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Abstract

Host security is achieved by securing both the operat-
ing system kernel and the privileged applications that run
on top of it. Application-level bugs are more frequent than
kernel-level bugs, and, therefore, applications are often the
means to compromise the security of a system. Detecting
these attacks can be difficult, especially in the case of at-
tacks that exploit application-logic errors. These attacks
seldom exhibit characterizing patterns as in the case of buf-
fer overflows and format string attacks. In addition, the data
used by intrusion detection systems is either too low-level,
as in the case of system calls, or incomplete, as in the case
of syslog entries. This paper presents a technique to enforce
non-bypassable, application-level auditing that does not re-
quire the recompilation of legacy systems. The technique is
implemented as a kernel-level component, a privileged dae-
mon, and an off-line language tool. The technique uses bi-
nary rewriting to instrument applications so that meaning-
ful and complete audit information can be extracted. This
information is then matched against application-specific
signatures to detect attacks that exploit application-logic
errors. The technique has been successfully applied to de-
tect attacks against widely-deployed applications, including
the Apache web server and the OpenSSH server.

1. Introduction

The security of a host depends on both the operating sys-
tem and the privileged applications that run on top of it.
However, application-level vulnerabilities account for the
majority of the vulnerabilities that are found and made pub-
lic through mailing lists and advisories. A large number of
the vulnerabilities in applications are caused by the lack of
dynamic checks on input data, which makes it possible to
perform buffer overflow and format string attacks.

Another type of attacks are those exploiting application-
logic errors. Application-logic errors happen when an ap-

plication performs actions that were not originally consid-
ered in the application design. For example, suppose that a
privileged application is designed to read and print a spe-
cific file, such as “/etc/services”. An application-logic error
would allow an attacker to exploit an unexpected interac-
tion with the shell environment to force the application to
access (and print) a different file, such as “/etc/shadow”, re-
sulting in a security compromise.

The goal of Intrusion Detection Systems (IDSs) is to de-
tect attacks against networks, operating systems, and appli-
cations. The mainstream approaches to intrusion detection
use attack signatures to identify evidence of malicious ac-
tivity in an event stream. The two most common types of
intrusion detection systems are network-based intrusion de-
tection systems (NIDSs), which use network packets as the
data source for analysis [30], and host-based intrusion de-
tection systems (HIDSs), which use operating system audit
data as input [22, 14].

Unfortunately, both types of systems are unsuitable to
detect attacks that exploit application-logic errors. These
systems rarely have access to the semantically-rich audit
data needed to identify this type of attacks. In fact, to de-
tect these attacks, NIDSs need to reconstruct the data stream
and parse application-level protocols, which are two expen-
sive procedures. In addition, attackers can “desynchronize”
the view of a NIDS with respect to the view of the attacked
application, to evade detection or produce false alarms [27].
In some cases, NIDSs cannot even access the payload of the
packets because encryption is used.

HIDSs may seem more suitable to detect application-
level attacks because they have direct access to the system
calls invoked by the application [18, 38]. Unfortunately, at-
tacks exploiting application-logic errors rarely change the
execution flow of the application. Therefore, approaches
based on the analysis of system call sequences will not de-
tect these attacks [10, 37]. Another problem is that the in-
formation needed to detect application-level attacks may be
missing or too difficult to extract from the low-level infor-
mation included in system call traces and in the audit re-
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cords produced by the operating system.
To detect attacks exploiting application-logic errors, it

is desirable to be able to perform selective, application-
specific auditing in certain points of the application’s con-
trol flow. The problem is that few applications provide
hooks for instrumenting their control flows, and, even if
these hooks are available, they may not be in the right
places. In addition, the instrumentation technique would be
application-specific and not easily portable to different ap-
plications.

This paper presents an instrumentation technique based
on dynamic binary rewriting. The technique is application-
independent and supports the collection of auditing infor-
mation at any point within the application control flow. This
technique is used in conjunction with application-specific
signatures to detect attacks that exploit application-logic er-
rors.

The approach has been validated through several case
studies of attacks against real-world applications, namely
Apache and OpenSSH. In both cases, auditing routines to
collect data at critical points of the application’s control
flow have been developed. In addition, signatures to detect
the attacks have been defined. Some of these attacks were
not detectable by analyzing the network traffic or the data
produced by existing OS-level auditing mechanisms.

The overhead introduced by the instrumentation techni-
que has been evaluated quantitatively and compared to the
overhead introduced by other types of auditing. The results
are promising and show a low run-time overhead.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the approach
used to instrument applications and detect attacks. Section 4
discusses several case studies. Section 5 evaluates the over-
head introduced by the technique. Section 6 discusses some
limitations of the approach. Finally, Section 7 draws con-
clusions and outlines future work.

2. Related Work

The work presented hereinafter is mostly related to au-
diting and program binary instrumentation.

