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ystem architects and users recognized the need for information security 
with the advent of the first multiuser computer systems. This need gained 
significance as computer systems evolved from isolated mainframes be- 

arded doors to interconnected and decentralized open configurations. 
Information security has three separate but interrelated objectives: 

(1) confidentiality (or sccrecv). related to disclosure of information, 
(2) integriry, related to modification of information, and 
(3) availability, related to denial of access to information. 

These objectives appear in practically every information system. In a payroll 
system, for example, confidentiality is concerned with preventing an employee 
from finding out the boss’s salary; integrity, with preventing an employee from 
changing his or her own salary; and availability. with ensuring that paychecks are 
printed on time. Similarly, in a military command and control complex. confiden- 
tiality is concerned with preventing the enemy from determining the target 
coordinates of a missile: integrity, with preventing the enemy from altering the 
target coordinates; and availability, with ensuring that the missile is launched when 
the order is given. 

Bell and LaPadula developed lattice-based access control models to deal with 
information flow in computer systems. Information flow is clearly central to 
confidentiality and also applies to integrity to some extent. But its relationship to 
availability is tenuous at best. Hence, these models are primarily concerned with 
confidentiality and can deal with some aspects of integrity. 

Bell. Biba. LaPadula. and Denning performed the basic research in this area in 
the 1970s. Since then, models have been implemented in a number of systems, 
mostly driven by the needs of the US defense sector and its allies. The theory and 
concepts are, however. applicable to almost any situation in which information 
flow is a concern. The commercial sector has unique policies that concern informa- 
tion flow. 



Lattice-based access control is one of 
the essential ingredients of computer 
security. This article describes a num- 
ber of models developed in this context 
and examines their underlying theoret- 
ical and conceptual foundations. 

Information flow 
policies 

Information flow policies are con- 
cerned with the flow of information from 
one security class to another. In a sys- 
tem, information actually flows from 
one object to another. The models 1 
discuss treat “object” as an undefined 
primitive concept. An object can be in- 
formally defined as a container of infor- 
mation. Typical examples of objects are 
files and directories in an operating sys- 
tem, and relations and tuples in a 
database. 

Information flow is usually controlled 
by assigning every object asecurity class, 
also called a security label. Whenever 
information flows from object x to ob- 
ject y, there is an accompanying infor- 
mation flow from the security class of x 
to the security class of y. Henceforth, 
when 1 talk about information flowing 
from security class A to security class 5, 
visualize information flowing from an 
object labeled A to an object labeled B. 

Denning defined the concept of an 
information flow policy’ as follows: 

Definition 1 [Information flow policy] ~ 
A triple < SC. 3, 0 > where SC is a set of 
security classes. 3 c SC x SC is a binary 

can-flow relation on SC, and 0 : SCX SC 
+ SC is a binary class-combining or join 
operator on SC. 

All three components of an informa- 
tion flow policy are fixed; they don’t 
change with time. This definition allows 
objects to be created and destroyed dy- 
namically (as one would expect in use- 
ful systems). Security classes, however, 
cannot be created or destroyed dynam- 
ically. 

It is convenient to use infix notation 
for the can-flow relation, so that A + B 
means the same as (A, B) E +; that is, 
information can flow from A to B. We 
also write A k B to mean (A. B) cz +; 
that is, information cannot flow from A 
to B. In other words, information can 
flow from security class A to security 
class B under a given policy if and only 
if A + B. (It might be more appropriate 
to call this relation may-flow rather than 
can-flow, since the connotation is that 
the indicated flow is permitted under 
the given policy. I opt to retain Den- 
ning’s original terminology.) 

Similarly, infix notation is used for 
the join operator: that is, A 0 B = C 
means the same as @(A, B) = C. The join 
operator specifies how to label infor- 
mation obtained by combining infor- 
mation from two security classes. Thus, 
A 0 B = C tells us that objects that 
contain information from security classes 
A and B should be labeled with the 
security class C. 

A trivial example of an information 
flow policy is one in which no informa- 
tion flow is allowed from one security 
class to a different security class. (Note 
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that information flow from a security 
class to itself cannot be prevented and 
therefore must always be allowed. Af- 
ter all, information contained in an ob- 
jectflows to that object, thereby result- 
ing in information flow from the security 
class of the object to itself.) This trivial 
policy of isolated security classes is for- 
mally stated as follows: 

Example 1 [Isolated classes] -SC = 
{A ,,..., A,J:fori=l... nwehaveA,+ 
A,andA,OA,=A,;andfori,j=t... II. 
i + j we have A, k A, and A, 0 A, is 
undefined. 

The simplest form of a nontrivial in- 
formation flow policy occurs when there 
are only two security classes called, for 
example, H (for high) and L (for low); 
all flows are allowed except that from 
high to low. In other words, high infor- 
mation is more sensitive than low infor- 
mation. This is stated formally as 

Example 2 [High-low policy] - SC = 
(H. LJ,and -+= ((H. H), (L. L). (L, H)]. 
Equivalently, in infix notation, H + H. L 
+ L, L + H. and H k L. The join 
operator is defined as follows: H 0 H = H. 
LOH=H,HOL=H.andLOL=L. 

This policy is represented by the Hasse 
diagram in Figure la in which the can- 
flow relation is understood to be direct- 
ed upward. Reflexive flows from Hto H 
and from L to L are implied but not 
explicitly shown. The other Hasse dia- 
grams in Figure 1 represent informa- 
tion flow policies that I discuss in this 
article. In these diagrams, transitive 
edges, such as from L to H in Figure 1 b. 
are implied but not explicitly shown. 

Denning showed that under certain 
assumptions. an information flow poli- 
cy forms a finite lattice: 

Definition 2 [Denning’s axioms] 

(1) The set of security classes SC is finite. 
(2) The can-flow relation + is a partial 

order on SC. 
(3) SC has a lower bound with respect to 

+. 
(4) The join operator 0 is a totally defined 

least upper bound operator. 

It can be shown that Denning’s axi- 
oms imply the existence of a greatest 
lower bound operator, which in turn 
implies the existence of an upper bound 
with respect to +. Example 2 satisfies 
Denning’s axioms. whereas Example 1 
does not, specifically failing to satisfy 
axioms 3 and 4. I will illustrate how 
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Example 1 can be extended to form a 
lattice. Note that although this article 
focuses on policies that satisfy Den- 
ning’s axioms, there are legitimate in- 
formation flow policies that do not sat- 
isfy these axioms. 

