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Abstract - This paper describes a parallel solution of the 
sequential dynamic programming method for solving a NP 
class, 2D knapsack (or cutting-stock) problem which is the 
optimal packing of multiples of n rectangular objects into 
a knapsack of size L W× and are only obtainable with 
guillotine-type (side to side) cuts. Here, we describe and 
analyze this problem for the associative model. Since the 
introduction of associative SIMD computers over a 
quarter of a century ago, associative computing and the 
data-parallel paradigm remain popular. The MASC 
(Multiple instruction stream ASsociative Computer) 
parallel model supports a generalized version of an 
associative style of computing. This model supports data 
parallelism, constant time maximum and minimum 
operations, one or more instruction streams (ISs) which 
are sent to an equal number of partition sets of 
processors, and assignment of tasks to ISs using control 
parallelism. We solve this NP class problem with a 
parallel algorithm that runs in O(W(n+L+W)) time using 
L processors, where L≥ W for a 2D knapsack problem 
with a capacity of L× W. The new multiple IS version 
using LW processors and max{L,M} ISs runs in 
O(n+L+W) given practical hardware considerations. Both 
of these results are cost optimal with respect to the best 
sequential implementation.  Moreover, an efficient MASC 
algorithm for this well-known problem should give insight 
to how the associative model compares to other parallel 
models such as PRAM. 
  

1 Introduction 
 
A knapsack problem requires finding a subset from a 

set of objects while maximizing the sum of the object 
profits and not exceeding the knapsack size or violating 
any other constraints. Such problems appear in computer 
science and operations research, e.g. in cutting stock 

applications. The 2D problem is related to the well-studied 
0-1 knapsack problem, which has been solved efficiently 
with linear systolic arrays [1].  

Several 2D knapsack algorithms considering a variety 
of problem constraints are known, and these problems are 
frequently easier to solve by adding constraints or using 
approximation methods [2][3][10]. The problem examined 
herein is in the class NP, yet a best solution is computable 
sequentially in O(LW(n+L+W)) [2], where n  is the number 
of objects, and L and W are the dimensions of the 
knapsack. This running time is pseudo-polynomial 
because in terms of the input size, the knapsack capacity is 
encoded in only log2(L)+log2(W) bits. Past work on this 
problem has addressed solutions for more complex models 
using the hypercube or the mesh with multiple buses 
(MMB) networks [4][5]. This paper will solve the problem 
using the MASC model with a single IS and multiple ISs. 
Figure 1 shows a solution to a simple knapsack problem. 
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Figure 1: A possible 2D cutting stock solution 



 
2 The 2D knapsack problem 
 

The 2D knapsack problem requires filling an area of 
dimensions (L,W)  with n rectangles of size (li, wi) where 
i=1,2,…,n . The profits are non-negative values, 

nπ π π1 2, ,...,  associated with each rectangle. With these 

parameters, the maximum profit of 1 1 2 2 ... n nz z zπ π π+ + +  
is to be computed where zi is a non-negative integer such 
that the knapsack is partitioned into zi multiples of 
rectangle i, having the size (li, wi) [2]. This cutting 
problem allows only recursive side-to-side or guillotine 
cuts of the knapsack. Thus, all cuts are made perpendicular 
from one edge of a rectangle to the other.  Objects may 
have a fixed orientation or be rotated 90o. An additional n 
objects of dimensions (wi,  li) with profit iπ  are added 
when rotations are allowed. Algorithms to solve this type 
of problem include tree searching or dynamic 
programming which this work uses [1][4][5][6].  

The knapsack function F(x,y), derived from dynamic 
programming techniques, is computed such that for a 
location (x,y), F(x,y) is the largest profit obtainable from 
the rectangle created by the X and Y axes and the point 
(x,y).  It satisfies the following inequalities corresponding 
to the guillotine cutting restrictions:  
 

0 x L≤ ≤ , 
0 y W≤ ≤ , 

( , ) 0F x y ≥ , 

( 1 2, ) ( 1, ) ( 2, )F x x y F x y F x y+ ≥ + , 

( , 1 2) ( , 1) ( , 2)F x y y F x y F x y+ ≥ + , 

( , )i i iF l w π≥ , ( 1,..., )i n=  [2]. 

