Architectural Framework for Supporting Operating System Survivability *

Xiaowei Jiang and Yan Solihin
North Carolina State University
{xjiang, solihin} @ece.ncsu.edu

Abstract

The ever increasing size and complexity of Operating
System (OS) kernel code bring an inevitable increase in the
number of security vulnerabilities that can be exploited by
attackers. A successful security attack on the kernel has
a profound impact that may affect all processes running on
it. In this paper we propose an architectural framework that
provides survivability to the OS kernel, i.e. able to keep nor-
mal system operation despite security faults. It consists of
three components that work together: (1) security attack de-
tection, (2) security fault isolation, and (3) a recovery mech-
anism that resumes normal system operation. Through sim-
ple but carefully-designed architecture support, we provide
OS kernel survivability with low performance overheads (<
5% for kernel intensive benchmarks). When tested with real
world security attacks, our survivability mechanism auto-
matically prevents the security faults from corrupting the
kernel state or affecting other processes, recovers the ker-
nel state and resumes execution.

1 Introduction

Computer systems are increasingly becoming more in-
terconnected and being used for critical computation tasks.
Along with such changes, more security attacks have ap-
peared that exploit software vulnerabilities and design er-
rors. Attacks are targeted towards user applications, as
well as the Operating System (OS). The OS kernel is a
fundamental software layer between the hardware and user
applications, which serves to provide machine abstraction
and security protection for user applications. As the kernel
source code grows in size and complexity, it provides a fer-
tile ground for security vulnerabilities [28]. In addition, the
number and variety of kernel modules are growing. It is es-
timated that kernel modules represent 70% of the Linux ker-
nel code [31]. One primary type of modules is device driver.
Quite often these device drivers are programmed with per-
formance and compatibility as the main goals, without suf-
ficient attention to security and reliability [2, 4]. As a result,

*This work was supported in part by NSF Award CCF-0347425. Much
of the work was performed when Jiang was a PhD student at NCSU.

the security vulnerabilities of the kernel are quite prevalent
and many new ones are continuously discovered [5].

A successful kernel security attack has a profound im-
pact. The kernel runs at the highest processor privilege level
and can manipulate hardware resources freely. Therefore, a
successful kernel attack exposes the entire system to ma-
licious intruders. Even an unsuccessful attack oftentimes
crashes the kernel. Kernel crash is highly undesirable be-
cause of the damages it causes, such as the termination of
all running processes and a long period of unavailability.

Due to vulnerabilities of the OS and the dire conse-
quences of successful security attacks on it, researchers
have for a long time studied ways to provide survivabil-
ity for the OS or the system. Survivability is the ability
to operate in the presence of security faults [11]. It seeks
to detect the occurrence of an attack, isolate the fault, and
recover from it. Hence, a survivability scheme consists of
three components that work together: (1) security attack de-
tection mechanism, (2) security fault isolation, and (3) re-
covery mechanism that resumes normal system operation.

Supporting survivability is challenging. One reason is
that it cannot be trivially constructed from combining a se-
curity scheme and a recovery scheme, due to several factors.
First, many security protection mechanisms are simply in-
compatible with survivability. Many of them were origi-
nally designed for protecting a user application and not the
kernel. In a user program, the goal of an attack is typically
to alter the program control flow or reveal sensitive data,
rather than to crash the program. Indeed, the goal of many
security protection mechanisms is to convert control flow
hijacking attempts into application crash [8, 18, 32], since
application crash is relatively acceptable than hijacking or
information loss. Attacks on the kernel often have a goal of
crashing it, so if the kernel crashes as a result, the attackers
have achieved their objective.

Secondly, although there are abundant recovery propos-
als for recovering from hardware faults [7, 10, 25, 27], they
are not capable of recovering from security faults. While
they provide the ability to save and recover state efficiently,
the recovery process is simple: rolling back the program ex-
ecution and identical re-execution of the program. In secu-

rity attacks, such identical re-execution will simply replay
the attack. Hence, kernel survivability needs non-identical
re-execution, in which the kernel is restored into a “good”
state but the fault has to be isolated before re-execution. In
addition, traditional fault recovery schemes treat the system
as consisting of a single state. However, the kernel state
consists of states from multiple user processes, hence these
states must be separated from each other.