Denning’s first axiom. This requires 
that the set of security classes be finite 
and needs little justification. Keep in 
mind that the axiom applies to security 
classes and not to the objects in a sys- 
tem. Denning’s axioms enable objects 
to be created and destroyed dynamical- 
ly, with no bound on the number of 
objects that can be created. 

Denning’s second axiom. This states 
that 4 is a partial order on SC. A partial 
order is a reflexive, transitive, and anti- 
symmetric binary relation. Above, we 
saw the need for reflexivity in the con- 
text of Example 1, whereby A -+ A for 
all A E SC. Transitivity requires that if A 
+ Band B + C, then A + C: that is, if 
indirect information flow is possible from 
A to C via B, then we should allow 
direct information flow from A to C. 
This is a very reasonable requirement in 
most situations. (There are, however, 
situations in which indirect flow should 
not imply direct flow. For example, sup- 
pose we wish to allow transfer of infor- 
mation from H to L but only if mediated 
by a sanitizing process with security class 
SAN. We then have H + SAN. SAN + 
L, but H k L. These situations are 
typically handled as exceptions falling 
outside the normal lattice framework of 
information flow. Such nontransitive 
information flows can be enforced us- 
ing the concepts of type etxforcetnent 
and assured pipelines.’ Nontransitive 
information flow policies can also be 
expressed in the typed matrix access 
model.‘) 

Antisymmetry requires that if A 3 B 
and B + A, then A = B. Given the 
reflexive and transitive requirements, 
antisymmetry merely eliminates redun- 
dant security classes. In other words, 
there is no point in having two different 
security labels if objects with these la- 
bels are restricted to having exactly the 
same information flows. 

Denning’s third axiom. This requires 
that SC have a lower bound L (for sys- 
tem low), that is, L + A for all A E SC. 
This axiom acknowledges the existence 
of public information in the system. 
Public information allows for desirable 

features such as public bulletin boards 
and databases, which users expect to 
find in any modern computer system. 
From a theoretical perspective. one can 
argue that information from constants 
should be allowed to flow to any other 
object: therefore, constants should be 
labeled L. An example of such a con- 
stant would be version information about 
the operating system. Version informa- 
tion is necessary for the correct opera- 
tion of certain programs and should be 
publicly available. Note that the policy 
of Example 1 does not have a lower 
bound. 

Denning’s fourth axiom. This is the 
most subtle. There are actually two parts 
to it. First, the join operator is required 
to be totally defined; that is, A 0 B is 
defined for every pair of security classes 
from SC. This means that it is possible 
to combine information from any two 
security classes and give the result a 
label. In Example 1. this property was 
not satisfied: that is, A, 0 A, was unde- 
fined for i # j. To bring Example 1 into 
line with Denning’s axioms, we can in- 
troduce a new security class H (for sys- 
tem-high security) and define A, 0 A, = 
H for i # j. By introducing L and H. we 
can modify Example 1 as follows: 

Example3 [Bounded isolated classes] 
-SC=(A ,..... A,,.L,H]: L+L.L+ 
H, H + H. and for i = 1 II WC have L 
+ A,. A, + A,, A, + H: for i = 1 , n 
wehaveA,OA,=A,,A,OH=H,andA, 
OL=A,:andfori.j=I...n,i#jwehave 
A,@A,= H. 

The Hasse diagram in Figure 1 b shows 
this policy. The can-flow relation goes 
upward in the figure along the edges 
shown. (Recall that reflexive edges, such 
as from A, to A,. and transitive edges, 
such as from L to H, are implied but not 
explicitly shown.) System-high objects 
have a practical role in that information 
about the global state of the system can 
only go in objects labeled H: such infor- 
mation could be crucial for proper sys- 
tem administration and audit. On the 
other hand, this example also suggests 
that in some situations it might be more 
appropriate to use partially ordered la- 
bels than to strive for a complete lattice. 

The second part of Denning’s fourth 
axiom states that the join operator is a 
least upper bound. This means that for 
all A, B, C E SC, we have property I. 
whichisA+AOBandB+AOB,and 
property 2 if A + C and B + C then A 

0 B + C. Property 1 follows from the 
intuition underlying the join operator: 
that is, A 0 B is the label on information 
collectively obtained from A and B. 
Therefore, information from A, as well 
as from B, should be able to flow to A 0 
B. Property 2 stipulates that if informa- 
tion can flow individually from A and B 
to C, then information obtained by com- 
bining information from A and B should 
also be able to flow to C. This is a 
reasonable requirement, somewhat anal- 
ogous to the transitivity property in 
Denning’s second axiom. 

An important consequence of Den- 
ning’s fourth axiom is that the join oper- 
ator can be applied to any number of 
security classes. This is because least 
upper bound is an associative and com- 
mutative operator. Thus, we can com- 
pute A, 0 AI 0.. 0 A,, to be the least 
upper bound of (A,.A?. . , A,,]. In this 
manner, we can label the result of com- 
bining information from any number of 
security classes. 

Finally. note that the security litera- 
ture is usually cast in terms of the in- 
verse of the can-flow relation. defined 
as follows: 

Definition 3 [Dominance] - A 2 B 
(read as A dominates B) if and only if B 
+ A. The strictly dominates relation > is 
defined by A > B if and only if A 2 B and 
A #B. We say that A and B arc comparable 
if A t B or B 2 A: otherwise A and B arc 
incomparable. 

The strictly dominates relation has the 
following significance: If A > B then 
A k B. but B + A. In other words, A is 
more sensitive than B. 

The military lattice 

The simplest examples of nontrivial 
information flow policies occur when 
the can-flow relation is a total or linear 
ordering of the security classes. The 
most common examples of totally or- 
dered security classes are the 73 (for 
top secret), S (for secret), C (for confi- 
dential). and U (for unclassified) sensi- 
tivity levels encountered in the mili- 
tary and government sectors (see 
Figure lc). In general. we can have any 
number of totally ordered security class- 
es. (In the security literature. a total or 
linear ordering is often called a hierar- 
chical ordering, but in this article I avoid 
using that expression. since it is some- 
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Figure 2. Embed- 
ding a partial or- 

der in a lattice. 
ta) (b) 

times understood to mean a tree-like 
ordering.) 