 
2.1 Sequential dynamic programming algorithm 

 
A solution to the problem without an exponential 

running time is obtained using dynamic programming. 
Each rectangular object will be considered in turn, and a 
table of the best cutting profits for each location in the 
knapsack will be kept. Then the entire table is scanned, 
and lengths and widths are summed to create a 
configuration of rectangles that produces the optimal 
profit. The sequential dynamic programming algorithm is 
presented in Figure 2. The following relations are used to 
derive the sequential algorithm [2]: 
 

( , ) max{0, | }0F x y l x w yj j jπ= ≤ ∧ ≤  

( , ) max{ ( , ),1F x y F x yk k= − ( , ) ( , ),1 21 1F x y F x yk k+− −

  ( , ) ( , )}1 21 1F x y F x yk k+− −  

0 ,1 2x x< ≤ ,1 2x x x+ ≤ 0 1 2,y y< ≤ 1 2y y y+ ≤ [2]. 

 
 

 
In step 1 of this algorithm, all locations in the knapsack 

are set to zero. In step 2, each object is considered, placing 
the highest profit values in all locations where an object 
fits. Step 3 scans the 2D table from the lowest row to the 
highest, summing all possible combinations of vertical, 
horizontal cuts at each location, and retaining the two 
objects whose sum of profits is the largest. The code in 
Figure 2 shows how F(x,y) values are computed 
iteratively. Since only guillotine cuts are used, the partial 
rectangular solution, at location (i,j), is cut into two pieces 
with a cut parallel to the x axis at some value of y. 
Because of symmetry, only x-cuts from x=0 to i/2, and y-
cuts from y=0 to j/2 are considered for any given (i,j). The 
sequential algorithm requires time O(LW(n+L+W)), where 
n is the number of objects, and L,W are the dimensions of 
the knapsack[2]. 

 
//    Sequential Algorithm 
for i=0 to L   // Step 1  
   for j  0 to W  

      0,Fi j =  

for k=1 to n   // Step 2  
   for i=0 to L  
      for j=0 to W  

         if ( kl i≤  and kw j≤ and ,k i jFπ > )  

           ,Fi j kπ=   

for i=0 to L   // Step 3  
   for j=0 to W { 

      for k=0 to 
2
i 

  
  

           { , ,k j i k jsum F F −= +   

             if (sum > ,i jF ) ,i jF sum= } 

       for k=0 to 
2
j 

  
  

           { , ,i k i j ksum F F −= +  

             if ( ),sum Fi j>  ,F sumi j = }} 

Figure 2: Sequential dynamic programming 
algorithm to solve 2D cutting stock 
 
3 MASC: Multiple instruction stream 
ASsociative Computer 

 
This section describes the associative model of 

computation presented in the IEEE Computer article 
''MASC: An Associative Computing Paradigm,'' which is 
based on work done at Kent State University [14]. Also, 
see [1][2][12][13]. The vast majority of existing platforms 



already efficiently support MASC, and there is an actual 
language called ASC [14]. Moreover, MASC is a model 
for a multipurpose parallel system which supports a large 
array of applications from grand challenge applications 
requiring massive parallelism to on chip parallelism (such 
as MMX or 3DNOW). The model permits task allocation 
when needed and embodies the intuitive and well-accepted 
method of data parallel programming.  

Hillis and Steele defined a data parallel programming 
paradigm in the early 1980s, but this work did not provide 
a complete computational model [11]. The MASC model 
extends this concept to be a complete programming and 
computational model that embodies existing parallel 
compilers and systems. It is appropriate to have a well-
defined model that emphasizes data parallel programming, 
even though other computational models may be capable 
of supporting it.  

