VLDC STRING MATCHING FOR ASSOCIATIVE COMPUTING
AND MULTIPLE BROADCAST MESH

MARY C.ESENWEIN
EDS
4076 Youngstown-Warren Rd
Warren, OH 44484
330-373-7163
LNUSPKRD.mesenw01@eds.com

Abstract - This paper presents a new parallel algorithm
Jor string matching with variable length "don't care" (VLDC).
The initial computational model used is the associative
computing model (ASC) enhanced with a linear network. ASC
is a natural extension of the data parallel paradigm to a
complete model for parallel computation. It supports
massively parallelism through the use of data parallelism and
constant time functions such as associative search and
maximum value. It is also shown that the same algorithm is
equally adaptable 1o the mesh with multiple broadcast. The
algorithm has a run time of O(m) using Ofn) processors,
given a pattern of size m and a text of size n. The algorithm
has the unique feature of permitting the identification of all
match continuation points in the text after each "don't care"
character.

Key Words - string matching, associative computing,
ASC, parallel algorithms, data parallel programming

INTRODUCTION

String matching algorithms are among the more.
commonly analyzed algorithms in computer science. The
extensive study of these algorithms is a result of their
importance and general application: data validation, text
editing, language translators, and DNA analysis. String
matching is defined as finding all occurrences of a pattern
string in another string called the text string. Formally,
given a pattern string P of length m and a text string T of
length n, where m < n, locate all positions i such that T[i+j-
1} =Pfj}, forall jwhere 1 <j <m. The output is traditionally
a boolean list of length n where listfij< 1 if a match begins at
T[i] and O elsewhere. An exact match means that the pattemn
string can be found intact within the text at least once.
Optimally, sequential string matching algorithms have a run
time of O(n).

Basic string matching algorithms look for all
occurrences, including overlapping occurrences, of an exact
match between a pattern and the text, but there are several
variations to this problem. Generalized string matching,
also referred to as dictionary matching, searches for
occurrences of several patterns simultaneously. If any one of
the patterns is found, a match is declared. In approximate
matching algorithms, an attempt is made to convert the
pattem (by deleting, inserting, or replacing characters) so
that it will match a substring of text. A cost is applied to
each activity performed against the pattern. If the cost of
conversion is less than some user specified maximum, then a
match is declared for that substring of text. A similar
approach is called best match, where some match is always
found, that being the sequence of text most like the patter,
thus requiring the least cost conversion. In multi-

JOHNNIE W. BAKER
Kent State University
Dept. Mathematics and Computer Science
Kent, OH 44242
330-672-4004
jbaker@mcs.kent.edu

dimensional matching, patterns and text are expressed as
multi-dimensional arrays. Any of these problems can be
further complicated by the presence of a "don't care" character
in the pattemn. This is a special character outside of the
problem alphabet that may be matched to any text character
or substring of text characters, depending on the problem
definition.

We narrow the scope of the subject in this paper to
present a new algorithm for string matching with variable
length “"don't care" (VLDC) designed for the associative
computing model, ASC. Additionally, we shall demonstrate
that this same algorithm is also applicable on the mesh with
multiple broadcast. By definition, VLDC string matching
incorporates a wild card character, usually represented by ‘¥,
that automatically matches a text string of undetermined
length. The use of a wild card in the pattern lends some
flexibility to string matching algorithms by indicating that
certain text characters are irrelevant to the matching process.
Some VLDC algorithms may limit the number of characters *'
that may appear in the pattern or restrict **' from appearing at
the beginning or end of the pattern. The algorithm we present
is not inhibited by either of these restrictions.

The best known run time for a sequential solution to
VLDC string matching is O(mn/log n), presented by Myers
[1]. Parallel VLDC algorithms are relatively rare. The best
known time for a parallel algorithm is O(log n) using
O(mn/log n) processors for the EREW PRAM, as described by
Bertossi and Logi in {2]. The new algorithm presented here
also has a cost of O(mn), but has the additional feature of
being able to identify all continuation points of matching
text after each "don't care” character. Qur new algorithm is
efficient in that it examines each pattern character once,
comparing it only to those text characters that have the
potential to lead to a successful match, and it finds all
matches simultaneously.

