 Properties of ASC

The properties of the ASC model are in this section with the rules that govern each property
of ASC, and the rules are in list form for ease of reading.

1. THE PROPERTIES OF THE CELLS:

� Each cell contains a processing element (PE) and local memory.

� The memory of the associative processor is an array of cells.

� Each PE may only access the memory contained in its own cell.

� All the PEs are connected by a network (e.g. a linear array or a grid).

� Related data items are grouped into records. In addition, more cells are assumed to
exist than records, and at most one record is stored in each cell.

2. THE INSTRUCTION STREAM (IS) PROPERTIES:

� Each IS is a processor with a bus (actual or logical) to all cells. The IS processors
themselves are connected in some way (e.g. by shared memory, bus, or generic network),
and can communicate control information with each other in constant time. Each IS has
a copy of the program being executed and may broadcast an instruction or a word sized
data item to all cells in unit time. The PEs execute the IS instructions synchronously.

� Each cell listens to only one IS. Some or all of the cells can switch to a di�erent IS in
response to instructions from the current IS and local data in a cell.

� An active cell executes the instruction sent from its IS, while an inactive cell listens to
its IS but does not execute any of its commands. An IS may unconditionally activate
all cells listening to it.

� The number of cells is much greater than the number of IS's.

3. ASSOCIATIVE PROPERTIES:

� An IS can make all its active cells execute an associative search in constant time. Cells
which test positive on the search are called responders while the unsuccessful active
cells are called non-responders. The IS can make either the set of responders or non-
responders active. The previous set of active cells can also be restored. Any of these
actions are performed in constant time.

� Each IS has a dedicated responder bus.

� An IS can select a cell from the list of active cells in constant time. The IS cannot
specify which cell is selected.

� An IS can command the selected cell to place data on the responder bus. The other
cells listening to this bus receive this data value in constant time.

4. CONSTANT TIME GLOBAL OPERATIONS:

� An IS can compute the AND or OR of a boolean value in all active cells in unit time.

� An IS can �nd the cells containing the maximum or minimum of a value stored in each
active cell of its PEs in constant time.

5. CONTROL PARALLELISM:

� Cells with nothing to do are called idle cells and are assigned to a speci�ed IS which
manages idle cells. A subset of cells can be deallocated and reassigned to the group of
idle cells in unit time. Any idle cell can be allocated to an IS in unit time.

� When an IS is running a task that needs the results from two or more subtasks involving
data in strictly disjoint subsets of the active cells, control parallelism can be invoked by
assigning subtasks to idle ISs. The cells are returned to the originating IS when all of
its subtasks are completed.

5 Self simulation of ASC

The self simulation algorithm performs two basic operations. The �rst is to simulate more
PEs and ISs than actually exist so that extra processor resources are actually obtainable.
Virtual PEs (VPEs) are simulated with existing PEs where each PE contains roughly an
equal amount of virtual PEs. Thus each VPE must have space allocated for registers, ports,
and memory as a real PE would possess. Similarly virtual ISs (VISs) are simulated by the
ISs and need storage for program counters, registers, and local memory.

The second part of the simulation is to write ASC code for the real machine that will
simulate a single cycle of the virtual ASC machine. This code must be able to execute local
VPE operations, update VIS information as dictated by program
ow and handle the transfer
of data between VPEs and VISs. An ASC machine can only execute a �nite number of
operations, some of which transfer data between PEs and ISs. The data movement operations
include broadcasting a value from an IS to a set of PEs, reading a value from a single PE to
an IS, and performing data reduction from a set of PE data to a single value in an IS. The
size of the virtual machine is dependent on the amount of memory in each processor, but it
can be assumed that enough memory is present to simulate the amount of virtual processors
needed.

The algorithm to simulate an ASC(N,J) machine with an ASC(n,j) machine is shown in
Figure 4 and Figure 5 where N � n and J � j. Many addressing methods can be used to map
VPEs to PEs and VISs to ISs, and the following method is a suggested mapping. The virtual
processor V ISx will be simulated by ISk where k = (x MOD j) and 0 � x � J�1. Moreover,
V ISx is addressed by the IS that emulates it by the index (x DIV j) where 0 � x � J � 1.
Similarly, V PEy is emulated by PEl where l = (y MOD n) and 0 � y � N � 1. V PEy is
addressed inside the cell it is stored with index (y DIV n) where 0 � y � N � 1.