The data parallel style of programming is essentially 
very sequential in nature, and therefore is much easier to 
master by traditional sequential programmers than MIMD 
programming which employs task allocation, load 
balancing, synchronization points, etc. A standard 
associative paradigm provides true portability for parallel 
algorithms, and no specific machine architecture is 
required to effectively use the generalized MASC model 
[14]. This model standardizes the concept of associative 
computing and provides a basis for complexity analysis 
for data parallel and associative algorithms [9].  

 
3.1 Description of MASC 

 
The MASC model is a hybrid SIMD/MIMD model and 

is capable of both styles of programming. A frequent 
criticism of SIMD programming is that several PEs may 
be idle during ifelse or case statements. The instruction 
streams provide a way to concurrently process conditional 
statements by partitioning the PEs among the ISs. Figure 3 
shows a diagram of MASC. 

The associative model (MASC) has an array of 
processing elements (PEs) and one or more instruction 
streams (ISs) that each broadcast their instructions to 
mutually exclusive partitions of PEs. Most applications 
require a small number of ISs in comparison to the number 
of PEs (although there are no firm restrictions). Each PE 
(or cell) has a local memory, and MASC locates objects by 
content or location in the combined local memory of the 
PEs. Each PE is capable of performing local arithmetic, 
logical operations and the usual functions of a sequential 
processor other than issuing instructions. A MASC 
machine with j ISs and n PEs is written as MASC(n, j). 

Cells may be active, inactive, or idle. Active cells 
execute the program which is broadcast from an IS. An 
inactive cell is considered in a group of IS cells, but does 
not execute instructions until the IS instructs inactive cells 
to become active again. Idle cells are currently inactive, 

not listening to any IS, and contain no essential program 
data but may be reassigned as an active cell later.   

ISs can be active or idle. An active IS issues 
instructions to a group of cells. An idle IS is not assigned 
to any PEs and is waiting until another IS forks, 
partitioning its PEs between itself and a new previously 
inactive IS. All PEs may be assigned using local data and 
comparisons.  If an IS broadcasts some value to a set of 
PEs, the PEs could set this value to their active IS in the 
next instruction cycle, or choose not to switch. That is, a 
PE can change the IS to which it listens dynamically. 

MASC supports data parallel reduction operations and, 
or, min and max; one or more instruction streams (ISs), 
each of which is sent to a distinct set in a dynamic 
partition of the processors; broadcasting from the ISs; and 
task assignment to ISs using control parallelism or data 
locality which allows PEs to switch ISs based on local 
data. The MASC model shown in Figure 3 has three 
networks, real or virtual: the PE interconnection network, 
the IS interconnection network, and the network between 
the PEs and ISs.  

There are no restrictions on the type of cell network 
used with the MASC model. The programmer does not 
need to worry about the actual network hardware or the 
routing scheme, but only that MASC is capable of 
generalized routing with some latency.  
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Figure 3: The MASC model 
 
3.2 List of MASC Propertie s 
 
The properties of cells (referred to as PEs): 
• Each cell has local memory and a processing element. 
• A network connects all n PE cells. 



The instruction stream (IS) properties: 
• Each IS has a copy of the program being executed and 

may broadcast an instruction or a word to its cells. 
• The IS processors communicate control information 

with each other when groups of PEs are split or 
merged. 

• Each cell is assigned to only one IS.   
• Some or all cells may switch to a different IS in 

response to instructions from the current IS. 
• An active cell executes the instruction sent from its 

IS, while inactive cells wait until they are commanded 
to be active again. 

• An IS may unconditionally activate all assigned cells. 
• An IS may conditionally force certain cells assigned 

to it to become idle.  
• Idle cells are not assigned to any IS. 
Associative properties: 
• An IS can have all of its active cells execute an 

associative search.  
• Active cells that perform a successful search are 

called responders.   
• Unsuccessful active cells in the search are called non-

responders.  
• The IS may force either the set of responders or non-

responders to be active. 
• Previous sets of active cells can be restored by an IS. 
• An IS may select one arbitrary cell from the list of 

active cells. 
Global operations: 
• An IS may compute the global AND, OR, MAX or 

MIN of data in all active cells. 
• An IS may broadcast data to all its active cells. 
• An IS may either read data from the memory of one 

specific cell or write data to the memory of one 
specific cell. 