2.1. Auditing

Auditing is a mechanism to collect information regard-
ing the activity of users and applications. The Trusted Com-
puter System Evaluation Criteria (TCSEC) requires that all
computer systems evaluated at division C and higher pro-
duce audit data, and that audit mechanisms be both tamper-
resistant and non-bypassable. Since the operating system is
usually regarded as a trusted entity because it controls ac-
cess to resources (e.g., memory and files), most existing au-
dit mechanisms are implemented within the operating sys-
tem.

Operating system audit data is not designed specifically
for intrusion detection. Therefore, in many cases the audit
records produced by OS-level auditing facilities contain ir-
relevant information, and sometimes lack useful data. As a
result, IDSs often have to access the operating system di-
rectly for relevant information.

Lunt [23] suggested that specialized audit trails with
only those data relevant to intrusion detection are needed.
Daniels et al. identified the audit data that operating systems
need to provide to support the detection of attacks against
the TCP/IP stack [8]. Then, Kuperman et al. extended that
work and developed a dynamic library interposition for ap-
plication auditing [20]. However, their technique does not
ensure non-bypassability because it cannot intercept func-
tion calls of statically-linked programs.

Almgren and Lindqvist proposed an extension to the
Apache web server to collect application-specific au-
dit data [1]. However, their work is specific to the Apache
web server, which has a well-defined set of hooks to ex-
tend and instrument the server process. The problem with
this technique is that it is not directly applicable to other ap-
plications that may provide a different set of hooks, or even
no possibility of instrumentation at all.

The technique described in this paper overcomes the lim-
itations of the approaches described above. The approach is
based on binary rewriting, but, different from Kuperman’s
approach, the technique described here can be used to col-
lect information about both the application and the library
functions used by the application, even if an application has
been linked statically. Therefore, it is independent of any
particular application-specific interface to application ex-
tensions (e.g., the Apache module interface). The approach
includes a language that allows one to specify the location
in the application control flow where auditing must be per-
formed. The language is independent of a particular appli-
cation and allows a programmer to specify which format
should be used for the audit records (e.g., [2]).

2.2. Binary Rewriting

Binary rewriting is a post-compilation technique that di-
rectly changes the binary code of executables. Different
from dynamic library interposition, binary rewriting works
for both statically-linked and dynamically-linked programs.
Binary rewriting also provides more access to the appli-
cation internals, because, in addition to library functions,
static functions of the application can also be instrumented.

There are two types of binary rewriting techniques: static
rewriting and dynamic rewriting. Static rewriting tech-
niques modify the file-system image of program binaries,
while dynamic rewriting techniques change the mem-
ory image of a process. ATOM [34], EEL [21], Purify [12],
and Etch [31] are examples of tools based on static re-
writing techniques. Dyninst [3] and Detours [13] are exam-
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ples of dynamic rewriting tools. The Dyninst tool is used in
this paper for dynamic rewriting.

Compared to the static techniques, dynamic rewriting
techniques have the advantage of keeping the executables
intact. In addition, by using dynamic rewriting it is possible
to modify an application binary image in different ways, de-
pending on the context of the invocation of the application.
Dynamic rewriting also allows instrumentation code to be
kept in memory after a fork() call, so that the child pro-
cess is also instrumented.

Broadly speaking, dynamic binary rewriting is an in-
terposition approach. Interposition is generally performed
at the system call interface, the library interface, and the
application interface for various purposes: Curry uses dy-
namic library interposition for profiling and tracing library
calls [6]; Detours is a debugging and profiling tool that
uses dynamic binary rewriting for intercepting Win32 func-
tions [13]; Bypass extends the functionality of existing soft-
ware systems for distributed computing using shared library
interposition techniques [35]; Interposition Agents is a tool-
kit for interposing user code between a program and the op-
erating system kernel [15].

System call interposition has been used for performance
profiling and debugging of software systems. Interposition
is also widely used for security purposes. SLIC [7], Gene-
ric Software Wrappers [11], and Systrace [26] enhance op-
erating system security by interposing code at the kernel in-
terface. The TIS firewall toolkit [29] and the TCP Wrap-
pers [36] interpose code at the application level, but they
only provide very limited application audit data. The tech-
nique described here uses interposition at the application
and library interfaces to gather a complete set of security-
relevant information.

3. Design and Implementation

An application-level auditing facility should be designed
to meet a number of requirements.

1. Non-bypassability. This is a requirement of all au-
diting systems. For application-level auditing, non-
bypassability essentially means that the auditing code
has to be effective since the beginning of the applica-
tion’s execution.

2. Compatibility. The auditing mechanism should be
compatible with legacy applications and operating sys-
tems. The changes to the applications and operat-
ing systems required by the mechanism should be
minimal, in order to reduce the cost of deployment
and administration. In addition, if the auditing mecha-
nism does not modify the application binary, integrity
checkers, such as Tripwire [17], will not be affected.

3. Programming support. The auditing facility should
provide a simple mechanism for programmers to de-
velop application-level audit routines.