The simulation algorithm has two phases that are executed each machine cycle. First,
all instructions are sent to VPEs from the appropriate VISs, and secondly once the virtual
instructions needed in a PE are present, each PE carries out the operations of the dN=ne
VPEs it simulates. This second phase also involves any operations that transfer data between
PEs and ISs. To make the algorithm more e�cient, the fact that each PE may not need
instructions for all J VISs is employed. Communication operations for one VIS that involve
several VPEs in a PE do not need more than a single communication between the PE and
IS due to the nature of the ASC operations. Therefore the identi�ers of the unique VISs
being listened to by the dN=ne VPEs in each PE are saved in a list. This list is of size
O(min(N=n; J)). Only the opcodes and data of the VISs that appear in a PE's list are ever
sent to that PE.

Figure 3 shows a diagram of how the data structures could be stored. The �gure shows
that each VPE is listening to some VIS, and a LISTi is formed by only including the unique
VIS numbers required by the VPEs. One simple way to determine if a VIS has already been
added to LISTi is including a boolean array of size J where the entry at index m is 1 if the
VIS has been added or 0 if it has not yet been added where 0 � m � J . Figure 3 shows this
boolean array called "IN -LISTi" for the VISs in the example LISTi. There is also a word
array or J entries used as a temporary data bu�er for operations in phase 2 of the algorithm
that move data either to or from the VPEs in the PE. This array is required so that any
data movement operations that involve several VPEs in a single PE only need to rendezvous
with an IS once. For instance, a datum broadcast from VIS number 5 is placed at location 5
of the data array. Later, when each VPE executes a local operation, the VPEs expecting a
broadcast from IS 5 copy the PE local value from the 5th entry of the temporary data bu�er.
Other data movement operations are carried out similarly.

5.1 Instruction send phase

For any given machine cycle the instruction broadcasting phase in Figure 4 is executed �rst
and then the data movement stage is executed second, as shown in Figure 5, all as part of
the same algorithm. The �rst stage forms lists in each PE of the VIS numbers used. A VIS
number is only added to a PE list if it hasn't already been added (see Figure 3). In this way,
multiple requests for the same VIS are handled at the same time. As mentioned above, one
possible way to check whether a VIS has already been added to the list is to use a boolean

0 1 2 3 4 5

IS h

VIS

0 1 2 3 4 5 6 7

i

8 9 10 11

1

0 1 2 3 4 5 6

Listens

temporary data buffer (of size J)

1025 nil nil nil

5 125025

DDDDData
i

INLIST
i

LIST
i

VPE

to VIS

111 0 0 0 0 0 0 0 0

PE

Figure 3: Data Structures used for Simulation inside each PE and IS

array of size J indicating whether a VIS has already been added.
As shown in Figure 4, line 1 handles the simulation of the J VISs with j ISs. There

are dJ=je VISs stored in each IS and, this step takes O(J=j) time to simulate the actions
of an IS. Such operations include updating program counters, fetching the next instruction
for each VIS, performing localized operations, and any other operations an IS can perform.
It is assumed that IS synchronization operations execute independently of the simulation
as functions executed on top of the real ASC architecture. Step 2 starts the data parallel
execution. Line 3 makes all PEs active and listening to IS0 which is considered the master or
initial IS, and line 4 clears VIS request lists. Step 5 loops through dN=ne VPEs in parallel,
and step 6 adds a VPE's VIS number to LISTi if not yet added. Figure 3 shows an example
of the data structures used to form LISTi.