Control parallelism: 
• Collectively, the ISs operate as a group of MIMD 

processors, although their primary purpose is to issue 
instructions to PEs and not to embody the main 
processing power of MASC. The standard control 
parallelism paradigms apply to instruction streams. 

• The group of ISs primarily employ control parallelism 
providing fork and join operations, transfer of control 
information, coordination of the cells, and dynamic 
reallocation of idle cells. 

• The ISs communicate control information and the 
transfer of active or inactive cells with each other 
during a fork or join operation. 

• One way to transfer data between ISs is handled by 
reassignment of cells during forks and joins. The 
other way is to directly use the IS network. 

Data routing: 
• A routing operation on data held in each PE can be 

performed using a network that connects the PEs. 

This routing allows combining of data involving an 
arithmetic or logical operation (ex. +, max, min), 
which involves a cost in time based on the 
characteristics of the PE interconnection network. 

 
4 Single instruction stream algorithm  
 
A 2D knapsack algorithm for the single IS model with a 
1D mesh (linear) network is presented in Figure 4. We 
require a simple network to propagate profit values down 
the array as the algorithm progresses, rather than a more 
complex network such as the hypercube. 
 
// SINGLE IS PARALLEL ALGORITHM 
1)   if (L< W) { 
         swap(L,W) 
         for  k = 1 to n    swap(li,wi) } 
2)   for all processors Pi do in parallel listening to IS0 { 
2.1)   for  j = 0 to W do   { ,i jF =0 ; ,i jV =0 ; ,i jH =0} 
2.2)   for k=1 to n 
            for j = 0 to W do 
               if ( ki l≥  and kj w≥ ) ,i jF = max{ ,i jF  , kπ } 
3)      diag = 2 
4)      while (diag ≤ L +W) do { 
4.1)      for j = 0 to W do 
                if (diag ≤ i + j and i > 0 and j > 0)  
                   { ,i jV = 1,i jV −  ; ,i jH = , 1i jH − } 
4.2)      for j  = 0 to W do { 
                if (i * 2 + j  = diag)  ,i jV   = ,i jF  

                if (j * 2 + i  = diag)  ,i jH  = ,i jF } 
4.3)      for j = 0 to W do 
                if (diag/2 ≤ i + j ≤ diag) { 
                   ,i jsumV  = ,i jF  + ,i jV   

                   ,i jsumH  = ,i jF   +  ,i jH } 
4.4)      for j = 0 to W do 
               ,diag j jF − = MascMax( ,diag j jsumV − , 

                     1,diag j jsumV − − …, ( ) / 2 ,diag j jsumV − ) 
4.5)      maxi = 0 
4.6)      for j = 1 to W do 
                if (maxi < , 1i diag jsumH − − ) 

                     maxi  = , 1i diag jsumH − −  
4.7)      for j = 1 to W do 
               ,i diag iF −  = maxi 
4.8)      diag = diag + 1 }} 
Figure 4: Single IS MASC implementation of the 
2D knapsack algorithm. 
 

The parallelization given in Figure 4 is accomplished 
by first noting that any at location in the array, Fa,b  is 
dependent on other ,i jF entries at lower subscripted 
positions. In fact, the only values needed are those in row 



a, and column j, with j b≤ and those in column b and row 
i with i a≤ . This data dependency prevents the parallel 
computation of a row or column of F values, but a 
diagonal set of F values can be calculated concurrently. 
Since the number of diagonals traversed is O(L+W), 
O(max{L,W})  iterations are needed to scan every diagonal. 