4. Performance. The additional auditing capabil-
ity should not exact much performance penalty on
applications.

There are several possible alternatives for the implemen-
tation of application-level auditing. In the following, we re-
view the advantages and disadvantages of three possible ap-
proaches.

Source modification. This approach directly modifies the
source code of applications. Both the internal sensors
approach for intrusion detection described in [16] and
the DoS-resistant software approach described in [28]
are examples of this approach. While achieving most
of the design objectives, this approach requires recom-
pilation of the applications. In addition, the configura-
tion of the auditing system (i.e., what functions are in-
strumented, and what information is logged) is deter-
mined at compile time, once for all. This is a limitation
to the flexibility of the system.

Virtual machine modification. Interpreted langu-
ages such as Java or Perl use virtual machines or in-
terpreters to execute programs. Therefore, it is
possible to extend a virtual machine or the inter-
preted code to add auditing functionalities [33].
Approaches like [4, 25] apply different access con-
trol policies by using Java bytecode rewriting tech-
niques. Approaches that operate at the virtual machine
level may impose notable overhead to the interpre-
tation of the application’s code. In this paper, we
focused on high-performance, privileged applica-
tions written in C/C++.

Dynamic binary rewriting. This approach separates the
audit routines from the original application. Thus, a
new audit module can be added without re-compilation
of the application binary. Audit module selection is
postponed until the application is actually invoked, al-
lowing for flexible selection of the auditing configura-
tion. In addition, the audit routines run in the same ad-
dress space as the application, with performance com-
parable to the source modification approach.

We implemented an application-level auditing tool by
using a dynamic binary rewriting approach. The tool lever-
ages an existing dynamic rewriting mechanism for inserting
audit routines into applications at runtime. We implemented
a loadable kernel module and a user-space daemon that al-
low for non-bypassable monitoring of applications. We also
developed a language to support the development of both
the instrumentation code and the detection procedures. The
language hides the details of instrumentation from the pro-
grammers.
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The tool has been implemented for the Linux 2.4 ker-
nel. The dynamic rewriting mechanism is implemented by
using an extended version of the Dyninst API [3]. The de-
sign and implementation of the tool’s components are de-
tailed in the following sections.

3.1. Runtime Environment

The tool uses a kernel module and a user-space dae-
mon to perform application instrumentation. The purpose
of these components is to monitor the operating system for
events that represent the invocation of a monitored appli-
cation and to inject the appropriate audit routines into the
memory of the application at startup time.

The loadable kernel module allows for a custom appli-
cation invocation procedure. Without support from the ker-
nel, the use of dynamic binary rewriting would either cause
incompatibility with legacy systems or fail to achieve the
non-bypassability goal. On systems supporting ptrace, ap-
plication instrumentation could be implemented using the
PTRACE TRACEME semantics. This mechanism allows a
parent process to instrument its child after the child calls the
execve() system call. Unfortunately, this solution would
violate the compatibility requirement because the applica-
tion’s first invocation would have to be performed by some
special “parent” program. In addition, ptrace’s attach opera-
tion does not meet the non-bypassability goal, because there
is a time window between the creation of a process and the
beginning of the instrumentation procedure. Therefore, we
implemented a kernel module that ensures non-bypassable
instrumentation by intercepting the execve() system call.
By doing this, the application is stopped before its first in-
struction is executed and the audit routines can be inserted
into the application before its execution starts.

Audit

Libraries
Patch

Libraries

Operating System Kernel

Monitoring

Daemon
Application

Kernel Module

1

2

3 3

4

execve()

notify

instrument

Figure 1: Runtime environment of the tool.

The actual instrumentation of an application is per-
formed by the monitoring daemon, which is a privileged
user-space process. The daemon manages two reposito-
ries: a patch repository and an audit repository. The patch
repository contains the code for instrumenting the moni-
tored applications. The audit repository contains the audit-
ing code to be inserted into an application. The code in both
the audit and the patch repositories is in the form of dy-
namic libraries. By using dynamic libraries, it is possi-
ble to update the code in the libraries while the daemon
is still running. In addition, multiple versions of the li-
braries can exist at the same time.

Figure 1 describes the runtime environment. The mon-
itoring daemon is invoked at system startup time. When a
monitored application is invoked by calling the execve()
system call (step 1, in the figure), the kernel module inter-
cepts the call, stops the application, and then simulates the
PTRACE TRACEME semantics by setting the process’s par-
ent to the monitoring daemon and stopping the process by
sending a SIGTRAP signal to it. By doing this, it is pos-
sible to achieve non-bypassability without having to mod-
ify the application binaries. We extended the Dyninst API
to support the modified ptrace attach procedure.