The lists of VIS requests are now formed in each PE, and the algorithm is now ready to
send the VIS instructions to the appropriate PEs based on these lists. Line 7 proceeds to
loop through the lists, which must be of size min(dN=ne; J) since at worst dN=ne unique VIS
requests can exist, and there are only J di�erent VISs to choose from. At line 8 each PEi

retrieves the next unprocessed entry in the VIS LISTi, and line 9 instructs each PEi to listen
to the IS that contains the requested VIS. Step 10 loops while any PEs are still active, or in
other words, have not had their VIS request met by an IS. At step 11 all ISs begin acting in
parallel, and step 12 commands each IS to arbitrarily select a PE from all active PEs listening
to an IS. At line 13 all PEs listening to an IS requesting the same VIS as the arbitrarily chosen
PE are also selected while other PEs are temporarily unselected. In line 14 the selected PEs
receive the VIS operation, and then these satis�ed cells are temporarily made inactive at line
15. The inner loop at line 10 iterates until all PEs receive a VIS operation from an IS which
afterwards means that the work done for one entry in the parallel LISTi is completed. The
outer loop at line 7 simply proceeds to the next entry in LISTi. At the end of an outer loop
iteration line 16 resets all PEs to and active status listening to the initial IS0. This step is
necessary because when the loop at line 10 is �nished, all PEs are inactive but need to be
made active for the next iteration. Also, all PEs need to be listening to the same IS at step 7
so the while loop test can be checked by a single IS. The inner while loop at line 10 iterates
no more than O(min(n; J=j)) times since in the worst case all of the n VISs needed are inside
the same IS, however there are at most J=j VISs at each IS. The outer while loop at line 7
iterates O(min(N=n; J)) times since this is the maximum length of LISTi. Note that these
VIS request lists can be of di�erent sizes. Thus after the outer loop completes at line 7, all
PEs have only the VIS operations used by the VPEs they are simulating.

PHASE 1: SEND ALL VIRTUAL INSTRUCTIONS PHASE

1 In O(J=j) time SIMULATE J VISs with j ISs
(e.g. update program counters, fetch next instruction, etc.)

*** In each cell, form a list of requested VISs for VPEs ***

2 FOR ALL PEi do in parallel

3 ALL PEi are now ACTIVE and LISTENING to IS0
4 CLEAR list (LISTi) in PEi

5 FOR k = 1 to dN=ne do

6 ADD V ISi[k] number to LISTi if not yet a member of LISTi

*** Process parallel lists of VIS requests by looping through responders ***

7 WHILE (any VIS requests in LISTi are unprocessed)

8 SELECT NEXT V ISi request in LISTi
9 PEi LISTENS to the IS that simulates V ISi
10 WHILE (any PEi has unsatis�ed VIS requests)

11 FOR ALL ISh do in parallel (ISs act in parallel on responding PEs)

12 SELECT an arbitrary PEi from active cells of ISh
13 SELECT all cells requesting same the VIS as the arbitrary cell

14 ALL ISs BROADCAST VIS information to their selected cells

15 MAKE the selected (satis�ed) PEs temporarily INACTIVE

16 ALL PEi are now ACTIVE and LISTENING to IS0

Figure 4: First phase of ASC(n,j) Algorithm which simulates sending J virtual ASC instruc-
tions to N VPEs where N � n and J � j

5.2 Perform all instructions phase

The algorithm in Figure 5 performs instructions handling data movement between VISs and
VPEs. Lines 17-23 handle local VPE functions and operations that need to move data from
the VPEs to the VISs. These operations include a VIS reading a value from a single VPE
and a VIS executing a reduction operation on VPE data. Line 17 indicates that data parallel
execution is beginning. Step 18 forces all PEs to be active and to receive instructions from
the master IS0. At line 19, there are dN=ne iterations for the VPEs stored in each PE. Line
20 uses a case statement to check if the opcode for each VPE is data movement operation
or a local operation. At line 21, when a VIS is reading from a single VPE, the data is put
into PEis temporary bu�er at the index of the VIS if the address of the VPE matches the
read address in the opcode of the VIS (see "temporary data bu�er" in Figure 3). For line
22, data is moved to PEis temporary bu�er after a reduction function (and, or, min, max)
is performed with the current bu�er data. Step 23 executes local operations for the current
set of VPEs. It is assumed that there is a �nite number of possible instructions that can be
executed on a PE, and in fact the number of opcodes should be very small given the simplicity
of an associative cell.

