

Solving a 2D Knapsack Problem
Using a Hybrid Data-Parallel/Control

Style of Computing

Darrell R. Ulm Johnnie W. Baker Michael C. Scherger
Department of Computer

Science
Department of Computer

Science
Department of Computer

Science
University of Akron

Akron, OH 44325, USA
Kent State University
Kent, OH 44242, USA

Kent State University
Kent, OH 44242, USA

dulm@cs.uakron.edu jbaker@cs.kent.edu mscherge@cs.kent.edu

Abstract - This paper describes a parallel solution of the
sequential dynamic programming method for solving a NP
class, 2D knapsack (or cutting-stock) problem which is the
optimal packing of multiples of n rectangular objects into
a knapsack of size L W× and are only obtainable with
guillotine-type (side to side) cuts. Here, we describe and
analyze this problem for the associative model. Since the
introduction of associative SIMD computers over a
quarter of a century ago, associative computing and the
data-parallel paradigm remain popular. The MASC
(Multiple instruction stream ASsociative Computer)
parallel model supports a generalized version of an
associative style of computing. This model supports data
parallelism, constant time maximum and minimum
operations, one or more instruction streams (ISs) which
are sent to an equal number of partition sets of
processors, and assignment of tasks to ISs using control
parallelism. We solve this NP class problem with a
parallel algorithm that runs in O(W(n+L+W)) time using
L processors, where L≥ W for a 2D knapsack problem
with a capacity of L× W. The new multiple IS version
using LW processors and max{L,M} ISs runs in
O(n+L+W) given practical hardware considerations. Both
of these results are cost optimal with respect to the best
sequential implementation. Moreover, an efficient MASC
algorithm for this well-known problem should give insight
to how the associative model compares to other parallel
models such as PRAM.

1 Introduction

A knapsack problem requires finding a subset from a

set of objects while maximizing the sum of the object
profits and not exceeding the knapsack size or violating
any other constraints. Such problems appear in computer
science and operations research, e.g. in cutting stock

applications. The 2D problem is related to the well-studied
0-1 knapsack problem, which has been solved efficiently
with linear systolic arrays [1].

Several 2D knapsack algorithms considering a variety
of problem constraints are known, and these problems are
frequently easier to solve by adding constraints or using
approximation methods [2][3][10]. The problem examined
herein is in the class NP, yet a best solution is computable
sequentially in O(LW(n+L+W)) [2], where n is the number
of objects, and L and W are the dimensions of the
knapsack. This running time is pseudo-polynomial
because in terms of the input size, the knapsack capacity is
encoded in only log2(L)+log2(W) bits. Past work on this
problem has addressed solutions for more complex models
using the hypercube or the mesh with multiple buses
(MMB) networks [4][5]. This paper will solve the problem
using the MASC model with a single IS and multiple ISs.
Figure 1 shows a solution to a simple knapsack problem.

1π

2π

3π

4π

5π

G i v e n (L = 7 , W = 7)
a n d 1π , 2π , 3π , 4π , 5π

S o l u t i o n i s :

1) M u l t i p l e s a l l o w e d

2) E d g e t o e d g e c u t s

 (p a r a l l e l t o s i d e s)

= 2

= 1

= 3

= 8

= 5

(L = 7 , W = 7)

5

5

5

5 8

 8

Σ = 5 + 8 + 5 + 5 + 8 + 5 + 2 + 2 = 4 0 p r o f i t s

2 2

(0 , 0) (0 , 0)

Figure 1: A possible 2D cutting stock solution

2 The 2D knapsack problem

The 2D knapsack problem requires filling an area of
dimensions (L,W) with n rectangles of size (li, wi) where
i=1,2,…,n . The profits are non-negative values,

nπ π π1 2, ,..., associated with each rectangle. With these

parameters, the maximum profit of 1 1 2 2 ... n nz z zπ π π+ + +
is to be computed where zi is a non-negative integer such
that the knapsack is partitioned into zi multiples of
rectangle i, having the size (li, wi) [2]. This cutting
problem allows only recursive side-to-side or guillotine
cuts of the knapsack. Thus, all cuts are made perpendicular
from one edge of a rectangle to the other. Objects may
have a fixed orientation or be rotated 90o. An additional n
objects of dimensions (wi, li) with profit iπ are added
when rotations are allowed. Algorithms to solve this type
of problem include tree searching or dynamic
programming which this work uses [1][4][5][6].