The contribution of this paper is an efficient architectural
framework for supporting OS survivability. Our scheme in-
cludes three components: attack detection, fault isolation,
and recovery mechanisms. A malicious (or attacked and
subverted) application interacts with the kernel via system
calls or exception/interrupt handlers. Hence, we structure
our scheme around system call/exception handler bound-
aries. To support recovery, a checkpoint is created prior to
the kernel serving a system call or an exception. We dis-
tinguish the kernel state of different user processes and the
checkpointed state is specific to a user process. If an at-
tack is detected, the kernel state is rolled back to the pre-
viously created checkpoint. Since a checkpointed kernel
state is user process-specific, the recovery does not affect
the progress of other user processes. To avoid the repeat of
an attack, after the kernel state is rolled back, the user pro-
cess involved is suspended, and the kernel is resumed while
the system call used for the attack is skipped.

Our survivability scheme also includes a security at-
tack detection mechanism. Attack detection capability de-
termines the level of security coverage the survivability
scheme can provide. As many existing attack detection
mechanisms can be easily integrated into our survivability
scheme, high security coverage comes at the cost of high
performance overhead. In this paper, we propose a low-
overhead attack detection mechanism as an example to pro-
tect against the most prevalent type of kernel attacks (i.e.
contiguous overwrite attacks). We uses word-granularity
write protection with architectural support. While it detects
contiguous overwrite attacks, it is also served as a fault iso-
lation mechanism to isolate the faulty process from corrupt-
ing the state of other processes.

Overall, our OS kernel survivability scheme has the fol-

lowing features:
1. Low performance overhead. Kernel is performance

sensitive. We achieve low performance overhead

through efficient architecture support.

2. Automatic. The recovery from security attacks should
not be conditional upon human intervention because
a long period of unavailability may be the goal of an
attack. In our design, kernel recovery is automati-
cally triggered when a security attack is detected, and
the detection and recovery events are logged and users
alerted immediately.

3. No recompilation. Because kernel source code is not
always available, and hence the ability to recompile

kernel cannot be assumed. In our design, checkpoint
creation and deletion, protection manipulation, and
state rollback are achieved through dynamic instru-
mentation of the kernel.

We evaluate the performance and efficacy of the pro-
posed scheme on a full system simulator running the Linux
OS. We test with a range of real world kernel attacks, and
confirm that all the attacks are detected, and the OS sur-
vives all the attacks and keeps its normal function intact.
Although the hardware support we propose is quite sim-
ple, the average and worst-case performance overheads due
to our survivability mechanism are low, at only 2.1% and
4.7%, respectively.

The rest of the paper is organized as follows: Section 2
discusses related work, Section 3 describes the attack model
and assumptions that we use. Section 4 discusses our ker-
nel survivability scheme in details. Sections 5 describes our
evaluation environment while Section 6 discusses evalua-
tion results. Finally, Section 7 summarizes our conclusions.

2 Related Work

Many hardware fault tolerance methods have been pro-
posed, such as [7, 10, 25, 27]. However, as fault toler-
ance techniques simply result in repeat of attacks and do
not distinguish multiple kernel states in their recovery pro-
cess, they are not directly applicable to survivability tech-
niques. Our scheme is different than hardware fault tol-
erance mechanisms in that we distinguish multiple kernel
states and the recovery process prevents security attacks
from being replayed. There are also mechanisms to tolerate
software faults such as device driver failures [29]. However,
they do not protect the kernel itself, and rely on identical
re-execution, so the recovery process could repeat security
attacks if they cause the failures.

Researchers have also proposed many attack detection
and avoidance schemes [12, 14, 18] in the past to pro-
tect user-level applications. However, they do not pro-
vide the ability to recover from a security attack. Many
of them simply convert an attack into a crash, which is
incompatible with survivability. There are also studies on
fine-grain protection such as Mondrian Memory Protection
(MMP) [30]. MMP divides the memory into different pro-
tection domains, where permission control bits denote the
region that a program or kernel module can operate on.
While MMP improves kernel security by providing fault
isolation, it is inherently a detection scheme rather than sur-
vivability scheme, and does not provide recovery or isola-
tion from security faults. Security faults could still occur
within a single protection domain and when they do, the
kernel cannot recover from them.