Then, the kernel module notifies the user-space daemon
that a monitored application has started (step 2). The mon-
itoring daemon performs an “attach” operation to the pro-
cess. Then, it consults its configuration file to locate the
patch and audit libraries that are appropriate for the appli-
cation (step 3). The patch libraries are loaded into the dae-
mon process’s address space and the instrumentation code
in the patch libraries is executed (step 4). The instrumenta-
tion code loads the audit libraries into the application’s ad-
dress space and inserts audit function calls at certain points
in the application’s code. Once the application has been in-
strumented, the daemon “detaches” and resumes the execu-
tion of the instrumented application.

3.2. Auditing Specification Language

The language component of the tool supports the devel-
opment of application-specific audit routines. The devel-
opment of patch and audit libraries is complex and error-
prone. Therefore, a simple language has been developed to
support the instrumentor and to hide the details of the instru-
mentation from the developer of the auditing code. Thus,
the programmer can focus on important issues, such as what
data is needed, where the data should be collected, and what
to do with the data.

Figure 2 gives an overview of the audit routine develop-
ment process. An audit programmer writes an audit routine
for an application in a superset of the C language. The au-
dit routine contains auditing code and specifies the points in
the application where the auditing code is called. A trans-
lator takes the audit routine as input and generates two C
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Figure 2: Off-line procedure.

modules: an auditing module and a patching module. These
two modules are compiled separately into an audit library
and a patch library, respectively.

The challenging part of the off-line component was to
design a simple language that could be easily translated into
C, and, at the same time, that would give enough flexibility
for instrumentation, hiding the details of binary rewriting
from audit programmers. The Dyninst API [3] provides a
rich set of instrumentation primitives, such as variable al-
location, arithmetic operations, if-then-else statement con-
struction, and function replacement. In fact, it is possible
to insert almost arbitrary code at an instrumentation point.
However, this would complicate the translation process, as
it would be necessary to translate the inserted code into dif-
ferent Dyninst API calls. In addition, these primitives are
not uniformly implemented on different platforms. There-
fore, it is desirable to use a minimal set of the primitives to
achieve compatibility and flexibility.

The current tool implementation allows instrumentation
at a function’s entry and exit point only. At an instrumen-
tation point, only a function call can be used. The function
call must declare a subset of the parameters of the instru-
mented function. Experience with the tool so far has shown
that this approach provides enough flexibility in the instru-
mentation of applications.

Figure 3 shows an example audit routine for the Apa-
che web server. The routine contains two sections: an au-
dit section and a patch section. The audit section is com-
posed of the audit functions and associated data structures
(lines 1-20). The patch section specifies which audit func-
tions are called and where they are called (lines 22-26).

The audit section is translated into an auditing mod-
ule, which is then compiled into a shared library. In the
example, the audit section defines two functions. Func-
tion audit function 1 logs the request URI. Function
audit function 2 logs the mapped path, file name, and
handler name for the request. Note that both functions use
the parameter of the ap run log transaction func-
tion. Function init is the initialization function for the
shared library, which is called when the audit library is
loaded into an application. In the example, the function is

used to open a log file.
The patch section is introduced by the keywords “At

Function” followed by a function signature, an optional en-
try declaration, and an optional exit declaration. The func-
tion signature is a function of the application to be instru-
mented. An entry declaration is specified by the keyword
“entry” followed by a code block. The code block con-
tains the function to be called at the entry point of the in-
strumented function. A similar syntax is used for the exit
declaration. In the example, audit function 1 is in-
serted at the entry point of ap run log transaction
and audit function 2 is inserted at the function’s exit
point.

The patch section is translated into a patching module
that uses the Dyninst API to create code snippets and patch-
ing code. A pseudo-code example of the patching module is
given in Figure 4. The patching module is extracted by the
translator and compiled into a patch library.

1 /∗ a u d i t s e c t i o n ∗ /
2 FILE *fp = NULL;
3

4 void _init()
5 {
6 fp = fopen("/var/applogd/apache.log", "a");
7 }
8

9 void audit_function_1(request_rec *r)
10 {
11 fprintf(fp, "Original URI: %s\n", r->uri);
12 fflush(fp);
13 }
14

15 void audit_function_2(request_rec *r)
16 {
17 fprintf(fp, "Mapped path %s, file %s, handler %s\n",
18 r->path_info, r->filename, r->handler);
19 fflush(fp);
20 }
21

22 /∗ p a t c h s e c t i o n ∗ /
23 At Function int
24 ap_run_log_transaction(request_rec *r)
25 entry { audit_function_1(r); }
26 exit{ audit_function_2(r); }

Figure 3: Example of the language.