ASC

The concept of associative memory is supported by
certain parallel computers, called associative computers, by
accessing objects in the local memory of each processor (PE)
by content rather than by address. This is accomplished by
broadcasting an item and having all active PEs search a
specified field in their local memory for this data item, in
parallel. A detailed account of the required features for an
associative computer and how these features can be supported
is given in [3].

The associative model, ASC, is a natural extension of the
data parallel programming paradigm to a computational
model that can simulate RAM. The ASC model supports a
generalization of the associative style of computing that has

been in use since the introduction of the STARAN associative
computer by Goodyear in the early 1970’s. A detailed
description of this model is given in [4]. A high level
language developed for ASC is described in [3] and has been
installed on the STARAN, Goodyear/Loral/Martin-Marietta's
ASPRO, the WaveTracer, and Thinking Machine's CM-2. In
addition, an efficient simulator has been implemented on
both PCs and workstations running UNIX {3, 9]. The ASC
model provides an efficient and easy to program model for
algorithms that utilize massively parallelism.” As with data
parallel programming, the programmer for the ASC model
does not have to deal with the arduous programming chore of
task allocation and, in fact, ASC programs are often shorter
and simpler than well coded versions of their sequential
counterparts. A massively parallel, general purpose computer
that can directly support the ASC model is currently
buildable. Also, this model is supportable on a wide variety
of platforms. A brief description of this model appears in a
recent textbook by Selim Akl [S]. A wide range of different
type of algorithms and several large programs have been
implemented using the ASC language including a parallel
optimizing compiler for ASC, two rule-based inference
engines, and an associative PROLOG interpreter [3, 9]. Some
examples of algorithms for this model appear in [6, 7, 8, 9,
10]. We present here an overview of ASC and then use this
model to present our VLDC string matching algorithm.

PE Memory

IS PE Memory

L | PE Memory

FIG. 1. ASC INSTRUCTION STREAM
AND CELLULAR MEMORY

ASC consists of an array of cells, each comprised of a PE
and its local memory. Cell memory holds variables used for
data parallel operations. These cells are connected by a bus to
a processor called the instruction stream (IS) which stores a
copy of the program being executed and broadcasts program
instructions to all active cells. The IS should not be confused
with the concept of a host processor. Because the IS sends
instructions to the PEs via a bus, the IS can be considered
local to each PE. For our algorithm, only one IS is required,
but the general ASC model allows multiple instruction
streams. The number of ISs should be small relative to the
number of PEs. While it is not a requirement of ASC, it is
convenient to assume that variables and constants that need
to be globally availabie to all cells are also stored in the
memory of the IS and may be broadcast to all active cells. The
IS also has the ability to read and store a value from a specific
cell. The IS variables are considered scalar variables while
the cell variables are considered parallel variables. To make a
clear distinction between these two variable types in the
algorithm, we have adopted the concept of adding a '$’ suffix
to the paralle] variable identifiers.

In addition to data parallel execution, the ASC model
supports constant time functions for associative searching

and selection, logical operations, and maximum and
minimum. Constant time searching permits the simultaneous
examination of all active cells and the identification of all
those that meet the search criteria. These identified cells are
called responders and become the new set of active cells. By
altering the criteria, different cells become responders. The
IS has the ability to detect the presence of responders, access
active cells in paraliel or sequentially, and also to return to
the set of cells which were active preceding the search. The
constant time maximum (minimum) functions retrieve either
the greatest (least) value of a cell variable or the index of the
PE containing that value. The cells may also be connected to
each other by means of a network such as a mesh, hypercube,
or shuffle-exchange. The use of locality is important to avoid
extraneous communications. Our algorithm assumes the use
of a linear network. Figure 1 illustrates the ASC model.