The knapsack function F(x,y), derived from dynamic
programming techniques, is computed such that for a
location (x,y), F(x,y) is the largest profit obtainable from
the rectangle created by the X and Y axes and the point
(x,y). It satisfies the following inequalities corresponding
to the guillotine cutting restrictions:

0 x L≤ ≤ ,
0 y W≤ ≤ ,

(,) 0F x y ≥ ,

(1 2,) (1,) (2,)F x x y F x y F x y+ ≥ + ,

(, 1 2) (, 1) (, 2)F x y y F x y F x y+ ≥ + ,

(,)i i iF l w π≥ , (1,...,)i n= [2].

2.1 Sequential dynamic programming algorithm

A solution to the problem without an exponential

running time is obtained using dynamic programming.
Each rectangular object will be considered in turn, and a
table of the best cutting profits for each location in the
knapsack will be kept. Then the entire table is scanned,
and lengths and widths are summed to create a
configuration of rectangles that produces the optimal
profit. The sequential dynamic programming algorithm is
presented in Figure 2. The following relations are used to
derive the sequential algorithm [2]:

(,) max{0, | }0F x y l x w yj j jπ= ≤ ∧ ≤

(,) max{ (,),1F x y F x yk k= − (,) (,),1 21 1F x y F x yk k+− −

 (,) (,)}1 21 1F x y F x yk k+− −

0 ,1 2x x< ≤ ,1 2x x x+ ≤ 0 1 2,y y< ≤ 1 2y y y+ ≤ [2].

In step 1 of this algorithm, all locations in the knapsack

are set to zero. In step 2, each object is considered, placing
the highest profit values in all locations where an object
fits. Step 3 scans the 2D table from the lowest row to the
highest, summing all possible combinations of vertical,
horizontal cuts at each location, and retaining the two
objects whose sum of profits is the largest. The code in
Figure 2 shows how F(x,y) values are computed
iteratively. Since only guillotine cuts are used, the partial
rectangular solution, at location (i,j), is cut into two pieces
with a cut parallel to the x axis at some value of y.
Because of symmetry, only x-cuts from x=0 to i/2, and y-
cuts from y=0 to j/2 are considered for any given (i,j). The
sequential algorithm requires time O(LW(n+L+W)), where
n is the number of objects, and L,W are the dimensions of
the knapsack[2].

// Sequential Algorithm
for i=0 to L // Step 1
 for j 0 to W

 0,Fi j =

for k=1 to n // Step 2
 for i=0 to L
 for j=0 to W

 if (kl i≤ and kw j≤ and ,k i jFπ >)

 ,Fi j kπ=

for i=0 to L // Step 3
 for j=0 to W {

 for k=0 to
2
i

 { , ,k j i k jsum F F −= +

 if (sum > ,i jF) ,i jF sum= }

 for k=0 to
2
j

 { , ,i k i j ksum F F −= +

 if (),sum Fi j> ,F sumi j = }}

Figure 2: Sequential dynamic programming
algorithm to solve 2D cutting stock

3 MASC: Multiple instruction stream
ASsociative Computer

This section describes the associative model of

computation presented in the IEEE Computer article
''MASC: An Associative Computing Paradigm,'' which is
based on work done at Kent State University [14]. Also,
see [1][2][12][13]. The vast majority of existing platforms

already efficiently support MASC, and there is an actual
language called ASC [14]. Moreover, MASC is a model
for a multipurpose parallel system which supports a large
array of applications from grand challenge applications
requiring massive parallelism to on chip parallelism (such
as MMX or 3DNOW). The model permits task allocation
when needed and embodies the intuitive and well-accepted
method of data parallel programming.

Hillis and Steele defined a data parallel programming
paradigm in the early 1980s, but this work did not provide
a complete computational model [11]. The MASC model
extends this concept to be a complete programming and
computational model that embodies existing parallel
compilers and systems. It is appropriate to have a well-
defined model that emphasizes data parallel programming,
even though other computational models may be capable
of supporting it.

The data parallel style of programming is essentially
very sequential in nature, and therefore is much easier to
master by traditional sequential programmers than MIMD
programming which employs task allocation, load
balancing, synchronization points, etc. A standard
associative paradigm provides true portability for parallel
algorithms, and no specific machine architecture is
required to effectively use the generalized MASC model
[14]. This model standardizes the concept of associative
computing and provides a basis for complexity analysis
for data parallel and associative algorithms [9].