Let Pi,j  be a processor located inside the diagonal 
region, / 2diag i j diag≤ + ≤ , where diag is an integer 
denoting the current diagonal. The F value at this 
processor contributes to calculating ,diag j jF −  and 

,i diag iF − . The parallel variables ,i jV  and ,i jH contain 

shifted ,i jF  values that are added to the current location 
for vertical and horizontal directions respectively. In each 
iteration these values shift to the next location, and a new 
set of values is appended to the shifting parallel variables 

,i jV and ,i jH . These shifting operations use 1D mesh 
connections such that one horizontal shift for H is 
completed in unit time where there are O(W)  horizontal 
shifts required. Shifting V values inside each PE takes 
O(W)  time as does scanning for the largest F value in each 
PE. After the sums are collected in participating 
processors, the maximum of all sums is computed from 
variables ,i jsumV  and ,i jsumH  for each row and 
column, and the result is stored in the array location that 
row or column's diagonal. This is done for vertical sums 
using the constant time MASC maximum function, O(W)  
times, and in a second step for horizontal sums, the PEs 
scanning through F values in O(W)  iterations. Thus for 
each column, the maximum of ,diag j jsumV −  through 

( ) / 2 ,diag j jsumV −  is computed, storing the result in 

location ,diag j jF −  on the current diagonal. Likewise, for 

each row the maximum of ,i diag isumH −  through 

, ( ) / 2i diag isumH −  is computed, saving the result 

in ,i diag iF − . 
 

4.1 Analysis  
 

By examining the steps in Figure 4, we calculate the 
running time of the algorithm. Step 1 takes O(n) time to 
scan through the objects while 2.1 needs O(W) to initialize 
the F, V, and H values since each of the L PEs holds these 
arrays of size W.  Step 2.2 computes static profit 
maximums wherever an object will fit. This requires 
scanning the L parallel arrays of size W for each of the n 
objects, which requires O(nW)  time.  The outer loop in 
step 4 scans O(L+W)  diagonals. Sub-steps 4.1, through 4.6 
each take O(W) steps because of the looping through the 
parallel arrays. The maximum function for MASC in step 
4.5 completes in constant time (or in a factor log Lk  

where k is based on hardware considerations). The 
asymptotic time to read the input of O(n) objects is no 

greater than the running time of the algorithm itself.  Thus 
the total execution time of the MASC algorithm is 
O(n)+O(nW)+O(W( L +W)) which reduces to O(W(n+L 
+W)). 

The benefit of the associative version is that the number 
of processors is cost-optimal in relation to the sequential 
dynamic programming. That is, even though the speed of 
the resulting program is not as great as the CRCW PRAM 
version (i.e. O(n+L +W) with LW PEs), the cost (i.e. the 
number of processors times the parallel execution time) 
equals the running time of the sequential version. 

 
5 Multiple instruction stream algorithm  
 

Figure 5 shows the algorithm to solve the cutting-stock 
problem when we have available max{L,W} ISs.  

 
// MULTIPE IS PARALLEL ALGORITHM  
1)   if (L< W) { 
         swap(L,W) 
         for  k = 1 to n   swap(li,wi) }  
2)   for all processors Pi,j do in parallel listening to IS0 { 
2.1)      ,i jF =0 ; ,i jV =0 ; ,i jH =0 
2.2)       for k=1 to n 
                 if ( ki l≥  and kj w≥ )  

                   ,i jF = max{ ,i jF  , kπ } 
3)          diag = 2 
4)          while (diag ≤ L +W) do { 
4.1)          if (diag ≤ i + j and i > 0 and j > 0) { 
                    ,i jV = 1,i jV −   

                   ,i jH = , 1i jH − } 

4.2)          if (i * 2 + j  = diag)  ,i jV   = ,i jF  

                if (j * 2 + i  = diag)  ,i jH  = ,i jF  
4.3)          if (diag/2 ≤ i + j ≤ diag) { 
                   ,i jsumV  = ,i jF  + ,i jV   

                   ,i jsumH  = ,i jF   + ,i jH } 
4.4)          Set proc Pi,j to listen to ISj   ,For each ISj do 
4.5)              ,diag j jF − =MascMax( ,diag j jsumV − , 

                                                1,diag j jsumV − − ,…, 

                                                ( ) / 2 ,diag j jsumV − ) 
4.6)          Set proc Pi,j to listen to ISi   ,For each ISi do 