There has long been research in survivability [6, 21, 22].
Unfortunately, current survivability techniques are expen-
sive and/or not sufficiently robust. They primarily rely on a

replica approach, in which multiple non-identical or diverse
instances of a system or a program are employed. The draw-
backs is that running N replicas require N times as many re-
sources. Besides being a very expensive approach, a more
fundamental weakness is that the efficacy of the approach
relies on the assumption that replicas do not share the same
vulnerabilities. In practice this assumption can be hard to
fully achieved [11]. Independent software teams still tend to
make similar wrong assumptions, leading to common bugs,
while naturally diverse systems may turn out to rely on the
same (vulnerable) libraries.

Finally, Recovery Domains [19] is a recovery-based
scheme that can recover the kernel from unexpected run-
time error. As a software scheme, it slows down the nor-
mal attack-free execution by between 8% to 5.6x. In ad-
dition, it is not aware of the dependencies between faulty
and non-faulty processes while isolating faults. In contrast,
our scheme provides efficient architecture support and only
incurs less than 5% performance overhead. While recov-
ering from security faults, our scheme isolates the faulty
processes from non-faulty ones.

3 Security Model and Kernel Attacks

Security Model and Assumptions. The goal of a kernel
attack can be to either crash the kernel or to execute mali-
cious code at the kernel’s privilege level. We assume that
the attacker can achieve these goals by exploiting vulnera-
bilities in the kernel. Attacks on the kernel can be launched
remotely through attacking a vulnerable application. Af-
ter the attackers gain control of the application, it can be
used to attack the kernel. Attacks on the kernel can also be
launched locally if attackers already have access to the ma-
chine. To cover both scenarios, we assume that the attack
can be carried out through vulnerable or malicious appli-
cations. We assume that kernel and kernel modules such
as device drivers are vulnerable but not malicious. Deal-
ing with malicious modules is very difficult because such
code already runs in the privileged mode. Fortunately, there
are mechanisms to authenticate module signatures to avoid
accepting modules developed by unknown parties.

There are various categories of software vulnerabilities
that can be exploited by an attacker. In a buffer overflow vul-
nerability, the lack of buffer bound checking allows a long
string input to overwrite adjacent bytes beyond the buffer.
In an integer overflow vulnerability, a signed-integer value
is not checked for a negative value that indicates an over-
flow before it is used. In a format string vulnerability, the
format string in the printf family of functions is taken
as an input parameter, which may result in a read from or a
write to a location specified in the format string argument.
Since buffer overflow occurs due to buffer copying, it typi-
cally causes a contiguous overwrite of bytes adjacent to the
buffer. Integer overflow and format string vulnerabilities

can sometimes be exploited to perform a random overwrite,
i.e. overwrite any location chosen by the attacker.

A detection mechanism that provides comprehensive se-
curity coverage towards all categories of attacks comes at
the cost of high performance overhead (e.g. an average of
22% slowdown in MMP [30]). We observed that contiguous
overwrites attack indeed is the most prevalent kernel attack
so far [5]. This is because random overwrite attacks are dif-
ficult to exploit in the kernel, due to several factors. First,
printk family of functions in the kernel are mainly used
for kernel debugging purposes. Hence, they tend to have
hard-coded format strings rather than ones accepted from
user space. This leaves little space for format string vulner-
abilities. Second, due to the limited size of kernel stacks,
arrays are rarely used in the kernel, leaving few opportuni-
ties for integer overflow attacks to perform array indexing.

As a result, in this paper we focus on providing attack

detection mechanism for contiguous overwrite attacks. We
present an efficient detection that detects contiguous over-
writes before the attack contaminates beyond the buffer
boundary (Section 4.2). However, if other types of ker-
nel attacks become prevalent in the future, our survivability
scheme provides the flexibility to integrate other new detec-
tion mechanisms easily.
Target of Kernel Attacks. Based on the memory locations
that the attack tries to overwrite, we categorize kernel at-
tacks into kernel stack tampering and kernel pool tamper-
ing. Each process has a kernel stack (e.g. 8KB in size)
for holding local variables and execution context while it
is executing in the kernel space. Because local variables
in the stack may be adjacent to critical kernel data (e.g.
thread_info field), a buffer overflow in this stack can
cause significant damage by overwriting the critical data.