Note that 2 (or dominance) is a total 
ordering if and only if its inverse + (or 
can-flow) is a total ordering. Moreover, 
there are noincomparable securityclass- 
es in a total ordering. The definition of 
A 0 B is then simply the maximum of A 
and B with respect to the dominance 
relation. Jn other words. when informa- 
tion from two security classes is com- 
bined, the label of the higher result of 
the two classes is used for the result (for 
example. S 0 U = S). 

Similarly, subset lattices of any size 
can be defined. Since there are 2” sub- 
sets of a set of size II. there is an expo- 
nential increase in the number of secu- 
rity classes as the number of categories 
increases. In practice. only a decreas- 
ingly small fraction of the security class- 
es actually would be employed for 
large n. 

Selecting an arbitrary subset of a lat- 
tice will not necessarily yield a lattice. 
For example, the partial order of Figure 
2a results by selecting these four securi- 
ty classes from the subset lattice on [A, 
B, C, D). The partial order of Figure 2a 
fails to be a lattice for two reasons. First, 
it is missing the system-low and system- 
high security classes. Second, the two 
upper bounds of {A / and (8) are incom- 
parable; hence there is no least upper 
bound of {A) and (B). By filling in these 
missing security classes, we can extend 
the partial order of Figure 2a to obtain 
the lattice of Figure 2b. Such a construc- 
tion is always possible for any partial 
order: that is. every partial order can be 
embedded in a lattice by including addi- 
tional security classes. 

It is possible to generate very large 
lattices in this manner. As mentioned 
previously, only a small subset of the 
entire lattice realistically would be used 
in such cases. Smith’describes an actual 
lattice based on common practice in the 
military. This lattice consists of the four 
linearly ordered security levels TS > S > 
C > U. and eight categories {A, K, L, Q, 
W, X. Y, 2) corresponding to, say. eight 
different projects in the system. Smith’s 
lattice (see Figure 3) has 21 labels from 
a possible space of 4 x 2” = 1,024 labels. 
The 21 labels actually used do consti- 
tute a lattice. Except for the system- 
high security class, combinations of cat- 
egories occur only in twos and threes. In 
addition, the use of categories occurs 
mostly above top secret, and none occur 
below secret. 

Figure Id shows a partially ordered 
lattice. The security classes are obtained 
as the power set (that is, set of all sub- 
sets) of {A. B}. Say A denotes salary 
information and B denotes medical in- 
formation in a personnel database. The 
system-low class is the empty set, which 
can have public information but no sal- 
ary or medical information. The securi- 
ty labels (A) and (B) are singleton sets. 
respectively corresponding to salary 
information and medical information. 
When salary information and medical 
information are combined, the result 
must be labeled (A. B). Note that {A) 
and (B) are incomparable and that {A) 
0 (B) = {A, B). In this policy, can-flow is 
identical to the subset relation, domi- 
nance is identical to superset, and join is 
the set union of the labels. Such a lattice 
is called a subset lattice. In the military 
and government sectors, the individual 
set elements (that is, A and B) are known 
as categories; the security classes (that 
is, sets of categories) are known as com- 
partments. 

Access control models 

Figure le shows a subset lattice with 
three categories A, B, and C that might 
denote salary, medical, and educational 
information. respectively. In this case. 
the security classes [A) and (B) have 
two upper bounds, namely, [A, B) and 
{A, B. C). with {A, B) being the least 
upper bound. 

The two lattices considered above 
(that is, the totally ordered lattice and 
the subset lattice) are often combined. 
This is particularly true in the military 
and government sectors, where this 
structure is laid down by law. (The sys- 
tem-high security clearance is sometimes 
not given to any individual in systems 
that contain highly sensitive informa- 
tion.) Each security class has two com- 
ponents: one from the totally ordered 
security lattice of Figure lc, and the 
second from a subset lattice on some 
number of categories. One label is said 
to dominate another if each component 
of the first label dominates the corre- 
sponding component of the second. For 
example. c 7s. {A) > dominates < S, {A) 
> but is incomparable to < S, (B) >. The 
join of two labels is similarly defined as 

The active entities in a system are 
usually processes executing programs 
on behalf of users. Therefore, informa- 
tion flow between objects, and thereby 
between security classes, is carried out 
by processes. Information can poten- 
tially flow from every object that a pro- 
cess reads to every object that it writes. 
In the absence of knowledge about what 
a given program does, we must assume 
the worst case and say that wherever 
there is a potential for information flow, 
the flow actually occurs. Said another 
way, we must be conservative and en- 
sure that programs simply do not have 
the ability to cause information flows 
contrary to the given policy. Before 
showing how the Bell-LaPadula model” 
addresses this objective. I introduce 
some basic abstractions for access con- 
trol models. 

To understand access control and 
computer security, we must first under- 
stand the distinction between users and 
subjects. This distinction is fundamen- 
tal but often is treated imprecisely, lead- 
ing to undue confusion about the objec- 
tives of computer security. 

We understand that a user is a human 
being. And we assume that each human 
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the pairwise join of the individual com- 
ponents (for example, < 75. {A} > 0 < S, 
(B) > = < 73. {A, B) >). It is easy to see 
that the result is a lattice. In fact, it is 
known as the product lattice of the two 
underlying lattices. This example illus- 
trates the general property that the prod- 
uct of two lattices is a lattice. 



being known to the system is recog- 
nized as a unique user. Stated another 
way, the unique human named Jane 
Doe cannot have more than one user 
identity in the system. If Jane Doe is not 
an authorized user of the system, she 
has no user identity. Conversely, if she 
is an authorized user, she is known by 
exactly one user identity, say, JDoe. 

Clearly this assumption can be en- 
forced only by adequate administrative 
controls, which we assume are in place. 
This assumption is not required for some 
of the policies considered in this article. 
At the same time, it is crucial for poli- 
cies such as Lipner’s integrity lattice 
and Chinese Walls, which are discussed 
later. This assumption is often violated 
in current systems. (It is worth observ- 
ing that the converse requirement. that 
each user identifier in the system be 
associated with exactly one human he- 
ing, is critical to maintaining strict ac- 
countability. The use of shared uscr- 
identifiers to facilitate sharing is usually 
applied only because the system lacks 
convenient facilities for such sharing. In 
a properly designed system, there should 
be no need for this artifice.) 

We understand a subject to be a pro- 
cess in the system: that is, a subject is a 
program in execution. Each subject is 
associated with a single user. with the 
subject executing on the user’s behalf. 
In general, a user can have many sub- 
jects concurrently running in the sys- 
tem. Every time a user logs in to the 
system, the user does so as a particular 
subject. (Note that access control mod- 
els assume that identification and au- 
thentication of users takes place in a 
secure and correct manner, and are con- 
cerned with what happens afterward.) 