The speed with which ASC can simulate PRAM gives a
good indication of the power of ASC, but algorithms which
run on ASC and simulate a PRAM algorithm may be less
efficient than an inherently ASC algorithm. Let ASC(n, j)
represent the ASC model of n PEs and j ISs, let PRAM(n, m)
represent PRAM of n processors and m shared memories.
ASC(n, 1) without a network can simulate a priority CRCW
PRAM(n, m) in O(k) where k is the number if distinct memory
locations accessed in this PRAM cycle and k < min {n, m}. In
general, ASC(n, j) without a network can simulate priority
CRCW PRAM(n, m) in O(k/j) with high probability if the
simulated PRAM memories are hashed among the ASC PEs. If
ASC is enhanced with a network, then ASC can use both
network techniques (at a cost based on the network used) and
instruction streams to move data. An ASC(n, 1) machine with
a network can simulate a priority CRCW PRAM(n, m) in
min(O(k), O(route_net(n))), where route_net(n) is based on
the fastest method to CR or CW n memory accesses for a
given network. In general, ASC(n, j) can simulate combining
CRCW PRAM(n, m) in min(O(k/j), route_net(n))) with a
network with high probability if the simulated PRAM
memories are hashed among the ASC PEs. Conversely,
combining CRCW(n, m) can simulate ASC(n, j) in O() extra
time and O(j/n) extra memory per PE. For additional details,
see [11].

VYLDC ALGORITHM

We assume that consecutive text characters are stored in
separate but consecutive cells, starting with the second cell.
The pattern is stored in and broadcast from the IS. In keeping
with standard format, each '*' in the pattern represents an
unspecified number of text characters that automatically
match the pattern. A "*' may appear anywhere in the pattem,
including the first and last positions, and multiple
occurrences of '*' are permitted, however, two consecutive
"don't care" characters are not allowed. Such use is
unnecessary, anyway. Each '*' is counted as one pattern
character when calculating the length of the pattern. The
pattern is processed in reverse order, from P{m-1] to P{0].

Let each "*' separate the pattem into segments. Each
segment will be treated essentially as if it were a separate
pattern, with the condition that occurrences of one pattern
segment will not be matched to text that lies beyond the last
occurrence of a match to the previously tested pattern
segment. Special handling is required when the pattern
begins or ends with "',

We will now explain the functionality of the variables
required by the algorithm. In addition to the text character

variable, rext$, each cell will contain a match indicator,
match$, which is set to true if the algorithm determines that a
match begins with the text character in that cell, and a
counter, counter§, which will indicate the number of
consecutive text characters that were successfully matched to
the pattern prior to the current character. Each cell will also
store an armray, segment$[kj, for 0 < k < | /2 | +1, where
segment3[j], 0 < j <k, is set to the length of the j'th pattern
segment processed if the character rexz$ for that cell begins a
match to that segment. To accoramodate all possible
patierns, the size of the segment array must be [n/2 | + 1.
This is dictated by the special case where m=n, n is even, and
every other pattern character is '*, including the last
character. Our example will only show the first three
elements of segment$fk], as that is all that is needed to
illustrate this algorithm. The text is loaded with one
character per PE for PE[2]} through PE[n+1] where the PEs arc
indexed PE[1] through PE[n+1]. For practical application,
the size of n should not be a concern. Each PE may store as
much data as required and it is shown in {10] that an ASC
model with may PEs can be simulated on an ASC model with
fewer PEs if cach PE of the smaller model contains the data of
a fixed number of PEs from the larger model. The pattern is
stored in an array in the IS and is processed in reverse order,
from P{m-1] to Pf0]. The IS also keeps a counter,
patt_counter, which indicates the number of characters
within the pattem that have been tested, the variable maxcell,
which is the index of the highest cell to match the last pattern
segment processed, and part_length, the length of the pattern
yet to be processed. All variables are initialized to zero
except for text$, the pattern, maxcell (initial value n+2) and
pait_length (initial value m). Each pattern character is
examined once and, because of ASC capabilities, is matched
simultaneously to all text characters that have the potential
to lead to a successful match.