4.7)               ,i diag iF − =MascMax( ,i diag isumH − , 

                                                , 1i diag isumH − −  ,…,  

                                                , ( ) / 2i diag isumH − ) 
4.8)          Set proc Pi,j to listen to IS0 
4.9)          diag = diag + 1 }} 
Figure 5: Multiple IS 2D Knapsack Algorithm  
 

Here we have one IS for every row and column. Here 
we describe the differences between the single IS version 
and the multiple IS method. Before the MascMax function 



is called in steps 4.5 and 4.7, we switch from all PEs 
listening to IS0, to each PEi,j listening to ISj in step 4.4 and 
then ISi in step 4.6. In other words, we have ISj control 
column j, and ISi control column i. Since an IS has the 
ability to find the maximum of all its controlled PEs in 
O(1) (or logarithmic time), and we have sufficient ISs, 
then steps 4.5 and 4.7 can be completed in O(1). For all of 
the sub-steps in step 4, the while loop from 2 to L+W is 
the only sequential cost. Counting the non-parallel 
portions of the algorithm, step 1 is completed in O(n), step 
2.2 also takes O(n), and step 4 finishes in O(L+W)  time. 
Therefore the entire algorithm requires O(n+L+W)  time if 
there are max{L,W}  ISs available. 

 
5.1 With fewer ISs  

 
The running time when we apply fewer ISs, 

s < max{L,W}, to the problem in Figure 3 is an acceptable 
ratio. A method spanning sections 4.4 to 4.8 that loops 

/W s    times for each column and /L s    times for each 

row is possible. Thus, the resulting run-time looping 
through MascMax is O(n+(L+W) 2/s) . If s=O(max{L,W})  
then we again have the fully multiple IS algorithm in 
Figure 5. Figure 6 contains the modifications to make 
inreference to the Figure 5 algorithm from lines 4.4 to 4.8. 

 
4.4) for k=0 to / 1W s −    

          if ( PE is in group k ) 
    Set proc Pi,j to listen to ISj mod s ,For each ISj do { 
4.5)          ,diag j jF − =MascMax( ,diag j jsumV − ,  

                                            1,diag j jsumV − − ,…, 

                                            ( ) / 2 ,diag j jsumV − ) } 

4.6) for k=0 to / 1L s −    

           if ( PE is in group k) 
     Set proc Pi,j to listen to ISi mod s  ,For each ISi do { 
4.7)           ,i diag iF − =MascMax( ,i diag isumH − , 

                                            , 1i diag isumH − −  ,…, 

                                            , ( ) / 2i diag isumH − ) } 
4.8)         Set proc Pi,j to listen to IS0 
Figure 6: MASC(LW, s) Implementation of 2D 
Knapsack Algorithm (fewer ISs) 

 
6 Summary 
 

It has been shown that both the single and the multiple 
IS MASC model has good computational characteristics. 
By maintaining a parallel variable for shifting data and 
computing on the diagonal, we have solved the data 
dependencies required. Table 1 shows comparative results 
for this algorithm and previous implementations. We have 
shown that using multiple instruction streams is a possible 
solution to solving complex problems. It is estimated that 

on a cluster even with a fast network, that communication 
would dominate, since there are on the order of L (or W) 
shifts being performed each iteration in the main loop of 
step 4. Each of these shifts on a 2D grid represent an order 
of L (or W)  communications per shift or O(L2+W2) shifts 
for step 4. When the LW sized table is divided up between 
a relatively small number of processors in a cluster, the 
number of messages sent will be on the order of the 
running time of the sequential algorithm. Therefore, the 
times presented for MASC with this particularly irregular 
algorithm indicate a result for MASC in comparison to 
theoretical models such as PRAM employing as much 
parallelism as possible. Future work that shows an exact 
mapping of MASC to a variant of PRAM will demonstrate 
that MASC is an efficient as well as a practical model.  

 

Table 1: Comparative Running Times for the 2D 
Knapsack Algorithm 
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+2D mesh 

O(n+L+W) (LW) PEs  
+ max{L,W} 
ISs 

Multi IS 
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s ISs where 
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