Different subjects associated with the 
same user can obtain different sets of 
access rights. Suppose that top-secret 
user John logs in at the secret level. In 
user-subject terminology. we interpret 
this as follows: First. there is a unique 
user, John, cleared to top secret: sec- 
ond. John can have subjects executing 
on his behalf at every level dominated 
by top secret. For now. assume that 
each subject runs at a fixed security 
level. (Below, we see that the security 
level of subjects can be changed in some 
models.) 

The access rights of subjects to ob- 
jects in a system are conceptually repre- 
sented by an access mufvi.~.‘This matrix 
has a row for every subject and a col- 
umn for every object. A subject can also 
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be an object in the system; for example, 
one process can execute suspend and 
resume operations on another process. 

In general, all subjects are also ob- 
jects. but not all objects are subjects. 
The cell for rows and column o is denot- 
ed by [s, o] and contains a set of access 
rights specifying the authorization of 
subject s to perform operations on ob- 
ject o. For example, rerrti t [s. 01 autho- 
rizes s to read o. Operations authorized 
by the access matrix are the only ones 
that can be executed. In the access ma- 
trix, all users are also regarded as sub- 
jects in their own right. A subject re- 
tains the access rights of the user. even 
when the user is not engaged in any 
activity in the system. The access matrix 
is usually sparse and is stored in a sys- 
tem using access control lists. capabili- 
ties, relations, or another data structure 
suitable for efficient sparse-matrix 
storage. 

The access matrix is a dynamic entity, 
and its individual cells can be modified 
by subjects. For example, if subjects is 
the owner of object o (that is, own E [s, 
cl]), then s typically can modify the con- 
tents of all cells in the column corre- 

sponding too. In this case. the owner of 
an object has complete discretion re- 
garding access to the owned object by 
other subjects. Such access controls are 
said to be discretionary. 

The access matrix also changes with 
the addition and deletion of subjects 
and objects. (The typical access control 
on files and directories, provided by 
popular multiuser operating systems on 
the basis of protection bits, is an exam- 
ple of discretionary access control. An- 
other example of discretionary access 
control is the access control on relations 
and parts of relations provided by pop- 
ular relational database management 
systems.) 

By themselves. discretionary access 
controls are inadequate for enforcing 
information flow policies. Their basic 
problem is that they provide no con- 
straint on copying information from one 
object to another. (There are also oth- 
er, more subtle problems with discre- 
tionary access controls, notably concern- 
ing the so-called safety problem’ for 
propagation of access rights.) 

Suppose that Tom, Dick, and Harry 
are users and that Tom has a confiden- 
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Figure 3. Smith’s lattice, 
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tial file Private that he wants Dick to 
read but doesn’t want Harry to read. 
Tom can authorize Dick to read the file 
byenteringreadin [Dick, Private]. (As- 
sume that Dick does not thereby have 
the authority to grant the read right for 
Private to other users, such as Harry.) 
Dick can easily subvert Tom’sintention 
by creating a new file called Copy-of- 
Private and copying the contents of Pri- 
vate into it. As the creator of Copy-of- 
Private, Dick has the authority to grant 
read access for it to any user. including 
Harry: that is. Dick can enter read in 
[Harry, Copy-of-Private]. Then, for all 
practical purposes, Harry can read Pri- 
vate as long as Dick keeps Copy-of- 
Private reasonably up to date with re- 
spect to Private. 

This situation is actually worse than 
the above scenario indicates. So far, I 
have portrayed Dick as a cooperative 
participant in this process. Now sup- 
pose Dick is Tom’s trusted confidant 
and would not deliberately subvert 
Tom’s intentions regarding the Private 
file. However. Dick uses an ingenious 
text editor that Harry gave to him. This 
editor provides all the editing services 
that Dick needs. In addition, Harry has 
also programmed the editor to create 
the Copy-of-Private file and to grant 
Harry the right to read Copy-of-Pri- 
vate. This kind of Trojnr? horse software 
performs normal functions expected by 
its user. but also engages in surrepti- 
tious activities to subvert security. A 
similar Trojan horse that Harry created 
and Tom executed could actually grant 
Harry the privilege to directly read Pri- 
vate. We can require that all software 
run on the system be free of Trojan 
horses, but this is hardly practical, par- 
ticularly if we wish to guarantee this 
freedom with a high degree of assur- 
ance. The solution is to impose manda- 
tory controls that cannot be bypassed, 
even by Trqjan horses. 

l +-property (read as star-property): 
Subject s can write object o only if 

The Bell-LaPadula 
model 

Bell and LaPadula’ formalized the 
concept of mandatory access controls. 
defining a model commonly bearing their 
names. Numerous variations of the 
model have since been published. Con- 
sequently. the exact meaning of the Bell- 
LaPadula model is not clear. 

In this article, 1 take a minimalist 

Mandatory access 
control policy is 

expressed in terms of 
security labels attached to 

subjects and objects. 

approach and define a model, called 
BLP, that is generally the smallest mod- 
el capturing the essential access control 
properties I want to illustrate. The no- 
tation and precise formulation of the 
rules of BLP are substantially different 
from those of the original Bell-LaPadu- 
la model. BLP is more in line with the 
formulations authors of more recent lit- 
erature have used. 

The key idea in BLP is to augment 
discretionary access controls with man- 
datory access controls to enforce infor- 
mation flow policies. BLP takes a two- 
step approach to access control. First is 
a discretionary access matrix D, whose 
contents can be modified by subjects (in 
a way we don’t need to specify here). 
However, authorization in D is not suf- 
ficient for an operation to be carried 
out. Second, the operation must be au- 
thorized by the mandatory access con- 
trol policy, over which users have no 
control. 

Mandatory access control policy is 
expressed in terms of security labels 
attached to subjects and objects. A la- 
bel on an object is called a security clas- 
sificatim, while a label on a user is 
called a security clearance. A user la- 
beled secret can run the same program. 
such as a text editor. as a subject labeled 
secret or as a subject labeled unclassi- 
fied. Even though both subjects run the 
same program on behalf of the same 
user. they obtain different privileges 
due to their security labels. It is usually 
assumed that once assigned, the securi- 
ty labels on subjects and objects cannot 
be changed (except by the security of- 
ficer). This assumption, known as tran- 
quility, can be relaxed in a secure man- 
ner (see below). 