The algorithm is stated in figure 4. By following the
example in figure 5, we can demonstrate the state of the
associative memory after each pattern segment is processed
for the problem of matching pattern AB*BB*A in text
ABBBABBBABA. The segment array is reduced in size to
show only the three elements needed for this particular
example. The first pattern character processed is the final 'A’.
The associative search activates all cells where rext$ = 'A’,
counter$ = 0 and cell index < 13. This makes responders of
cells 2, 6, 10, and 12. Each of these cells sends a message to
its immediately preceding cell to set its counter$ = 1. The
variable pati_counter is then incremented to reflect the
number of characters examined in the current pattern segment,
as shown in figure 5(a).

When a "*' is encountered in the pattemn, the second part
of the while loop, statements 4 and 5, is executed. This code
stores the length of the most recently matched pattern
segment in the segment array of cells that begin a match to
that segment. It also resets maxcell so that the next pattern
segment will not look for responders beyond the last
occurrence of a match with the most recent segment.
Matching is terminated when it is determined that the pattern
will not match the text, i.e. when a pattern segment fails to
match a text substring, resulting in no responders to
statement 5.

Looking at figure 5(a) again, after the final 'A' is
processed, the "*' preceding it in the pattern is broadcast.
The action initiated by the '"*' is to activate those cells
whose counter$ =1 (i.e. patt_counter) and to store the length
of the last pattern segment (again, patt_counter) in

segment3[0] of the cell following these responders (cells 2,
6, 10, and 12). This identifies these cells as beginning a
match with the last pattern segment. Because cell 12 is the
highest cell index to match that segment, maxcell is set to 12
so that the next pattern segment tested will not look beyond
that point to find a match. Next, paitt_length is decremented
by the length of the pattern just processed, patt_counter is
reset to zero for the next pattern segment, and the second 'B’
of the middle pattern segment 'BB' is processed. The
associative search for this character looks for a text$ = 'B', a
counter$ = 0, and cell index < 12. Responders are cells 3, 4,
5,7, 8,9, and 11. These cells send a message to their
preceding cells to set counter$ = 1. The next pattern character
is the first "B’ of the middle segment. The associative search
is now a text$ = 'B', a counter$ = 1, and cell index < 12,
resulting in cells 2, 3, 6, and 7 having counter$ set to 2. The
next pattern character is '*, so segment$f1] in cells 3,4,7
and 8 is set to 2 (the length of the middle segment as stored in
part_counter), maxcell is set to 8, and the process is repeated
for the next segment, figures 5(b) and 5(c).

All text characters that successfully meet the associative
search criteria for the first pattern character (i.e. the last
character tested) are the text characters which begin a match
to the whole pattern. Those cells (2 and 6) will set the match
indicator, match$, to 1 (statement 6). Figure 5(d).

Special handling is required when the pattern begins or
ends with "*'. When '* is the first character of the pattern,
then all text characters that precede the last occurrence of the
first pattern segment are said to match the pattern. The
processor that begins this last occurrence is captured in
maxcell and all PE[i], for0 <i < maxcell, may set their match
indicator flag. Recall that the pattern is processed in reverse
order so the beginning '*' is really the last character
processed. All possible starting positions for all pattern
segments are known at the time it is processed. The presence
of a ™' at the end of the pattern means that any and all text
characters beyond the first occurrence of a match to the last
pattern segment will also match the pattern. In fact, all text
characters would be considered a match to the end of the
pattern and segment$[0] is set to indicate such. This action
also handles the unlikely situation where '*' is the only
pattern character.