4. Case Studies

The binary rewriting technique has been tested on two
complex real-world applications: Apache and OpenSSH.
Each application is susceptible to one or more attacks that
exploit application-logic errors. For each attack, the audit
data requirements have been identified, audit routines to
collect the data have been written, and rules for attack de-
tection have been developed. These case studies exemplify
the inadequacies of existing application-level logging and
show how binary rewriting overcomes these problems.
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1 /∗ l oad t h e a u d i t l i b r a r y i n t o Apache ∗ /
2 load_audit_lib();
3

4 /∗ g e n e r a t e a u d i t code s n i p p e t s ∗ /
5 p1=find_func_entry("ap_run_log_transaction");
6 p2=find_func_exit("ap_run_log_transaction");
7

8 /∗ 0 : 1 s t par ame ter o f i n s t r u m e n t e d f u n c . ∗ /
9 param = new func_param(0);

10 func_1 = find_function("audit_function_1");
11 call_1 = new func_call(func_1, param);
12 func_2 = find_function("audit_function_2");
13 call_2 = new func_call(func_2, param);
14

15 /∗ i n s e r t s n i p p e t s a t r i g h t p l a c e s ∗ /
16 insert_snippet(p1, call_1);
17 insert_snippet(p2, call_2);

Figure 4: Example of pseudo-code of the patching library.

4.1. Apache

According to the NetCraft survey (http://www.net-
craft.com/survey/), Apache is used in 67.70% of
the Internet web servers as of August, 2004. Because of its
wide deployment, Apache is the target of various types of
attacks. Some of these attacks can be detected by examin-
ing the network traffic directed to the server. Other attacks
can be detected by analyzing the application-level audit-
ing produced by the application.

Apache’s logging is provided by several modules,
i.e., mod log config, mod log referer, and
mod log agent. In the following sections, three at-
tacks are presented together with the audit requirement for
each of them. Our analysis found that, in every case con-
sidered, the logging provided by Apache is insufficient for
effective intrusion detection.

4.1.1. CGI Script Source Code Disclosure Attack. The
CGI script source code disclosure attack allows an attacker
to access the source code of a CGI script 1. The problem is
that if a directory has both the WebDAV and the CGI be-
havior enabled, Apache will incorrectly consider the script
as WebDAV content for an HTTP POST request and send
back the script’s source code in the reply.

In order to detect this attack, it is necessary to know
whether the Apache server is considering a requested URL
to be a CGI script or not. Unfortunately, none of the stan-
dard Apache logging modules provides this information.
Therefore, an auditing routine that logs what handler Apa-
che uses for a request has been developed (see Figure 3,
lines 17-18). Note that, in this case, the instrumented func-
tion is Apache’s logging routine. Thus, each time Apache
performs logging, the auditing functions are executed.

A rule for detecting this attack is: An Apache CGI script
has to be handled by the “cgi-script” handler. Apache

1 CVE entry CAN-2002-1156, http://www.cve.mitre.org/

was tested with the developed audit routine and the results
showed that when the attack happened, the handler Apache
used was “dav-handler,” instead of the usual “cgi-script”.
This information allows one to easily detect the attack us-
ing a simple Perl script that analyzes the information pro-
duced by the auditing routine introduced through binary in-
strumentation. Note that, during the attack, Apache’s stan-
dard access log contains an HTTP POST request only. That
is, there is no information to infer that the attack occurred.

4.1.2. Signals to Non-Apache Process Attack. This at-
tack exploits a vulnerability in Apache’s shared memory
scoreboard 2. The attack allows code running with the Apa-
che UID to send a signal (SIGUSR1) to any process as root.
This privilege can be obtained by exploiting a vulnerability
in Apache, particularly in a web-based application that uses
scripting (e.g., PHP and Perl scripts). Any local user with
a legitimate Apache scripting resource can perform this at-
tack. When the target process receives the signal, it will re-
act according to the corresponding signal handler. By de-
fault, the signal will terminate the process.

To detect this attack, the audit data should contain the
process IDs of both the signal sender and the signal re-
ceiver, as well as the signal number. Unfortunately this in-
formation is not provided by the Apache logging facility.
Because Apache sends signals by calling libc’s kill()
function, an audit routine has been developed to log the data
at kill()’s entry point, as shown in Figure 5.

1 void kill_logging(int pid, int sig)
2 {
3 int self = getpid();
4 fprintf(log_fd,
5 "PROCESS %d KILL (%d) WITH SIG = %d\n",
6 self, pid, sig);
7 }
8

9 At Function int kill(pid_t pid, int sig)
10 entry { kill_logging(pid, sig); }

Figure 5: Audit routine for the signal attack.

A rule that detects this attack is: Apache should not send
signals to processes other than its children. We tested this
audit routine by performing the attack and found that the
signal being sent was the alarm signal (SIGALRM), not the
SIGUSR1 as reported by the advisory. By looking into Apa-
che’s source code, we found that the actual signal being
sent depends on a compile-time flag. If Apache is compiled
with OPTIMIZE TIMEOUTS flag, then the signal sent is
SIGALRM, otherwise it is SIGUSR1.

