GeometryEditor and GeoSite Release Status and New Features

Xun Lai

July 16, 2008

Announcement on Math Forum Discussion geometry.software.dynamic

- Announcement on 2/25/2008
- It's a very inactive mailing-list
- http://mathforum.org/kb/forum.jspa?forumID=131\&start=0
- geometry-software-dynamic@support1.mathforum.org
- Two to three topics per month
- Active members seem to be experts in interactive geometry software, but not ordinary school teachers
- Originators of other geometry systems
- Expert users

Announcement on Yahoo news group svg-developer

- Announcement on 6/15/2008
- It's an active mailing-list for SVG people
- http://tech.groups.yahoo.com/group/svg-developers/messages
- svg-developers@yahoogroups.com
- Three to four topics per day
- Few group members are interested in Math education

Current users

- http://boar.cs.kent.edu/geosite/
- Click the "User List" at the bottom
- One manipulative created by user rossisen
- figgauge: http://boar.cs.kent.edu/geosite/view.php?id=mXghrVq6irT9AM
- User rossisen has maintained a blog illustrating a couple of math concepts
- http://mathfest.blogspot.com/2008/02/fibonacci-gauge-part-2.html
- He uses the manipulative created on the GeoSite to illustrate a math topic in his blog.

Ways to boost

GeometryEditor and GeoSite

- Find the right communities to publicize GeometryEditor and GeoSite
- The announcements on the previous two communities were not so successful

Ways to boost

GeometryEditor and GeoSite (cont.)

- Continuingly improve GeometryEditor’s authoring support and functionality of GeoSite

Ways to boost GeometryEditor and GeoSite (cont.)

- Need to provide more ready-to-use manipulatives and educational pages
- Pages contains not only manipulative(s) but also text contents
- nine point circle
- http://boar.cs.kent.edu/geosite/view.php?id= mLKZfRNS8nzwd8
- reflection point about a circle
- http://boar.cs.kent.edu/geosite/view.php?id= mchgu3VTm7REiB
- equilateral triangle with vertices on three circles
- http://boar.cs.kent.edu/geosite/view.php?id=_m1kIrnPmPqVT5N
- Plan phases:
- Phase 1: Make around 50-100 pages (very time consuming) by myself
- Phase 2: Attract a group of expert users who are interested in authoring sophisticated manipulatives and pages
- Phase 3: Attract ordinary users to use existing pages

New features

- Since last presentation (Feb 4, 2008)
- Now working under Firefox 1.5+, Opera 9+, Safari 3.1+, and Windows IE with ASV
- Authoring geometric objects under two modes
- Select a menu item first, and then select object(s) to apply the operation (Cabri and most other systems)
- Select object(s) first, and then select a menu item to apply an operation (SketchPad)
- GeometryEditor is the only one that supports both modes

New features (cont.)

- Macro-based (user-defined) tools behave the same as system-defined tools
- GeometryEditor is the only one that achieves this goal
- Powerful macro wizard
- Powerful recursion wizard
- Tool signature window
- Object list window
- Great improvement on the response speed of recursions
- Logical measurements
- Treating measurements as expressions
- Maintaining expression/text object's position relative to a point

Features I am working on

- Conic sections
- More sophisticated coordinate system support (difficult)
- Unit length determined by an expression
- Circular dependency
- Integration with Maxima

Major planned work

- Pluggable object types
- Interactive drawing between two users
- Packaging the Geometry system and the GeoSite system, and placing them SourceForge and Google Code
- Apply for a domain to host GeoSite
- boar.cs.kent.edu/geosite looks like a testing Web site

Object types: many or few

- In "Lifting the Curtain: The Evolution of The Geometer's Sketchpad", it has discussed how many menu items should be provided
- http://math.coe.uga.edu/TME/v10n2/4scher.pdf
- As fewest menu items as possible plus macro (userdefined tool)
- No direct menu item for the creation of a circle through three points
- Kig on Linux
- Has a direct support for creation of a circle through three points

```
File Edit View Objects Types Settings Help
```



```
- ○
\(\therefore 3\)
\(x\) -
\(\therefore \circ 8\)
\(\backslash\) (2)
a 2
\$ 8
n 8
20
os
```


อ

```


```

$\%$
$\%$
$\%$
$\%$
AI
sl
布

```




\section*{Object types: many or few (cont.)}
- How to judge if the system should provide native support for creating an object in a particular way?

\section*{Object types: many or few (cont.)}
- As many as possible?
- Overwhelming user interface
- Not good for a Web-based application
- You never know what other object types are needed
- An interesting example: Triangle Centers
- http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
- As fewest as possible plus macro?
- Not good for fast authoring
- Macro-based tools create lots of hidden assistant objects
- Neither solution is desirable

\section*{Pluggable object types}
- Proposed solution: Pluggable object types
- Observation: position and attributes of most geometric objects can be determined by algebraic formula
- Mid-point of a segment
- \(\mathrm{x}=(\mathrm{s} . \mathrm{x} 1+\mathrm{s} . \mathrm{x} 2) / 2\)
- \(\mathrm{y}=(\mathrm{s} . \mathrm{y} 1+\mathrm{s} . \mathrm{y} 2) / 2\)

\section*{Pluggable object types (cont.)}
- Incenter and inscribed circle of a triangle
- Incenter: the point of concurrence of the interior angle bisectors of triangle ABC
- Inradius: the distance from the incenter to one side
- Incircle: centered at the incenter with radius equal to the inradius


Incenter and inscribed circle (from mathwords.com)

\section*{Pluggable object types (cont.)}
- Steps of calculation of incenter and inradius
\[
\begin{aligned}
& a=\operatorname{dist}(B, C) \\
& b=\operatorname{dist}(C, A) \\
& c=\operatorname{dist}(A, B) \\
& x=\left(a^{*} A \cdot x+b * B \cdot x+c^{*} C \cdot x\right) /(a+b+c) \\
& y=\left(a * A \cdot y+b * B \cdot y+c^{*} C \cdot y\right) /(a+b+c) \\
& \text { inradius }=2^{*} \operatorname{area}(A, B, C) /(a+b+c) \\
& \text { incenter }=\operatorname{Point}(x, y)
\end{aligned}
\]
incircle \(=\) CircleWithCenterAndRadius( incenter, inradius )

\section*{Pluggable object types (cont.)}
- When a direct algebraic computation is possible, there is no need take complex multiple steps to create an object
- Besides understanding the underlying math, fast authoring should be a goal of a geometry system
- A scenario can be
- Understanding how to create the incenter is not the major goal
- Fast creation of an incenter for further authoring of other objects is the major goal

\section*{Pluggable object types (cont.)}
- XML syntax to describe steps to create object(s)
- Provided by the system or the users
- An environment for ordinary users to declare the steps, and the XML file is generated automatically
- Schema and a testing environment to do the validation of the steps
- A user can assemble the authoring environment
- Works like plug-in
- Loaded by AJAX
- A teacher can customize different authoring environment profiles for students

\section*{Interactive drawing between two users}
- Active and passive
- Difficulties:
- Mouse movement
- Menu pulling down

\section*{Final Release}
- Packaging the Geometry system and the GeoSite system, and placing them SourceForge and Google Code
- Apply for a domain to host GeoSite
- boar.cs.kent.edu/geosite looks like a testing Web site```