3.1 Description of MASC

The MASC model is a hybrid SIMD/MIMD model and

is capable of both styles of programming. A frequent
criticism of SIMD programming is that several PEs may
be idle during ifelse or case statements. The instruction
streams provide a way to concurrently process conditional
statements by partitioning the PEs among the ISs. Figure 3
shows a diagram of MASC.

The associative model (MASC) has an array of
processing elements (PEs) and one or more instruction
streams (ISs) that each broadcast their instructions to
mutually exclusive partitions of PEs. Most applications
require a small number of ISs in comparison to the number
of PEs (although there are no firm restrictions). Each PE
(or cell) has a local memory, and MASC locates objects by
content or location in the combined local memory of the
PEs. Each PE is capable of performing local arithmetic,
logical operations and the usual functions of a sequential
processor other than issuing instructions. A MASC
machine with j ISs and n PEs is written as MASC(n, j).

Cells may be active, inactive, or idle. Active cells
execute the program which is broadcast from an IS. An
inactive cell is considered in a group of IS cells, but does
not execute instructions until the IS instructs inactive cells
to become active again. Idle cells are currently inactive,

not listening to any IS, and contain no essential program
data but may be reassigned as an active cell later.

ISs can be active or idle. An active IS issues
instructions to a group of cells. An idle IS is not assigned
to any PEs and is waiting until another IS forks,
partitioning its PEs between itself and a new previously
inactive IS. All PEs may be assigned using local data and
comparisons. If an IS broadcasts some value to a set of
PEs, the PEs could set this value to their active IS in the
next instruction cycle, or choose not to switch. That is, a
PE can change the IS to which it listens dynamically.

MASC supports data parallel reduction operations and,
or, min and max; one or more instruction streams (ISs),
each of which is sent to a distinct set in a dynamic
partition of the processors; broadcasting from the ISs; and
task assignment to ISs using control parallelism or data
locality which allows PEs to switch ISs based on local
data. The MASC model shown in Figure 3 has three
networks, real or virtual: the PE interconnection network,
the IS interconnection network, and the network between
the PEs and ISs.

There are no restrictions on the type of cell network
used with the MASC model. The programmer does not
need to worry about the actual network hardware or the
routing scheme, but only that MASC is capable of
generalized routing with some latency.

Memory PE

Memory PE

Memory PE

Memory PE

Memory PE

Sequential
control
IS: 1

Sequential
control J
IS: J

 Cells

N
E
T
W
O
R
K

I
S

K
R
O
W
T
E
N

C
E
L
L

Instruction Streams

Inactive Link Active Link

Figure 3: The MASC model

3.2 List of MASC Propertie s

The properties of cells (referred to as PEs):
• Each cell has local memory and a processing element.
• A network connects all n PE cells.

The instruction stream (IS) properties:
• Each IS has a copy of the program being executed and

may broadcast an instruction or a word to its cells.
• The IS processors communicate control information

with each other when groups of PEs are split or
merged.

• Each cell is assigned to only one IS.
• Some or all cells may switch to a different IS in

response to instructions from the current IS.
• An active cell executes the instruction sent from its

IS, while inactive cells wait until they are commanded
to be active again.

• An IS may unconditionally activate all assigned cells.
• An IS may conditionally force certain cells assigned

to it to become idle.
• Idle cells are not assigned to any IS.
Associative properties:
• An IS can have all of its active cells execute an

associative search.
• Active cells that perform a successful search are

called responders.
• Unsuccessful active cells in the search are called non-

responders.
• The IS may force either the set of responders or non-

responders to be active.
• Previous sets of active cells can be restored by an IS.
• An IS may select one arbitrary cell from the list of

active cells.
Global operations:
• An IS may compute the global AND, OR, MAX or

MIN of data in all active cells.
• An IS may broadcast data to all its active cells.
• An IS may either read data from the memory of one

specific cell or write data to the memory of one
specific cell.

Control parallelism:
• Collectively, the ISs operate as a group of MIMD

processors, although their primary purpose is to issue
instructions to PEs and not to embody the main
processing power of MASC. The standard control
parallelism paradigms apply to instruction streams.

• The group of ISs primarily employ control parallelism
providing fork and join operations, transfer of control
information, coordination of the cells, and dynamic
reallocation of idle cells.

• The ISs communicate control information and the
transfer of active or inactive cells with each other
during a fork or join operation.

• One way to transfer data between ISs is handled by
reassignment of cells during forks and joins. The
other way is to directly use the IS network.