4.1.3. Slow Client Connection DoS Attack. This Denial-
of-Service (DoS) attack is outlined in [28]. The idea is to

2 CVE entry CAN-2002-0839, http://www.cve.mitre.org/
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create a TCP connection that is as slow as possible. Be-
cause the server can only handle a limited amount of TCP
connections, an attacker can exhaust all the server resources
without flooding the server. Apache defines a time limit for
receiving requests and sending out responses. The default
value is 300 seconds, i.e., 5 minutes. Thus, a single request
can tie up the server for about 10 minutes by using both slow
send and slow receive. In addition, Apache supports HTTP
1.1 persistent connections and by default it allows 100 client
requests per connection, with a 15 seconds idle timeout be-
tween two requests. Therefore, a single client connection
can tie up the server for 10 * 100 + 15 * 99 / 60 ≈ 1025
minutes.

The Apache log entries contain the total time for a re-
quest. However, the logging system does not provide fine-
grained information about a request’s reading time, process-
ing time, and result-sending time. The breakdown of the
server cycle time for a request can help to identify the at-
tack. In particular, the request reading time is required to
detect the attack. Two audit functions have been inserted at
the entry and exit points of Apache’s request reading func-
tion ap read request. Thus, the time Apache spends
on reading a client request can be calculated as the time dif-
ference between these two function invocations. The imple-
mentation of the audit routines is given in Figure 6.

1 static time_t start, end;
2

3 void read_entry(conn_rec *r)
4 {
5 start = time(NULL);
6 }
7

8 void read_exit(conn_rec *r)
9 {

10 int t;
11 char time_str[32];
12

13 end = time(NULL);
14 t = end - start;
15 strftime(time_str, 32, "%m/%d/%Y %H:%M:%S",
16 localtime(&(start)));
17 fprintf(log_fd,
18 "%s request at: %s, duration: %d sec\n",
19 r->remote_ip, time_str, t);
20 }
21

22 At Function request_rec*
23 ap_read_request(conn_rec *conn)
24 entry { read_entry(conn); }
25 exit { read_exit(conn); }

Figure 6: Audit routines for the Apache DoS attack.

A rule to detect this attack is: The number of simultane-
ous slow client connections from an IP address can not ex-
ceed a threshold. The rule has been implemented as a Perl
script.

4.2. OpenSSH

OpenSSH is an open-source implementation of the SSH
protocol. Different from Apache, OpenSSH uses the syslog
facility for logging. Certain versions of OpenSSH 3 are vul-
nerable to a user-to-root attack that exploits client-defined
environment variables. More specifically, if the “UseLogin”
option is enabled, an attacker can pass environment vari-
ables, such as LD PRELOAD, to the server using the key au-
thentication method. Since the environment variable is set
before the “login” program is invoked, the malicious library
referenced by LD PRELOAD can execute arbitrary code as
root. It is worth pointing out that this attack is not new. Tel-
net daemons that supported environment passing have suf-
fered from similar problems before 4.

To detect this kind of attack, it is necessary to include in
the audit data the environment variable values set at the ser-
ver, which are not available in the syslog entries produced
by OpenSSH. Therefore, an audit routine that logs every
environment variable’s value at the server has been imple-
mented. The environment variables are logged at the entry
point of the child set env function, as shown in Fig-
ure 7.

1 static int log_fd;
2

3 void _init()
4 {
5 log_fd = open("/var/applogd/openssh.log",
6 O_WRONLY | O_CREAT | O_APPEND);
7 }
8

9 void env_entry_call(char ***envp, u_int *envsizep,
10 const char *name, const char *value)
11 {
12 char msg[1024];
13 int i, size = 1024;
14

15 i = snprintf(msg,size,"NEW ENV: %s=",name);
16 size -=i;
17

18 if ( size > 0 && value != NULL)
19 i += snprintf(msg+i, size, "%s", value);
20

21 write(log_fd, msg, i);
22 }
23

24 At Function void child_set_env(char ***envp,
25 u_int *envsizep, const char *name, const char *value)
26 entry { env_entry_call(envp,envsizep,name,value); }

Figure 7: Audit routines for the OpenSSH User-To-Root at-
tack.

A detection rule has been implemented to enforce the
property: Environment variables such as “LD PRELOAD”
should not be set by the client.

3 CVE entry CAN-2001-0872, http://www.cve.mitre.org/
4 CERT Advisory CA-1995-14, http://www.cert.org/

advisories/CA-1995-14.html
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4.3. Discussion

Effectiveness of audit data. Intrusion detection is only as
good as the input data used for analysis. Meaningful and
complete auditing information is a prerequisite for effective
intrusion detection. This is made clear by comparing the ef-
fectiveness of different types of audit data with respect to
the attacks presented in the case studies of the previous sec-
tions. More precisely, in Table 1 we compare network traf-
fic, OS audit data, application logs, and syslog data to the
application-level audit data produced by binary instrumen-
tation.

For the Apache signal attack it is possible to use OS au-
dit data to catch the attack, even though Linux does not have
an OS auditing facility by default. The DoS attack can be
detected by analyzing network packets, but the data is not
as straightforward to interpret as the application audit data
is. Notice that both the CGI attack and the SSH attack are
too elusive to be detected by analyzing existing audit data
streams, because they lack semantically-rich information.
In all the cases considered, the application-level audit data
produced by binary instrumentation contained all the infor-
mation required for detection.