Because all commands in ASC run in constant time, the
run time for the algorithm is O(m) for O(n) processors. Other
algorithms which solve VLDC problem can only identify the
text positions where a start to the whole pattern match is
found. While this practice is consistent with traditional
output for the string matching problem in general, the
unpredictable length of the text substrings represented by
each ¥ would indicate that it may be beneficial to be able to
identify where the text pattern matching continues after each
*'. A unique feature of this algorithm is that it has captured
all of the information necessary to find all continuation
points of all matches following each "*'. The match to any
pattern segment begins where segment$[j] is set to the
length of the jth segment, i.e. where segment$[j] > 0. The
start of the continuation of the match to that segment is any
text character whose segment${j-1] is greater than zero and
whose cell index is greater than or equal to the sum of the cell
index of the current segment match plus the length of that
current segment. Consider the match beginning in cell 2 of
our example problem. The variable segment$[2] in cell 2 = 2,
the length of the first pattemn segment. Continuation points
for this match are all cells where segment$[1] >0 and whose
cell index > 4 (cells 4, 7, 8). Because segment$[1] = 2, any

match that continues at cell 4 would continue in a cell whose
cell index > 6 and whose segmemt${0] > O (cells 6, 10, 12).
Similarly, any match that continues at cell 7 would continue
at cells 10 and 12. By recursively following this rule, all
continuation points for a match may be identified. Thus, for
our example, these underscored matches are identifiable:
ABBBABBBABA, ABBBABBBABA, ABBBABBBABA,
ABBBABBBABA, ABBBABBBABA, ABBBABBBABA,
ABBBABBBABA, ABBBABBBABA, ABBBABBBABA.

MESH WITH MULTIPLE BROADCAST

The mesh with multiple broadcast is an enhanced
version of the m x n mesh network in that all PEs in a
row/column are connected by a bus. See figure 2. All PEs are
assumed to be identical and each is aware of its own
coordinate (i,j) where 1 <i <nand 1 <j <m. In addition to
unit time communication between adjacent PEs, one PE may
broadcast on its row/column bus to all other PEs listening on
that bus in unit time. Other unit time functions that may be
performed by all PEs simultaneously include: performing
simple arithmetic of boolean operations; reading a message
from the bus; writing a bit to the bus; and interpreting a bit
string. This bit string may be interpreted as a sequence of ali
ones, all zeros, or a cormbination of ones and zeros. A more
complete description of the mesh with multiple broadcast
may be found in [12, 13].

FIG.2. MESH WITH MULTIPLE BROADCAST

To accommodate the new algorithm presented here, a
simple 1 x (n+1) mesh with a bus connecting the processors
is sufficient for a text of length n, where consecutive
processors store consecutive text characters. See figure 3.

O—F——o0

FIG.3. 1 x n MESH WITH BUS '

The functionality of the variables and the flow of the
algorithm on this model is essentially the same as previously
stated for the ASC model, except that the scalar variables
patt_counter, patt_length, and maxcell must now be
duplicated in each of the PEs and their updated values must be
broadcast. Text characters are stored conseccutively in PE[2]
through PE[n+1]. The pattern will also be stored in and
broadcast from PE[n+1]. Each processor PE[i], for 1 <i <n
- will compare its text$ with a broadcast pattern character if
patt_counter$ in PE[i] = counter$ and i < maxcell$,

otherwise no comparison takes place. Then, PE[i] will
transmit a value of 1 to PE[i-1] if PE[i] had a successful match,
otherwise it will transmit 0. Each PE[i] will add the value it
receives to its counter$ and increment patt_counter$ by one.
A '¥ is the pattern broadcast value will signal the end of a
patten segment. All PE[i] will transmit patt_counter$ to
PE[i+1] if PE[i].counter$ = PE[i].part_counter$, for 0 <1i < n.
All other processors transmit 0. Each PE stores this
transmitted value in segment$[j]. This means that a match to
the j'th pattern segment begins at PE[i] if segment$[j] > 0 in
PE[i]. It is necessary to reset patt_counter$ and counter$ to 0O
before continuing with the next pattern character. It is also
necessary to calculate the value of maxcell$ and broadcast it
to all processors.