Data routing:
• A routing operation on data held in each PE can be

performed using a network that connects the PEs.

This routing allows combining of data involving an
arithmetic or logical operation (ex. +, max, min),
which involves a cost in time based on the
characteristics of the PE interconnection network.

4 Single instruction stream algorithm

A 2D knapsack algorithm for the single IS model with a
1D mesh (linear) network is presented in Figure 4. We
require a simple network to propagate profit values down
the array as the algorithm progresses, rather than a more
complex network such as the hypercube.

// SINGLE IS PARALLEL ALGORITHM
1) if (L< W) {
 swap(L,W)
 for k = 1 to n swap(li,wi) }
2) for all processors Pi do in parallel listening to IS0 {
2.1) for j = 0 to W do { ,i jF =0 ; ,i jV =0 ; ,i jH =0}
2.2) for k=1 to n
 for j = 0 to W do
 if (ki l≥ and kj w≥) ,i jF = max{ ,i jF , kπ }
3) diag = 2
4) while (diag ≤ L +W) do {
4.1) for j = 0 to W do
 if (diag ≤ i + j and i > 0 and j > 0)
 { ,i jV = 1,i jV − ; ,i jH = , 1i jH − }
4.2) for j = 0 to W do {
 if (i * 2 + j = diag) ,i jV = ,i jF

 if (j * 2 + i = diag) ,i jH = ,i jF }
4.3) for j = 0 to W do
 if (diag/2 ≤ i + j ≤ diag) {
 ,i jsumV = ,i jF + ,i jV

 ,i jsumH = ,i jF + ,i jH }
4.4) for j = 0 to W do
 ,diag j jF − = MascMax(,diag j jsumV − ,

 1,diag j jsumV − − …, () / 2 ,diag j jsumV −)
4.5) maxi = 0
4.6) for j = 1 to W do
 if (maxi < , 1i diag jsumH − −)

 maxi = , 1i diag jsumH − −
4.7) for j = 1 to W do
 ,i diag iF − = maxi
4.8) diag = diag + 1 }}
Figure 4: Single IS MASC implementation of the
2D knapsack algorithm.

The parallelization given in Figure 4 is accomplished
by first noting that any at location in the array, Fa,b is
dependent on other ,i jF entries at lower subscripted
positions. In fact, the only values needed are those in row

a, and column j, with j b≤ and those in column b and row
i with i a≤ . This data dependency prevents the parallel
computation of a row or column of F values, but a
diagonal set of F values can be calculated concurrently.
Since the number of diagonals traversed is O(L+W),
O(max{L,W}) iterations are needed to scan every diagonal.

Let Pi,j be a processor located inside the diagonal
region, / 2diag i j diag≤ + ≤ , where diag is an integer
denoting the current diagonal. The F value at this
processor contributes to calculating ,diag j jF − and

,i diag iF − . The parallel variables ,i jV and ,i jH contain

shifted ,i jF values that are added to the current location
for vertical and horizontal directions respectively. In each
iteration these values shift to the next location, and a new
set of values is appended to the shifting parallel variables

,i jV and ,i jH . These shifting operations use 1D mesh
connections such that one horizontal shift for H is
completed in unit time where there are O(W) horizontal
shifts required. Shifting V values inside each PE takes
O(W) time as does scanning for the largest F value in each
PE. After the sums are collected in participating
processors, the maximum of all sums is computed from
variables ,i jsumV and ,i jsumH for each row and
column, and the result is stored in the array location that
row or column's diagonal. This is done for vertical sums
using the constant time MASC maximum function, O(W)
times, and in a second step for horizontal sums, the PEs
scanning through F values in O(W) iterations. Thus for
each column, the maximum of ,diag j jsumV − through

() / 2 ,diag j jsumV − is computed, storing the result in

location ,diag j jF − on the current diagonal. Likewise, for

each row the maximum of ,i diag isumH − through

, () / 2i diag isumH − is computed, saving the result

in ,i diag iF − .

4.1 Analysis

By examining the steps in Figure 4, we calculate the
running time of the algorithm. Step 1 takes O(n) time to
scan through the objects while 2.1 needs O(W) to initialize
the F, V, and H values since each of the L PEs holds these
arrays of size W. Step 2.2 computes static profit
maximums wherever an object will fit. This requires
scanning the L parallel arrays of size W for each of the n
objects, which requires O(nW) time. The outer loop in
step 4 scans O(L+W) diagonals. Sub-steps 4.1, through 4.6
each take O(W) steps because of the looping through the
parallel arrays. The maximum function for MASC in step
4.5 completes in constant time (or in a factor log Lk

where k is based on hardware considerations). The
asymptotic time to read the input of O(n) objects is no

greater than the running time of the algorithm itself. Thus
the total execution time of the MASC algorithm is
O(n)+O(nW)+O(W(L +W)) which reduces to O(W(n+L
+W)).

