
Race Conditions

• A race condition occurs when an
assumption needs to hold true for a period
of time, but actually may not

• Bob and Alice example.

Java Example

Import java.io.*
Import java.servlet.*
Import java.servlet.http.*
public class Counter extends HttpServlet {

int count = 0;
public void doGet(HttpServletRequest in,

HttpServletResponse out) throws ServletException {
out.setCountentType(“text/plain”);
Printwriter p = out.getWriter();
count++;
p.println(count + “ hits so far!”);

}
}

Java Example
Import java.io.*
Import java.servlet.*
Import java.servlet.http.*
public class Counter extends HttpServlet {

int count = 0;
public void doGet(HttpServletRequest in,

HttpServletResponse out) throws ServletException {
int my_count;
out.setCountentType(“text/plain”);
Printwriter p = out.getWriter();
synchronized(this) { my_count = ++count; }
p.println(my_count + “ hits so far!”);

}
}

Time-of-Check, Time-of-Use

• The check for privilege (access) to a
resource should occur at the same time
when the resource is used.

• Race conditions always happens when
more than one process/thread has access
to the same resource.

• Security-critical race conditions happen
when the 2 processes has different
privileges

Unix file-based Race Condition

• Unix filesystem is shared among all
processes

• If a process with privilege writes to a file
after checking access, a race condition
occur.

• Password file problem in the book, pages
218 - 219

Race Condition in Some Cable
Modems

• Users were able to use a race condition in some early version
of cable modem software to trick the modem to download a
config file from their server instead of the cable company server

• See http://www.securityfocus.com/news/394/
“If cable modem hacking hasn't become a huge problem for

service providers, it's probably because the process remains
intimidating for non-technical users. The subscriber has to
program a DOCSIS configuration file with a special editor, run
their own TFTP server, change their IP address and run an
DHCP server that tricks the modem into pulling the config file
from their host. Dedicated hobbyists have refined the procedure
and written tools to automate key portions of it, but pitfalls and
caveats abound”

How cable modem works

• Offline.
• Scan for downstream channel.
• Receive Upstream Channel Descriptor (UCD).
• Ranging to find tx level and symbol timing.
• DHCP to get CM IP address and gateway.
• Use TFTP to get config file.
• Initialize Baseline Privacy (BPI).
• Receive Time Of Day (ToD).
• Online.

Cable Modem Config file contains

• Downstream channel identification
• Class of Service settings
• Baseline Privacy settings
• General operational settings
• Network management information
• Software upgrade fields
• Filters
• Vendor specific settings

Using TFTP to get the config file

Cable Modem Cable company
Server

End User
Server

•Cable modem needs to communicate with tftp server based on DHCP
parameter
•Cable modem requests the MAC address of the tftp server if it does
not have it already
•Cable modem starts sending tftp requests/packets to that server
•The user simply continue to ping the cable modem address from
his/her own server to get its own MAC address in the modem memory
•The cable modem communicates with the user server instead of the
company server.
•This bug has been fixed in most cable modems.

ping

User server has same IP as the cable company server

Unix filesystem Race condition
• Race conditions are only a security problem if

the process runs as a different user. i.e only a
potential security issue if the programs is suid.

• Extra care is needed when writing software
that is expected to run as suid under unix.
Specially when doing file operations

• Method described on page 220 can be used to
avoid race conditions and ensure the correct
file was opened.

Unix filesystem Race condition
• Some operations require a filename and

cannot operate on a file handles [link(),
mkdir(), mknod(), rmdir(), symlink(),
unmount(), unlink(), utime()]

• The best solution is to keep files a specific
program needs in their own secure dir.

• The software should chdir() to the dir then
check it is secure before working on any files
in that dir.

Deleting files
• Deleting files securely can only be done if using

secure directory approach
• Deleting a file simply remove the reference to it from

the dir and frees the blocks. It does not delete the
data

• Technology exits to even recover data from disk
plates even if data has been overwritten

• The best way to ensure data security is not to write it
on disk or use some encryption before writing to disk.
Must also ensure that data does not get written to
disk by OS by swapping memory out.

Temporary Files
• Writing temp files to a common accessible

directory is a bad practice from security point
of view.

• If a temporary file must be written to /tmp
follow the steps on page 226

File Locking

• File locking in most operating system is
discretionary and not mandatory

• To ensure locks are not taken over by
potential attackers, file must be secure
directory

• Locks on network file systems may not
work.

Other Race Conditions

• Cable modem problem described before
• Race condition occurs anytime 2 actions

act of the same resource.
• Race condition creates a security problem

when the 2 processes has different
privileges