The new value for maxcell§ may be calculated and
broadcast to all processors in constant time. It can be argued
that the maximum function can be performed in constant time
on the mesh with multiple broadcast. The time needed for this
function would in fact be O(w) where w is the word size, a
constant value for any given machine. In this case, the
processor with the largest id number which begins a match to
the most recent pattern segment is assigned to maxcell$.
Each processor with segment$[j] > 0 sends its address, one bit
at a time starting with the leftmost bit, to some accumulating
processor. However, after each transmission, only those
processors that sent a one bit will continue sending bits, the
others drop out of contention. If no processor sends a one bit
on any cycle, then all processors that sent the last zero bit
send their next bit. The last processor to send a bit is
assigned to maxcell.

On each iteration, patt_length$ is decremented by
patt_counter$, ic. the length of the pattern yet to be
processed is reduced by the size of the segment just processed.
When patt_length$ becomes zero, the whole pattern has been
processed. Bach processor PE[i] may set a flag indicating the
start of a match to the whole pattern begins at the text
character in PE[i] if segmemt$[k] > 0.

As with the ASC model, it is possible to terminate
processing as soon as it can be determined that no match to a
pattern segment is possible. As each pattern character is
broadcast, each processor writes a bit to the bus indicating
whether or not it matched the most recently broadcast pattern
character. Then, PE[n+1] will interpret that sequence of bits.
If the bit sequence contains all zeros, meaning no text
character matched that pattern character, a complete match of
the pattern is not possible, and the algorithm may be
terminated.

All commands are executed in constant time, so the
run time for this algorithm is O(m) using O(n) processors.
Using the same logic as previously described, it is possible
to identify of the matching continuation points after each
occurrence of ¥, '

CONCLUSION

We have presented a new algorithm for VLDC string
matching. The algorithm was presented for the associative
computing model, ASC, using one IS and enhanced with a
linear network, and for the mesh with multiple broadcast for a
1 x (n+1) network. The algorithm has a run time of O(m)
using O(n) processors, works for a general alphabet, and does
not require any preprocessing or any knowledge of or
periodicity in the pattern. Multiple occurmrences of '*' are
permitted and '*' may appear as the first and/or last character

of the patiem. A unique feature of the algorithm is the ability
to identify all match continuation points after each "*'.

ACKNOWLEDGMENT

The authors thank Darrell Ulm for his helpful comments
on ASC/PRAM simulation.

REFERENCES
[1] Gene Myers, A Four Russians Algorithm for Regular
Expression Pattern Matching, J. Assoc. Comput. Mach.,
39 (4), 1992, 430-448.

[2] Alan A. Bertossi, Filippo Logi, Parallel String Matching
With Variable Length Don't Cares, J.Parallel Distributed
Comput., 22 (2), 1994, 229-234.

[3] Jerry Potter, Associative Computing: A Programming
Paradigm for Massively Paraliel Computers (New York;
Plenum Press, 1992).

[4] Jerry Potter, Johnnie Baker, Stephen Scott, Arvind
Bansal, Chokchai Leangsuksun, Chandra Asthagiri, ASC:
An Associative-Computing Paradigm, Computer, 27(11),
1994, 19-25.

[5] Selim G. Ak}, Parallel Computation: Models and Methods
(New Jersey; Prentice Hall, 1997).

[6] Maher M. Atwah, Johnnie W. Baker, Selim Akl, An
Associative Implementation Of Classical Convex Hull
Algorithms, Proceedings of the Eighth IASTED
International Conference on Parallel and Distributed
Computing and Systems, 1996, 435-438.