Attack Network OS Appl. logs Appl. Audit

CGI
√

DoS
√ √

SIG
√ √

SSH
√

Table 1: Effectiveness of different audit data for intrusion
detection.

Selection of instrumentation points. A key step of the ap-
proach described in this paper is to identify the instrumen-
tation points in an application. Specifically, function names
and their parameter types are required. When the source
code of the application is available, the information about
the instrumentation points can be obtained by analyzing the
source code. The audit routines given in the case studies
were the results of such manual process. We are currently
looking into using compiler extensions to automate this pro-
cess [9].

If source code is not available, it is hard, but still possi-
ble, to instrument an application. For example, Miller et al.
demonstrated that by using reverse-engineering techniques,
it is feasible to identify the license checking functions in
a commercial product (Adobe’s Framemaker) and to dis-
able them by patching the binary at runtime [24]. The same
data flow and control flow analysis techniques can be ap-
plied here to determine the instrumentation points for the
application.

It is worth pointing out that the names and parameters of
the instrumented functions in the case studies did not cha-
nge much across different versions. Only one of the instru-
mented functions was changed in the Apache code, when
moving from version 1.3 to version 2.0 5. The consistency
of function signatures between major versions allows audit
routines to remain effective, even though the executable bi-
naries may change.
Detection of unknown attacks. In all the case studies, we
analyzed previously known attacks to derive attack signa-
tures and audit routines. However, the most important goal
of intrusion detection is to detect unknown, future attacks.
While being able to detect unknown attacks is a goal that
has yet to be achieved, we argue that it is possible to develop
generic signatures to detect some previously unseen varia-
tions of known attacks. For example, the CGI script han-
dling signature may detect other CGI source code disclo-
sure attacks that exploit different vulnerabilities. Also, the
OpenSSH attack suggests that it is possible to detect new at-
tacks from lessons learned by analyzing known attacks. The
audit routines developed in the previous sections only log
appropriate data into an audit file, which suffices for our au-
diting needs. In practice, the code can perform different ac-
tions. For example, an auditor may choose to terminate the
OpenSSH server by calling exit() when LD PRELOAD
is set by a client.

5. Performance Evaluation

The binary rewriting approach has been evaluated quan-
titatively to determine the amount of overhead introduced
by the tool. The evaluation included three parts: the ker-
nel module overhead, the instrumentation overhead, and the
runtime overhead, which are discussed in the following sec-
tions.

5.1. Kernel Module Overhead

The kernel module used by the tool introduces
some overhead at the kernel level because it wraps the
execve() system call. The module spends some execu-
tion time comparing the file to be executed with a list of
monitored files.

We developed a benchmark to evaluate the amount of
overhead introduced. The benchmark performs 100,000
execve() operations. For every invocation, the ker-
nel compares the file executed by the execve() call
with a set of 20 files, which we believe is a reason-
able size for a set of trusted applications. The average ex-
ecution time and the standard deviation of 10 runs are

5 The function is instrumented in the CGI source code disclosure attack.
In Apache 1.3, the function name is ap log transaction, which
is changed to ap run log transaction in version 2.0.
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shown in Table 2. The host used for the test is a Pen-
tium IV, with a 1.8 GHz CPU and 512MB of memory. The
overhead is fairly low, less than one percent. Consider-
ing that the execve() system call is invoked much less
frequently than other system calls (e.g., open()), the im-
pact on the whole system performance is minimal.

w/out LKM w/ LKM Overhead
Time (s) 69.0454 69.5083 0.4629 (0.67%)
Std. Dev. 0.17 0.32

Table 2: Micro-benchmark of execve() performance.

5.2. Instrumentation Overhead

CP GI PT DT Other Total

Time (s) 5.41 0.28 5.32 0.31 0.23 11.55
Per. (%) 46.3 2.4 46.1 2.7 2.0
Std. Dev. 0.04 0.04 0.29 0.17 0.43 0.06

Table 3: Breakdown of instrumentation overhead (CP, GI,
PT, and DT represent CreateProcess, GetImage, Patch and
Detach, respectively).

The instrumentation overhead is the delay introduced by
performing the binary rewriting at application-startup time.
The Apache web server has been tested with all three audit
routines enabled for 10 runs. For each run, the time needed
for each step of the instrumentation process was measured.
The host used for the test was a PC with a 1.5 GHz Pentium
IV CPU and 256 MB of memory. The results are given in
Table 3.

Table 3 shows that the average slowdown is of 11.55 sec-
onds. Most of the instrumentation time is spent on the Cre-
ateProcess and Patch phases. The CreateProcess [3] func-
tion creates a BPatch thread object by parsing a process
image, including all linked shared libraries. The Patch phase
finds function instrumentation points and inserts code snip-
pets. Both phases spend a significant amount of time going
through all the functions in the process image. GetImage
and Detach are internal Dyninst API calls. The former gets
an associated image object from BPatch thread and the
latter detaches from the instrumented process.