After steps 17-23 are completed, data that is being moved from VPEs to VISs is located
in a temporary array for each PE. Steps 24-36 will complete the movement of data from the
holding area inside PEs to simulated data registers of the VISs. Lines 24-36 also begins the
process of simulating broadcasting VIS data to VPEs by moving data from VIS registers to
the temporary data arrays in each PE. The same VIS lists gathered in phase 1 (see Figure
4) are used again in step 24 by looping through each VIS list. In step 25 the next entry of
LISTi is selected in each PE. At line 26 the PEs connect to the ISs that contain the VIS of
the selected list entry. Line 27 is an inner while loop that loops until all PEs are considered,
or in other words have had their current instruction request performed. Line 28 starts ISs
acting in parallel. Each IS selects an arbitrary PEi in step 29, and in step 30 all other PEis
containing the same current VIS request as the arbitrarily selected PE are also made active.

A case statement for the data movement operations to handle is on line 31. For step 32, where
VISs send data to the VPEs, the data is broadcast to selected PEis from the data registers
of the VISs. This data is stored in the J sized temporary data array in each PE. In line 33 a
VIS reading from a single VPE is processed by simply moving the data from the temporary
data array in the selected PE to the VIS. Reductions are performed in line 34 by using the
ASC parallel reduction operation on the data in the selected set of PEs. The data to perform
this reduction is in the temporary arrays of the PEs. Finally, the the reduction operation is
performed again the value reduced from the PEs on any previously reduced value stored in
the VIS. Recall that this ASC operation is assumed to take constant time. The selected set of
PEs which have had their operations performed this iteration are made temporarily inactive
in line 35. Line 36 makes all PEs active and listening to one IS after the inner loop is �nished
satisfying one entry LISTi. After lines 24-36 are �nished executing, all operations and data
movements have been completed for one cycle of execution except the movement of broadcast
data from the temporary arrays in each PE to the VPE storage areas. Step 37 �nishes the
�nal instructions for broadcasting data from VISs to VPEs. A dN=ne loop is performed where
all VPEs that expect a data broadcast from a VIS copy data from the temporary PEi array
into their own simulated data registers. One cycle of ASC execution is simulated, after the
instructions in lines 1-39 have run.

PHASE 2: PERFORM ALL INSTRUCTIONS PHASE
*** In each PE, collect data being sent to VISs ***

17 FOR ALL PEi do in parallel

18 ALL PEi are now ACTIVE and LISTENING to IS0
19 For k = 1 to dN=ne do

20 CASE of (instruction) for V PEi[k]

21 [VIS READS from 1 PE]: IF (V PEi self address = opcode address)
COPY the data into temporary PEi bu�er indexed by the VIS number

22 [REDUCE data into VIS]: Perform reduction operation on PEi temporary
bu�er and data at V PEi[k]

23 [EXECUTE local operations]: Perform �nite number of PEi local operations

*** Process parallel list of VIS requests by looping through responders ***

24 WHILE (any VIS requests in LISTi are unprocessed)

25 SELECT NEXT V ISi request in LISTi
26 PEi LISTENS to the IS that simulates V ISi
27 WHILE (any PEi has unsatis�ed VIS requests)

28 FOR ALL ISh do in parallel (ISs act in parallel on responding PEs)

29 SELECT arbitrary PEi from active cells of ISh
30 SELECT all cells requesting same the VIS as the arbitrary cell

31 CASE of (instruction) for current V PEi

32 [SEND data to PEis]: Move data from ISh to temp PEi bu�er

33 [VIS READS at 1 PE]: Move data from temp PEi bu�er
to the VIS (at ISh)

34 [REDUCE data into VIS]: Do ASC reduction operation on the PEi

temp bu�ers and the data currently in the VIS

35 MAKE the selected (satis�ed) PEs temporarily INACTIVE

36 ALL PEi are now ACTIVE and LISTENING to IS0

*** Move data written from VISs to VPEs ***

37 FOR k = 1 to dN=ne do

38 IF (instruction for V PEi[k] = Broadcast data to PEi)

39 COPY data from temporary PEi bu�er to V PEi[k]

Figure 5: Part 2 of ASC(n,j) algorithm to simulate ASC(N,j) where N � n and J � j

The many sets of steps needed to complete this algorithm are necessary to insure that
data is not transfered more than one time in terms of the VPE and VISs. It may be possible
to further improve the simulation results if a data movement for any given VIS is handled
not only for VPEs inside a PE listening to this VIS but for all VPEs distributed among the
PEs in constant time. Thus this implies a preordering among the VPEs in each PE to line up
requests for VISs. Further work needs to be done to understand if there is an e�cient way to
lower the running time.