With h signifying the security label of 
the indicated subject or object, the spe- 
cific mandatory access BLP rules are as 
follows: 

l Simple-security property: Subjects 
can read object u only if h(s) 2 h(o). 

h(s) 2 h(o). 

Read access implies a flow from ob- 
ject to subject, hence the requirement 
that h(s) > h(o) or equivalently h(o) + 
h(s) (that is, X(,(o) can flow to h(s)). 
Write access conversely implies a flow 
from subject to object, hence the re- 
quirement that h(s) I h(u) or equiva- 
lently h(s) + h(o) (that is. h(s) can flow 
to h(o)). Write access is interpreted here 
as write only. In some models, write 
access is interpreted to mean read and 
write, with append access provided for 
write only. 

These properties are stated in terms 
of read and write operations. In a real 
system, additional operations will exist 
(for example, create and destroy ob- 
jects). Considering read and write suf- 
fices to illustrate the main points. For 
example. create and destroy are also 
constrained by the *-property because 
they modify the state of the object in 
question. Mandatory controls are for- 
mulated as “only if” conditions: that is, 
they are necessary but not sufficient for 
the indicated access. In operational 
terms, we can visualize the mandatory 
controls as kicking in only after the 
checks embodied in the discretionary 
access matrix D have been satisfied. If 
D does not authorize the operation. we 
do not need to check the mandatory 
controls, since the operation will be re- 
jected anyway. Equivalently. the man- 
datory controls can be checked first, 
followed by a check of the discretionary 
controls. 

The simple-security requirement ap- 
plies to humans and programs equally, 
and the need for it is self-evident. On 
the other hand, the *-property is not 
applied to human users, but rather to 
programs. Human users are trusted not 
to leak information. A secret user can 
write an unclassified document because 
we assume that he or she will put only 
unclassified information in it. Programs, 
on the other hand, are not trusted be- 
cause they can have embedded Trojan 
horses. The *-property prohibits a pro- 
gram running at the secret level from 
writing to unclassified objects, even if it 
is permitted to do so by discretionary 
access controls. A user labeled secret 
who wishes to write an unclassified ob- 
ject must log in as an unclassified 
subject. 

A curious aspect of the -+-property is 
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that an unclassified subject can write a 
secret file. This means that secret data 
can be destroyed or damaged, perhaps 
accidentally, by unclassified subjects. 
To prevent this integrity problem, a 
modified *-property is sometimes used 
that requires h(s) = h(o); that is, sub- 
jects can write at their own level but 
cannot “write up.” 

form the same change; that is, we re- 
place the stipulation that X(s) = h(o) 

be a secret (or above) file and Harry‘s 
unclassified subjects will not be able to 
read it. On the other hand, Dick’s un- 

Here’s how these properties impact 
the previous Tom, Dick, and Harry Tro- 
jan horse example. Suppose Tom and 
Dick are secret users and Harry is an 
unclassified user. Tom and Dick can 
have secret and unclassified subjects, 
while Harry can have only unclassified 
subjects. Now, let Tom create the secret 
file Private via a secret subject, The 
simple-security property will prevent 
Harry’s subjects from being able to di- 
rectly read the file Private. The simple- 
security and *-properties will ensure 
that Harry’s subjects cannot surrepti- 
tiously read Copy-of-Private because 
Copy-of-Private will either be labeled 
secret (or above) or will not contain any 
information from Private. Specifically, 
if Dick’s Trojan horse-infected secret 
subject creates Copy-of-Private, it will 

Once covert channels 
are detected, they are 

difficult to close without 
incurring significant 

performance penalties. 

munication is called a covert channel.’ 
Covert channels present a formidable 

The covert channel problem is out- 

problem for enforcement of informa- 
tion flow policies. They are difficult to 
detect, and once they are detected they 

side the scope of lattice-based access 

are difficult to close without incurring 
significant performance penalties. Co- 
vert channels tend to be noisy due to 

control models such as Bell-LaPadula. 

interference by the activity of other sub- 
jects in the system. Nevertheless, stan- 
dard coding techniques for communica- 
tion on noisy channels can be used by 
Trojan horses to achieve error-free com- 
munication. The resulting data rates can 
be as high as several million bits per 
second if efforts are not made to miti- 
gate the channels. 

with h(s) > h(o). This latter case is inse- 
cure, because upgrading an unclassified 
file to secret by a secret subject will 
make this file disappear from the view 
of unclassified subjects, thereby open- 
ing a means for communicating infor- 
mation from secret to unclassified; this 
could be exploited by Trojan horses. A 
secret user can securely upgrade an un- 
classified file to secret by logging in as 
an unclassified subject. 

The Biba model and 
duality 

Confidentiality considerations moti- 
vated the mandatory controls in the Bell- 
LaPadula model. Biba proposed that 

tegrity objectives. The best known of 

similar controls could be formulated for 
integrity.“’ The basic concept in Biba’s 
model is that low-integrity information 

these is called strict integrity. 

should not be allowed to flow to high- 
integrity objects, whereas the opposite 
is acceptable. Biba proposed several 

In the usual formulation of the Biba 

ways to use mandatory controls for in- 

classified subject running the Trojan 

was a secret user like Tom and Dick, 

horse cannot read Private and copy it to 

these controls would not solve the 

Copy-of-Private. BLP mandatory access 

problem. 

controls only prevent information flow 

Unfortunately,mandatorycontrolsdo 

between security classes. Thus. if Harry 

These models seek to prevent insecure 

ing covert channels is considered an 

information flows via objects that are 

implementation and engineering issue, 

explicitly intended for interprocess data 

requiring analysis of the system archi- 

sharing and communication. The prob- 

tecture, design, and code (see Proctor 

lem of avoiding, mitigating, or tolerat- 

model, high integrity is placed toward 

rectly opposite that of the Bell-LaPad- 

the top of the lattice of security labels 

ula model and Denning’s axioms. This 

and low integrity at the bottom. With 

led Biba to propose the following man- 

this formulation. the permitted flow of 

datory controls. in analogy with the 

information is from top to bottom, di- 

not solve the Trojan horse problem com- 
pletely. A secret subject is prevented 
from writing directly to unclassified 
objects. There are. however, other ways 
of communicating information to un- 
classified subjects. For example, the se- 
cret subject can acquire large amounts 
of memory in the system. This fact can 
be detected by an unclassified subject 
that can observe how much memory is 
available. Even if the unclassified sub- 
ject is prevented from directly observ- 

and Neumann”). Another class of mod- 
els, called information flow models, at- 
tempts to deal with all information flows 
uniformly.’ 