The benefit of the associative version is that the number
of processors is cost-optimal in relation to the sequential
dynamic programming. That is, even though the speed of
the resulting program is not as great as the CRCW PRAM
version (i.e. O(n+L +W) with LW PEs), the cost (i.e. the
number of processors times the parallel execution time)
equals the running time of the sequential version.

5 Multiple instruction stream algorithm

Figure 5 shows the algorithm to solve the cutting-stock
problem when we have available max{L,W} ISs.

// MULTIPE IS PARALLEL ALGORITHM
1) if (L< W) {
 swap(L,W)
 for k = 1 to n swap(li,wi) }
2) for all processors Pi,j do in parallel listening to IS0 {
2.1) ,i jF =0 ; ,i jV =0 ; ,i jH =0
2.2) for k=1 to n
 if (ki l≥ and kj w≥)

 ,i jF = max{ ,i jF , kπ }
3) diag = 2
4) while (diag ≤ L +W) do {
4.1) if (diag ≤ i + j and i > 0 and j > 0) {
 ,i jV = 1,i jV −

 ,i jH = , 1i jH − }

4.2) if (i * 2 + j = diag) ,i jV = ,i jF

 if (j * 2 + i = diag) ,i jH = ,i jF
4.3) if (diag/2 ≤ i + j ≤ diag) {
 ,i jsumV = ,i jF + ,i jV

 ,i jsumH = ,i jF + ,i jH }
4.4) Set proc Pi,j to listen to ISj ,For each ISj do
4.5) ,diag j jF − =MascMax(,diag j jsumV − ,

 1,diag j jsumV − − ,…,

 () / 2 ,diag j jsumV −)
4.6) Set proc Pi,j to listen to ISi ,For each ISi do

4.7) ,i diag iF − =MascMax(,i diag isumH − ,

 , 1i diag isumH − − ,…,

 , () / 2i diag isumH −)
4.8) Set proc Pi,j to listen to IS0
4.9) diag = diag + 1 }}
Figure 5: Multiple IS 2D Knapsack Algorithm

Here we have one IS for every row and column. Here
we describe the differences between the single IS version
and the multiple IS method. Before the MascMax function

is called in steps 4.5 and 4.7, we switch from all PEs
listening to IS0, to each PEi,j listening to ISj in step 4.4 and
then ISi in step 4.6. In other words, we have ISj control
column j, and ISi control column i. Since an IS has the
ability to find the maximum of all its controlled PEs in
O(1) (or logarithmic time), and we have sufficient ISs,
then steps 4.5 and 4.7 can be completed in O(1). For all of
the sub-steps in step 4, the while loop from 2 to L+W is
the only sequential cost. Counting the non-parallel
portions of the algorithm, step 1 is completed in O(n), step
2.2 also takes O(n), and step 4 finishes in O(L+W) time.
Therefore the entire algorithm requires O(n+L+W) time if
there are max{L,W} ISs available.

5.1 With fewer ISs

The running time when we apply fewer ISs,

s < max{L,W}, to the problem in Figure 3 is an acceptable
ratio. A method spanning sections 4.4 to 4.8 that loops

/W s times for each column and /L s times for each

row is possible. Thus, the resulting run-time looping
through MascMax is O(n+(L+W) 2/s) . If s=O(max{L,W})
then we again have the fully multiple IS algorithm in
Figure 5. Figure 6 contains the modifications to make
inreference to the Figure 5 algorithm from lines 4.4 to 4.8.