[7] Maher M. Atwah, Johnnie W. Baker, Selim AKkl, An
Associative Implementation of Graham's Convex Hull
Algorithm, Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and
Systems, 1995, 273-276.

[8] Mary C. Esenwein, Parallel String Matching Algorithms
Using Associative Computing and Mesh with Multiple
Broadcast, Masters Thesis, Kent State University, 1995.

[9] Darrell R. Ulm, Johnnie W. Baker, Solving a 2D
Knapsack Problem on an Associative Computer
Augmented with a Linear Network, Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications, 1996, 29-32.

[10] Darrell R. Ulm, Johnnie W. Baker, Virtual Parallelism by
Self Simulation of the Multiple Instruction Stream
Associative Model, Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1996, 1421-1430.

{11] Darrell R. Ulm, Johnnie W. Baker, The Power of the
Associative Model Compared to PRAM, Technical Report,
Kent State University.

(12} D. Bhagavathi, P, J, Looges, S. Olariu, J. L. Schwing,
Selection on Rectangular Meshes with Multiple
Broadcasting, Bit, 33, 1993, 7-14.

[13] D. Bhagavathi, S. Olariu, W. Shen, L, Wilson, A Time-

Optimal Muitiple Search Algorithm on Enhanced Meshes,
with Applications, J. Parallel Distributed Comput., 22,
1994, 113-120.

int patt_length = m;
int maxcell =n + 2;

f* Special handling for **' at end of pattern */

- if (pattern[m-1] == '*")

{ Responders are cell index > 1;
Responders set segment$[0] = 1;
patt_counter = 1;
k=1; /*reset initial segment index */

}

while ((patt_length -= patt_counter) > 0
&& maxcell > 0)
{ patt_counter=0;
for (i = patt_length - 1; i>=0 && pattern[i] !="*"; i)
{ Responders arc

text$ = pattern(i]
and counter$ = patt_counter
and cell index < maxcell;

Responders add 1 to counter$
and store result in counter$ of preceding cell;

patt_counter++;

Responders are counter$ = patt_counter;
Responders set segment$[k] = patt_counter
in next cell;

Responders are segment$[k] > 0;

maxcell = maximum cell index value of Responders
else if no Responders,

maxcell =0;

All cells become Résponders and set counter$ = 0;
patt_counter++; k++;

/* When pattern has been processed: */
Responders are segment$[--k] > 0;
Responders set match$ =1;

1* Special handling for '*' at start of pattern */
if (pattern[0] = "*")
{ Responders are cell index < maxcell
and cell index > 1; /* skip first cell */
Responders set match$ = 1; '

FIG. 4. VLDC ALGORITHM USING ASC

0

0 {0 o0

0

1

0

0

M$ C$ S0$ S13 S2%

T3

B

B

ll@]0

10JA O

11{B |0

121 A {0

0

0

0

(]

0

1

M$ _C$_SO0$ S1$ S2%

TS

A

B

B

A

B

B

10l]A {0

11{B |0

12[A]o Jo

(®)
After second pattern segment

(@)

After third pattern segment

T$ M$ C$_S0$ S1$ S2%

@

=3 olo|e clo|olo|o]eo
o a]lale an|lalolelele
1) ololo ololo|~|eo |~
o [~ B~ e (=2 I =R R BN = R =
=3 olole oclololeoe|le]o
® m|a|m mlo|lm|<|ml}<
— @ < n ~ o o 2 = d

i

o .

v} © ojlo|o cjolololeo]e

|

R alalo alalole]le|e

&l

#| o olo|e ololol~|o|m~

g

Ol - =l ololelojo|le

2 o ole|e olo|elelol]e

W_@ mim|m mim|m|<|m]| <
- o <+ n ~ o o 2 = o

@

Final state

After first pattern segment

FIG.5. STORED DATA VALUES FOR BOTH MODELS

VLDC MATCH FOR PATTERN AB*BB*A IN TEXT ABBBABBBABA