Above I noted that the tranquility 
assumption requires that security labels 
of subjects and objects not change. This 
assumption can be relaxed in several 
different ways. some securely and oth- 
ers insecurely (that is. they introduce 
information flow contrary to the given 
lattice). Suppose we allow a subjects to 

mandatory controls of the BLP model 
(o denotes the integrity label of a sub- 
ject or object): 

l Simple-integrityproperty: Subjects 
can read object o only if o(s) 5 W(O). 

l Integrity *-property: Subjects can 
write object o only if w(s) 2 o(o). 

These properties are said to be duals of 
the corresponding properties in BLP. 

There is nothing intrinsic about plac- 
ing high integrity at the top of the lattice 

ing the amount of free memory, it can change the security label of object o (or placing high confidentiality at the 
do so indirectly by making a request for from h(o) to h’(o). with the stipulation top, for that matter). Top and bottom 
a large amount of memory itself. Grant- that k(s) = h(o), and h’(o) > h(o); for are relative terms coined for convenience 
ing or denying this request will convey example. an unclassified subject up- and have no absolute significance. But 
some information about free memory grades the label of a file from unclassi- information flow in the Biba model can 
to the unclassified subject. The load on fied to secret. Such a change is secure, be brought into line with the BLP mod- 
the CPU can be similarly modulated to because it causes no information flow el by simply saying that low integrity is 
communicate information. 

This kind of indirect method of com- 
from secret to unclassified. Now sup- at the top of the lattice and high integri- 
pose we allow a secret subject to per- ty at the bottom. This forces us to invert 
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Figure 4. Example 
of equivalence: (a) 

composite model 
(and accompany- 

ing table stating 
resulting mandato- 

ry controls); (b) 
equivalent BLP 
lattice (allowed 

flows are upward); 
and (c) equivalent 

Biba lattice (al- 
lowed flows are 

downward). 

(a) 

W (c) 

the dominance relation in the Biba model 
so that low integrity dominates high 
integrity. 

With this viewpoint, we can use the 
mandatory controls of the BLP model 
to enforce the information flows re- 
quired by the Biba model. This situa- 
tion is symmetrical. We could equally 
well invert the BLP (and Denning) lat- 

tices to put low confidentiality at the 
top and high confidentiality at the bot- 
tom, and employ the mandatory con- 
trols of Biba to enforce the information 
flows. 

There is no fundamental difference 
between the Biba and BLP models. Both 
are concerned with information flow in 
a lattice of security classes, with infor- 

S: System control 

S: Repair 
S: Production users 
0: Production 

data 

S: Application 
programmers 

0: Development 
code and data 

S: System 
programmers 

0: System code 
in development 

0: Production code 0: Tools 
I 

1 0: System programs 1 

Figure 5. Lipner’s composite model as a BLP lattice. Each box represents a la- 
bel. Entries in each box specify subjects (prefixed S:) and objects (prefixed 0:) 
that are assigned to that label. Allowed flows are upward. 
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mation flow allowed only in one direc- 
tion in the lattice. The BLP model al- 
lows information flow upward in the 
lattice, and the Biba model allows it 
downward. Since direction is relative, a 
system that can support one of these 
models can also support the other (giv- 
en some straightforward remapping of 
labels to invert the dominance relation 
as needed). 

It is often suggested that the BLP and 
Biba models could be combined in situ- 
ations where both confidentiality and 
integrity are of concern. If a single label 
is used for both confidentiality and in- 
tegrity, the models impose conflicting 
constraints. One adverse factor to com- 
bining them is that a subject can read or 
write only those objects that have ex- 
actly the same security label as the sub- 
ject. This amounts to the trivial policy 
of no information flows between securi- 
ty classes as discussed in Example 1. 

A more useful situation features in- 
dependent confidentiality and integrity 
labels, As such, each security class con- 
sists of two labels: a confidentiality la- 
bel hand an integrity label w, with BLP 
mandatory controls applied to the former 
and Biba controls to the latter. Let A = 
(h,. . . A,,) be a lattice of confidentiality 
labels, and let R = (0,. . , o(,) be a 
lattice of integrity labels. Assume that 
in both lattices high confidentiality and 
high integrity are at the top, as pro- 
posed in the original models. The com- 
bined mandatory controls are 

l Subject s can read object o only if 
h(s) 2 h(o) and w(s) I w(o). 

* Subject s can write object o only if 
h(s) 5 h(o) and w(s) 2 w(o). 

This popular composite model has 
been implemented in several operating 
system, database. and network prod- 
ucts specifically built to meet require- 
ments of the military sector. This model 
amounts to the simultaneous applica- 
tion of two lattices, with information 
flow occurring in opposite directions 
(going upward in the confidentiality lat- 
tice and downward in the integrity lat- 
tice). However, we can invert the integ- 
rity lattice and view the composite model 
as the simultaneous application of two 
lattices with information flow going up- 
ward in both of them. This gives us a 
product of two lattices, which is mathe- 
matically one lattice. Hence, the com- 
posite model can be reduced to a single 
lattice (see Figure 4). 



Figure 4a shows two lattices A and ,Q 
to which BLP and Biba controls. re- 
spectively. are applied. The accompa- 
nying table shows the resulting manda- 
tory controls. Each entry specifies the 
maximum access that a subject with a 
label on the row can have to an object 
with a label on the column. In this table, 
r denotes read access, w denotes write 
access, rw denotes both read and write 
access, and @ denotes no access. 

The same mandatory controls are 
enforced by the BLP lattice of Figure 
4b. Here, subjects labeled &,a+, cannot 
read objects labeled hHcuL because of 
the w-component of their labels. At the 
same time, they cannot write objects 
labeled h,w, because of the h-compo- 
nent. They cannot read objects labeled 
hLmL because of the o-component. and 
they cannot write to these objects be- 
cause of the h-component. We can sim- 
ilarly interpret other relationships in 
this lattice. Also note that the top ele- 
ment of the lattice has high confidenti- 
ality but low integrity, whereas the bot- 
tom element has low confidentiality but 
high integrity. The same mandatory 
controls are enforced by the Biba lat- 
tice of Figure 4c, obtained by inverting 
Figure 4b. In short, the mandatory con- 
trols expressed by the three formula- 
tions of Figure 4 are precisely equiva- 
lent. Which mandatory controls a system 
enforces doesn’t matter - the net ef- 
fect is identical. 