4.4) for k=0 to / 1W s −

 if (PE is in group k)
 Set proc Pi,j to listen to ISj mod s ,For each ISj do {
4.5) ,diag j jF − =MascMax(,diag j jsumV − ,

 1,diag j jsumV − − ,…,

 () / 2 ,diag j jsumV −) }

4.6) for k=0 to / 1L s −

 if (PE is in group k)
 Set proc Pi,j to listen to ISi mod s ,For each ISi do {
4.7) ,i diag iF − =MascMax(,i diag isumH − ,

 , 1i diag isumH − − ,…,

 , () / 2i diag isumH −) }
4.8) Set proc Pi,j to listen to IS0
Figure 6: MASC(LW, s) Implementation of 2D
Knapsack Algorithm (fewer ISs)

6 Summary

It has been shown that both the single and the multiple
IS MASC model has good computational characteristics.
By maintaining a parallel variable for shifting data and
computing on the diagonal, we have solved the data
dependencies required. Table 1 shows comparative results
for this algorithm and previous implementations. We have
shown that using multiple instruction streams is a possible
solution to solving complex problems. It is estimated that

on a cluster even with a fast network, that communication
would dominate, since there are on the order of L (or W)
shifts being performed each iteration in the main loop of
step 4. Each of these shifts on a 2D grid represent an order
of L (or W) communications per shift or O(L2+W2) shifts
for step 4. When the LW sized table is divided up between
a relatively small number of processors in a cluster, the
number of messages sent will be on the order of the
running time of the sequential algorithm. Therefore, the
times presented for MASC with this particularly irregular
algorithm indicate a result for MASC in comparison to
theoretical models such as PRAM employing as much
parallelism as possible. Future work that shows an exact
mapping of MASC to a variant of PRAM will demonstrate
that MASC is an efficient as well as a practical model.

Table 1: Comparative Running Times for the 2D
Knapsack Algorithm

References
[1] R. Andonov and V. Aleksandrov, A systolic linear array for

the knapsack problem, Parallel and Distributed Processing,
17:285-299, 1991.

[2] P.C. Gilmore and R.E. Gomory, Multistage cutting stock
problems of two or more dimensions, Operations Research,
13:94-120, 1965.

[3] J.C. Herz, Recursive comptational procedure for two-
dimensional stock cutting, IBM J. Res. Develop., 16:462-
469, 1967.

[4] P.Y. Wang and D. Ulm, Solving a two-dimensional
knapsack problem on SIMD computers, In International
Conference on Parallel Processing, volume 3, pages 181-
184, 1992.

[5] D. Ulm and J.W. Baker, Solving a two-dimensional
knapsack problem on a mesh with multiple buses, In
International Conference on Parallel Processing, volume 3,
pages168-171, 1995.

[6] P.Y. Wang, Two algorithms for constrained two-
dimensional cutting stock problems, Operations Research,
31(3): 573-586, 1983.

[7] J. Potter J. Baker S. Scott A. Bansal C. Leangsuksun C.
Asthagiri, MASC: An associative computing paradigm,
IEEE Computer, pages 19-25, November 1994.

Model Time Processors
Sequential O(LW(n+L+W)) 1
CRCW
PRAM

O(n+L+W) LW

2D Mesh O(max(L,W)(n+L+W)) LW
Hypercube O(log(max(L,W))(n+L+W)) LW
MMB O(n + L +W) LW
1 IS
MASC
+1D mesh

O(min{L,W}(n+L+W)) max{L,W}
PEs
+1 IS

Multi IS
MASC
+2D mesh

O(n+L+W) (LW) PEs
+ max{L,W}
ISs

Multi IS
MASC
+2D Mesh

2()
()

L W
O n

s

+
+

(LW) PEs +
s ISs where
s ≤ max(L,W)

[8] D. Ulm and J.W. Baker, Virtual parallelism by self-
simulation of the multiple instruction stream associative
computer, In Proceedings of the International Conference
on Parallel and Distributed Processing, Sunnyvale CA,
August 1996.

[9] J.L. Potter, Associative Computing - A Programming
Paradigm for Massively Parallel Computers, Plenum
Publishing, N.Y., 1992.

[10] Lisa Nicklas, Robert Atkins, Sanjeev Setia and Pearl Wang,
Design and Implementation of a Parallel Solution to the
Cutting Stock Problem', Concurrency: Practice &
Experience, October 1998.

[11] S. Hillis, Data parallel algorithms, Communications of the
ACM, 29(12):1170--1183, December 1986.

[12] K. F. Hioe, Asprol (associative programming language),
Master's project, Kent State University, Math and Computer
Science (MSB), August 1986.

[13] J. Potter, Associative Computing - A Programnming
Paradigm for Massively Parallel Computers, Plenum
Publishing, N.Y., 1992.

[14] PotterBakerScottBansalLeangsuksunAsthagiri, MASC:
An associative computing paradigm, IEEE Computer, pages
19-25, November 1994.