The overhead in this case is noticeable, and definitely
perceivable by the user. On the other hand, the overhead
is introduced at startup time only. This may be an accept-
able trade-off for the additional security provided by the

tool. One possible way to reduce the overhead is to com-
bine the CreateProcess phase and the Patch phase, so that
the search through all the functions must be performed only
once.

5.3. Runtime Overhead

To evaluate the runtime overhead of the auditing rou-
tines on the Apache web server, the server was tested
using the WebStone benchmark, version 2.5 (from
http://www.mindcraft.com/webstone/).
The experimental setup consisted of one client ma-
chine that generates HTTP requests (Pentium IV, 1.8 GHz,
512 MB RAM, Linux 2.4) and one server machine (Pen-
tium IV, 1.5 GHz, 256 MB RAM, Linux 2.4). Both
machines are connected with a 100 Mb Ethernet. Web-
Stone was configured with 10 to 100 clients in steps of
15 and each run took 5 minutes. The file set is the de-
fault static file set included in the benchmark

For each run, three cases were tested: Apache without
any auditing, Apache instrumented with the auditing rou-
tines described in this paper, and Apache running with the
Snare [32] OS-kernel auditing enabled. Snare includes a
kernel module intercepting 34 different system calls and a
user space daemon for writing audit data to a file. Client
connection rate, response time, and throughput were mea-
sured. The results are shown in Figure 8, 9, and 10. As
one can see from these figures, Snare performs poorly with
85 and 100 clients. The reason is that after about 25 min-
utes Snare used up all system resources, affecting the sys-
tem performance. Sometimes, the system can not return
to the normal state after heavy-load experiments. These
two points were removed when performance impact was
calculated. As one can see from Figure 8, the connection
rate dropped slightly for the instrumented version of Apa-
che. The average decrease is only 2.7 connections per sec-
ond (about 0.4%). In the Snare case, the average decrease
is 19.78 connections per second (about 3.44%). Figure 9
shows that there is no significant increase in the average re-
sponse time for instrumented Apache (the average impact
is 0.56%). Snare increases the response time by 4.3%. Fig-
ure 10 shows that the average throughput decreases by 0.4
Mbps (0.6%) for the instrumented version of Apache and
by 3.3 Mbps (3.58%) when Snare is used.

In summary, the audit routines injected into Apache gen-
erate less than 1% overhead on average, which is signifi-
cantly better than the overhead introduced by Snare. The
reason for such a low overhead is that audit routines are
running in the same address space as the Apache process.
Thus, no context-switch cost or memory-copy cost is im-
posed. Snare uses a daemon process to periodically read
audit data from the kernel and write the data to a log file.
There are two additional memory copies of the data between
the kernel space and the user space and two context-switch
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Figure 10: Client throughput.

costs. On the other hand, the audit routines are only effec-
tive for Apache, while Snare logs provide information for
all processes. Considering that the experiments were con-
ducted with all unrelated system services disabled, the ma-
jority of the slowdown was caused by Snare.

6. Limitations

The approach described in this paper has several limi-
tations. First, some attacks, notably buffer overflow attacks,
cannot be detected by this approach. Buffer overflow attacks
modify the program’s control flow and execute code on the
stack, which is outside the original program code. Thus, a
successful exploitation of buffer overflow will bypass in-
serted auditing routines. However, since some tools (e.g.,
StackGuard [5]) can prevent these attacks and many exist-
ing IDSs can successfully detect them, this limitation does
not impact the overall applicability of this approach.

Second, there are some limitations of the approach that
are related to the Dyninst API. One is that the Dyninst API
does not allow further instrumentation once the monitoring
daemon detaches from an application. Because of this limi-
tation, a new audit library can only take effect when the cor-
responding application is restarted. Currently, this is not a
problem, and future versions of Dyninst are expected to al-
low multiple instrumentations for an application.

7. Conclusions and Future Work

In this paper, a new approach for detecting attacks ex-
ploiting application-logic errors has been presented. The
approach exploits a binary rewriting technique to collect
application-specific data. A tool that uses the data to de-
tect attacks has also been developed. The performance eval-
uation of the tool showed that effective intrusion detection
can be achieved at a low cost.

The tool complements existing operating system audit-
ing facilities and network auditing procedures. The ap-
proach can be used in those cases where semantically-rich
data streams are needed for effective intrusion detection.

Since our approach inserts code into an application, it af-
fects specification-based IDS [19] and systems that monitor
the execution flow of an application [10, 37]. Future work
will study how to address these problems.

A further evolution of this approach is to automatically
generate the instrumentation routines directly from a high-
level description of the attack signatures. By doing this, it
will be possible to relieve the auditor from the task of iden-
tifying the instrumentation points and writing the auditing
code. In addition, this approach would allow one to perform
application auditing only if there is a signature that would
actually use the data.
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