6 Time and space complexities

The worst case time is derived by �rst noting in Figure 4 and Figure 5 that lines 2-6, 17-23,
and 37-39 need O(N=n) time each, and step 1 requires O(J=j) time to simulate the VISs.
Both phases one and two of the simulation algorithm asymptotically take the same amount
of time to execute. The VIS lists formed in phase one are of size O(min(N=n; J)). The while
loops at lines 7 and 24 iterate O(min(N=n; J)) times based on the size of the VIS request lists.
The while loops at lines 10 and 27 iterate O(min(n; J=j)) times since the worst case dictates
that all n PEs listen to VISs simulated by one IS, but the maximum number of VISs in any
IS cannot be greater than dJ=je. All other operations inside these loops take constant time.
Furthermore, each PE needs O(N=n) space and each IS needs O(J=j) space to simulate the
extra processors, while the temporary PEi arrays for moving data between VISs and VPEs
are of size O(J). Thus the total extra time needed to simulate ASC(N,J) with ASC(n,j)
where N � n and J � j is O(N

n
+ J

j
+min(N

n
; J) �min(n; J

j
)) while the space required per

PE is O(N
n
+ J) and the space needed per IS is O(J=j). These results are for any possible

con�guration of ASC self simulation. Table 1 shows the general case time as well as more
realistic or speci�c examples of self simulation using this algorithm. This table also includes
an average simulation time if it is assumed that the PE distribution among ISs in steps 9 and
26 is roughly uniform.

Table 1: Self Simulation Times where N � n and J � j for the General and Average Cases

SIMULATE With Extra Time Extra Memory

ASC(N,J) ASC(n,j) O(N
n
+ J

j
+min(N

n
; J)�min(n; J

j
)) O(N

n
+ J) per PE

avg. ASC(N,J) ASC(n,j) O(N
n
+ J

j
+min(N

n
; J)�min(n

j
; J
j
)) O(N

n
+ J) per PE

ASC(N,J) ASC(1,1) O(N + J) O(N + J) per PE

ASC(N,J) ASC(n,1) O(N
n
+ J +min(N

n
; J)�min(n; J)) O(N

n
+ J) per PE

ASC(N,J) ASC(1,j) O(N + J
j
) O(N + J) per PE

ASC(N,J) ASC(n,J) O(N
n
) O(N

n
+ J) per PE

ASC(N,J) ASC(N,j) O(J
j
) O(J) per PE

7 Overview of ASC simulations with PRAM

This brief section is included to describe a related work in progress of ASC simulating and
being simulated by PRAM. The simulations with PRAM are important because they give an
indication of the power of ASC, automatically provide algorithms for ASC, and show how
well ASC maps to other models and hardware. For this section it is assumed that n is the
number of PEs for ASC or PRAM, j is the number of ISs, and m is the number of PRAM
shared memories. It is further assumed that all the PRAM models are synchronous. Table 2
shows the results of the simulations. The reader should refer to [15] for further information
on this subject.