Lipner:’ gave us another example of 
the simultaneous use of confidentiality 
and integrity labels. Lipner constructed 
a composite lattice for possible applica- 
tion in a conventional data processing 
environment. The Lipner lattice con- 
sists of three integrity levels, two integ- 
rity categories. two confidentiality lev- 
els, and three confidentiality categories. 
This results in 3 x 2: x 2 x 2’ = 192 distinct 
labels. all of which could be instantiated 
as a single BLP lattice, as I have argued. 
However. Lipner instantiates subjects 
and objects with only nine distinct la- 
bels. which are related by the BLP lat- 
tice of Figure 5. In this lattice, system 
programs have the highest integrity, 
whereas audit trail has the highest con- 
fidentiality. Audit trail can be read only 
by system managers. It can be written 
by all subjects (in an append-only mode). 

Lipner also imposes the additional 
constraint that production users can 
execute only production code. Also. no 
individual can be both an application 
programmer and a production user. It is 

November 1993 

Company information 

Conflict-of- Conflict-of- 
, i , .” , inter as:-class j , interest-class i 

Company i.1 . . . Company i.m . . - Company j.l . . . Company Jr7 

Figure 6. Company information in the Chinese Wall policy. 

easier to enforce this restriction if each 
human being is required to have a unique 
user identity in the system, as suggested 
in the section on access control models. 

Finally, in contradiction to the t- 
property, system control subjects are 
allowed to “write down.” Such addi- 
tional constraints and relaxations of the 
lattice model appear to be necessary for 
the application that Lipner considered. 
The point is not so much to discuss the 
adequacy of the lattice model for integ- 
rity applications but to emphasize that 
lattice-based information flow policies 
that combine several lattices can be cast 
within a single lattice. 

The Chinese Wall 
lattice 

The Chinese Wall policy that Brewer 
and Nash’? identified arises in the seg- 
ment of the commercial sector that pro- 
vides consulting services to other com- 
panies. In a 1992 paper. I presented a 
lattice-based access control model for 
enforcing this policy.‘? The objective of 
the policy is to prevent information flows 
that result in a conflict of interest for 
individual consultants. 

Consultants deal with confidential 
company information for their clients. 
But, a consultant should not have ac- 
cess to information about, say. two banks 
or two oil companies because such in- 
formation creates a conflict of interest 
in the consultant’s analysis and is a dis- 
service to clients. Insider information 
about two similar types of companies 
also presents the potential for consul- 
tants to use such knowledge for person- 
al profit. 

The Chinese Wall policy has a dy- 
namic aspect to it. New consultants start 
with no mandatory restriction on their 
access rights. Say a consultant accesses 
information about bank A. Thereafter, 

this consultant is mandatorily denied 
access to information about any other 
bank. (This denial should persist long 
enough to avoid a conflict of interest. 
To simplify this discussion, assume that 
this denial is forever.) However, there 
are still no mandatory restrictions re- 
garding the consultant’s access to an oil 
company, an insurance company, and 
so forth. 

It is useful to distinguishpllblic infor- 
mation from company information. Pub- 
lic information involves desirable fea- 
tures such as public bulletin boards, 
electronic mail, and public databases; 
has no mandatory reading controls: and 
can have discretionary access controls 
restricting who can read different pub- 
lic items. (For simplicity’s sake in this 
article, I ignore discretionary and addi- 
tional mandatory controls, which coex- 
ist with the Chinese Wall policy. Such 
additional controls can also apply to 
company information and are similarly 
ignored.) 

As Figure 6 shows, company infor- 
mation is categorized into mutually dis- 
joint conflict-of-interest classes. Each 
company belongs to one conflict-of-in- 
terest class. The Chinese Wall policy 
requires that a consultant not be able to 
read information for more than one com- 
pany in any given conflict-of-interest 
class. This policy applies uniformly to 
users and subjects. 

The policy for writing public or com- 
pany information is derived from its 
consequence on providing possible in- 
direct read access contrary to mandato- 
ry read controls. In this respect, users 
and subjects (possibly infected with Tro- 
jan horses) must be treated differently. 
The policy for writing is essentially the 
same as the Bell-LaPadula t-property. 
To make this statement meaningful. we 
need to define a lattice of labels. 

Say there are y2 conflict-of-interest 
classes: COI,, COI?, . , COI,, each with 
M, companies, so that COZ, = (1,2, . . 
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in,), for i = 1. 2, . n. We propose to 
label each object in the system with the 
companies from which it contains infor- 
mation. Thus, an object that contains 
information from bank A and oil com- 
pany OC is labeled {bank A, oil compa- 
ny OC}. Assume that banks and oil com- 
panies are distinct conflict-of-interest 
classes. Then, labels such as {bank A. 
bank B. oil company OC] are clearly 
contrary to the Chinese Wall policy. We 
prohibit such labels in our model by 
defining a security label as an n-ele- 
ment vector [i,,i,, . , i,,], where each i, 
E COI, or i, = I for k = 1 . n. (The 
symbol I is read as null.) An object 
labeled [i,,i,, , i,?] is interpreted as 
(possibly) containing information from 
company i, of COI,, company i2 of COI?, 
and so on. When an element of the label 
is I rather than an integer, the object 
cannot have information from any com- 
pany in the corresponding CO1 class. 
For example, an object that contains 
information from company 7 in COI, 
and company 5 in COI, is labeled [L 7. 
1,5,i )..., I]. 

The dominance relation among la- 
bels is defined as follows: I, 2 /? provided 
I, and I, agree wherever l2 # 1. For 
example, [t, 3,2] 2 [l, 3, I]. [I. 3, I] 2 
[1. I, 11 while [1, 3, 21 and [l. 2, 31 are 
incomparable. To be precise. let [[i,] 
denote the i,-th element of label 1. Then 
I, 2 l2 if l,[iJ = 12[ii] v L[iJ = I, for all k 
=l...n. 