8 Conclusions

It has been shown how the ASC model can simulate itself. The methods used in this paper
allow the number of PEs and ISs to be unbounded for a
exible evaluation of the self simu-

Table 2: ASC Simulation Times for Several PRAM Models
SIMULATE With Extra Time Extra Memory

ASC(n,j) RAM O(n+ j) O(n+ j)
nPRAM(n,m) ASC(n,j) O(min(m=j; n)) O(m=j)-PE
ASC(n,1) cCRCW(n,m) O(1) constant
ASC(n,1) CREW(n,m) O(n=m+ log n) constant
ASC(n,1) EREW(n,m) O(n=m+ log n) constant
ASC(n,j) cCRCW(n,m) O(j) O(j=n� PE)

ASC(n,j) CREW(n,m) O(jn
m
+ j � log n) O(j=n� PE)

ASC(n,j) EREW(n,m) O(jn
m
+ j � log n) O(j=n� PE)

lation. If the current technology in terms of hardware implementation is taken into account,
then certain resources would de�nitely be restricted for real ASC machines. The ASC model
is intended to encompass associative machines that are buildable today with reasonable re-
sources. The current upper bound on the number of implementable PEs is no doubt in the
tens of thousands, while the number of instruction steams build-able on an ASC like machine
is probably at least logn where n is the number of PEs[1]. The self simulation algorithm is a
reasonable solution to provide more
exibility in terms of programming actual machines in a
data parallel style and, more generally, associative programming.

References

[1] J. Potter J. Baker S. Scott A. Bansal C. Leangsuksun C. Asthagiri. Asc: An associative
computing paradigm. IEEE Computer, pages 19{25, November 1994.

[2] B. Svensson C. Fernstrom, I. Kruzela. LUCAS Associative Array Processor. Springer-
Verlag, Berlin-Heidelberg, 1986.

[3] Tom Blank and John R. Nickolls. A grimm collection of mimd fairy tales. In Proceedings
of the Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 448{
457, McLean, VA, October 19-21, 1992. IEEE Computer Society Press.

[4] J.L. Potter. Associative Computing | A Programming Paradigm for Massively Parallel
Computers. Plenum Publishing, N.Y., 1992.

[5] H. Li M. Maresca. Connection autonomy and simd computers: a vlsi implementation.
Journal of Parallel and Distributed Computing, 7:302{320, 1989.

[6] Tse-yun Feng Chuan-lin Wu, editor. Tutorial: Interconnection networks for parallel and
distributed processing. IEEE Computer Society Press, Silver Spring, MD, 1984.

[7] R.A. Heaton J.M. Jennings, E.W. Davis. Comparative performance evaluation of a new
simd machine. In Proceedings of the Third Symposium on the Frontiers of Massively Par-
allel Computation, pages 255{258, College Park, MD, October 8-10, 1990. IEEE Com-
puter Society Press.

[8] Yonatan Aumann and Assaf Schuster. Deterministic pram simulation with constant
memory blow-up and no time-stamps. In Proceedings of the Third Symposium on the
Frontiers of Massively Parallel Computation, pages 22{29, College Park, MD, October
8-10, 1990. IEEE Computer Society Press.

[9] J. Zhang R. Lin, S. Olariu. Simulating enhanced meshes with applications. Parallel
Processing Letters, 3(1):59{70, 1993.

[10] S. Rajasekaran M. Palis. Packet routing and pram emulation on star graphs and leveled
networks. Journal of Parallel and Distributed Computing, (20):145{157, 1994.

[11] J. Trahan R. Vaidyanathan. Optimal simulation of multidimensional recon�gurable
meshes by two-dimensional recon�gurable meshes. Information Processing Letters,
(47):267{273, October 1993.

[12] R. Staraman A. Rosenberg, V. Scarano. The recon�gurable ring of processors: E�cient
algorithms via hypercube simulation. Parallel Processing Letters, 5(1):37{48, 1995.

[13] F. Annexstein M. Baumslag M. Herbordt B. Obrenic A. Rosenberg C. Weems. Achieving
multigauge behavior in bit-serial simd architectures via emulation. In Proceedings of the
Third Symposium on the Frontiers of Massively Parallel Computation, pages 186{195,
College Park, MD, October 8-10, 1990. IEEE Computer Society Press.

[14] Yosi Ben-Asher, Dan Gordon, and Assaf Schuster. E�cient self-simulation algorithms for
recon�gurable arrays. Journal of Parallel and Distributed Computing, (30):1{22, 1995.

[15] D. R. Ulm and Johnnie W. Baker. The power of the associative model by comparison to
pram. Technical report, Kent State University, 1996.