The label with all null elements natu- 
rally corresponds to public information. 
There is, however, no naturally occur- 
ring system-high label. In fact, such a 
label is contrary to the Chinese Wall 
policy. We can introduce a special label 
Syshigh for this purpose, not assigning 
that name to any subject in the system. 
By definition Syshigh dominates all 
other labels. (Alternately, we can rec- 
ognize that the Chinese Wall policy 
does not quite fit within a lattice and 
requires the Syshigh class to be elimi- 
nated. However. recall that when I dis- 
cussed Example 3 above, 1 said the need 
for system-high objects for system ad- 
ministration and audit purposes could 
be crucial.) 

The class-combining join operator 
must be defined to complete the lattice 
structure. We say that two labels I, and 
I, are compatible if wherever they dis- 
agree at least one of them is I, that is. 
l,[iJ =L[iJ orI,[i,] =lorL[i,] =Iforall 
k = 1 ~1. Note that if I, dominates 1: 
then I, and 1, are compatible. In other 
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[Lll I 
Figure 7. Example of a Chinese Wall 
lattice. 

words, comparable labels are com- 
patible. 

Incomparable labels, on the other 
hand, might or might not be compati- 
ble. For instance, [ 1,3.2] and [I .2.3] are 
incompatible, while [l, I, 21 and [lo 2, I] 
are compatible. Incompatible labels 
cannot be legitimately combined under 
the Chinese Wall policy. This is ex- 
pressed by the requirement that if 1, 
is incompatible with II then I, 0 l2 = 
Syshigh. For compatible labels the i,-th 
element of the join is computed as fol- 
lows: (I, 0 L)[iJ = if I,[iJ $1 then L,[iJ 
else Iz[i,]. For example. [l. I, 21 0 [l. 2. 
I] = [l. 2. 21. Finally, the join of any 
label with Syshigh is Syshigh. 

Given this lattice structure. here’s how 
the Chinese Wall policy can be enforced. 
I describe the solution in the context of 
the specific lattice of Figure 7, which 
contains two conflict-of-interest classes 
with two companies in each class. The 
solution is completely general, howev- 
er, and applies to any Chinese Wall 
lattice. Every object in the system bears 
one of the labels in Figure 7. (I dis- 
cussed the interpretation of these labels 
previously.) Objects labeled Syshigh 
violate the Chinese Wall policy by com- 

bining information from more than one 
company in the same CO1 class. These 
objects are inaccessible in the system, 
since no user will be cleared to Syshigh. 

Next, consider labels on users and 
subjects. We treat the clearance of a 
user as a high-water mark that can float 
up in the lattice but not down. A newly 
enrolled user in the system is assigned 
the clearance (I, I]. (This assumes that 
the user is entering the system with a 
“clean slate.” A user with prior expo- 
sure to company information in some 
other system should enter with an ap- 
propriate clearance reflecting the ex- 
tent of the prior exposure.) As the user 
reads various company information. the 
user’s clearance floats up in the lattice. 
For example, by reading information 
about company 1 in conflict-of-inter- 
est-class 1, the user’s clearance is mod- 
ified to [l, I]. Reading information about 
company 2 in conflict-of-interest-class 
2 further modifies the user’s clearance 
to [ 1, 21. This floating up of a user’s 
clearance is allowed as long as the clear- 
ance does not float up to Syshigh. Oper- 
ations that would force the user’s clear- 
ance to Syshigh are thereby prohibited. 

The ability to float a user’s clearance 
upward addresses the dynamic require- 
ment of the Chinese Wall policy. The 
floating clearance keeps track of a us- 
er’s read operations in the system. It is 
also important to ensure that a consul- 
tant cannot be known by two (or more) 
user identities in the system. Otherwise, 
each user identity could obtain infor- 
mation about different companies in 
the same conflict-of-interest class. 

The exact manner in which a user’s 
clearance is allowed to float up is not 
specified in the model, since there are 
numerous alternatives. If users have 
complete freedom in this respect, the 
proposed read access could be specified 
at login. The system could then create a 
suitable subject for that user session. 

On the other hand, one might con- 
strain this by discretionary access con- 
trols. For instance, a user might be al- 
lowed to read only company information 
that the user’s boss assigns. In this case, 
the float-up of a user’s clearance is ef- 
fected by some other user. (A complete 
treatment would require models such as 
the typed access matrix.‘) 

With each user we associate a set of 
subjects whose labels are dominated by 
the user’s clearance. Thus, if user Jane 
has the clearance [l, 11. she could create 
the following subjects associated with 
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her: Jane.[l. 11. Jane.[l, I], Jane.[l, 11. 
and Jane.[l. I]. Each of the subjects 
corresponds to the label with which she 
wishes to log in on a given session. (More 
generally. a user might be allowed to 
open several windows in a single login 
session, with each window associated 
with its own subject.) Each subject has a 
fixed label that does not change. 

The floating up of a user’s clearance 
corresponds with the ability to create 
subjects with new labels for that user. 
For example, when Jane has the clear- 
ance [l. i]. she can create subjects with 
labels [l, I] and [I, I]. When Jane’s 
clearance floats up to [l, I], she acquires 
the ability to create subjects with labels 
[l, I] and [1. I]. 

Each subject has a fixed label, and 
each subject created by that subject in- 
herits that label: that is, subject creation 
is allowed only at the label of the creat- 
ing subject. A subject’s label remains 
fixed for the life of that subject. 

All read and write operations in the 
system are carried out by subjects. These 
subjects arc constrained by the familiar 
simple-security and *-properties of the 
Bell-LaPadula model. Suppose Jane logs 
in as a subject with label [I, I]. All 
subjects created during that session will 
inherit the label [l, I]. This will allow 
these subjects to read public objects 
labeled [I, 4, to read and write compa- 
ny objects labeled [l, I]. and to write 
objects with labels [l, 11. [l, 21. and 
Syshigh. 

A 

lthough lattice-based access 
controls were initially devel- 
oped for military sector, they 

can be applied in almost any situation 
where information flow is of concern. 
The commercial sector has largely ig- 
nored lattice-based access controls, pos- 
sibly due to their genesis in confidenti- 
ality policies for the military and 
government. However. as I have argued 
in this article, lattice-based controls are 
relevant to integrity policies in com- 
mercial data processing, as well as for 
confidentiality policies that are unique 
to the commercial sector. 

Lattice-based access control is a key 
ingredient of information systems secu- 
rity as we understand it today. At the 
same time. the lattice-based approach 
does not provide a complete solution 
for information flow policies, let alone 
for security policies in general. Albeit a 
very important one, the lattice-based 
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approach is but one ingredient of infor- 
mation systems security. n 
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