Similar to the user heap, the kernel dynamically allo-
cates and frees data structures (e.g. inode) in the memory
pool through the use of buddy system. Allocation units (i.e.
slab) in the memory pool are laid out contiguously with-
out protection in between. This leads to a vulnerability be-
cause many slabs contain buffers that receive input from the
user process, and a buffer overflow in one slab can corrupt
neighboring slabs that may contain critical data. Note that
some of the kernel space resides in the virtual memory area
(VMA). Since VMA is not used often for storing critical
kernel data (mostly device driver data etc.), and also it al-
lows a simple yet effective security protection using nonac-
cessible pages to surround its buffers, our scheme only pro-
vides protection towards kernel stacks and memory pool.
Mechanism of Kernel Attacks. A kernel attack starts from
the attacker gaining control of a user application. The at-
tacker then continues to attack the kernel through the in-
teraction of the kernel and the application. In general, the
kernel attack consists of two steps. The first step (trap-to-
kernel) seeks to elevate the execution privilege level. This

step can be carried out through a system call, or an excep-
tion handler. In the call chain of system call routines and ex-
ception handlers, user arguments are passed along the way.
The attacker attempts to attack the kernel by passing invalid
or malicious arguments. Once a trap to the kernel occurs,
the kernel function executes with the arguments passed by
the user process. The second step (vulnerability exploita-
tion) then exploits vulnerabilities or bugs in the kernel code.
For example, if the kernel has a buffer overflow vulnerabil-
ity, a lack of bound check may cause an overflow to bytes
adjacent to a buffer in the kernel stack or pool.

static int elf_core_dump(long signr,

struct pt_regs xregs, struct file x file) {

int i, len;

len = current->mm->arg_end -
current->mm->arg_start;

if (len >= ELF_PRARGSZ)

len = ELF_PRARGSZ - 1;

copy_from_user (&psinfo.pr_psargs,

current->mm->arg_start, len);

e
Figure 1. Linux e1f_core_dump vulnerability

In order to give a more concrete illustration, we detail an
example real-world attack [3]. Figure 1 shows the code for
kernel function el f_core_dump, which is triggered when
an executable crashes, and which dumps the process’ mem-
ory image to the disk. The code copies arguments from the
crashed process’ stack to a kernel slab. The next line of code
has a vulnerability in that while 1en is checked against its
upper-bound value, it is not checked against its lower-bound
value. Hence, through integer overflow, an attacker can set a
negative value for 1en, and that value would then be passed
to the buffer copying function copy_from_user, which
overflows the buffer and results in a contiguous overwrite
attack that overwrites the critical data it is adjacent to.

4 Our Solution

We now describe the components of survivability
scheme in the following order: recovery, detection, and
fault isolation.

4.1 Recovery Mechanism

To design a checkpointing and recovery mechanism, we
address the questions of when to create a new checkpoint
and what state a checkpoint should consist of, when a
checkpoint can be deleted, where the checkpoints are stored,
and how to perform checkpoint operations efficiently.
Checkpoint Creation. The checkpoint should be made
when a “good” state is available, preferably just before an
attack may occur. Our analysis in Section 3 indicates that
entry points for attacks are system call or exception han-
dlers. Consequently, we create a new checkpoint at the en-
try point to each system call and exception handler function.
Checkpoint Components. We should checkpoint the state
that is the target of modifications in an attack. One chal-
lenge is that unlike hardware fault tolerance mechanisms,

we must distinguish the kernel state of different user pro-
cesses, and the checkpoint should only capture the kernel
state of the user process making the system call or excep-
tion. The kernel state of a user process includes a kernel
stack, and parts of the kernel pool that are written due to
the system call or exception handling. Hence, our check-
point consists of three components: kernel stack, slabs that
reside in the kernel pool, and the process’ execution con-
texts that include register values and pid of the process.
For all these components, we need to know their ranges of
addresses (base address and offset) in order to copy them
into the checkpoint.

For the kernel stack, the offset is always fixed because
the size of kernel stack is static (e.g. 8KB). Since the kernel
stack is allocated when the process is created, its base ad-
dress is always known prior to the checkpoint creation, so
its address range to be checkpointed is determined statically.
However, slabs are allocated dynamically, and which slab
would be overwritten by system call handling is not known
until a kernel function that will overwrite them is called.
Hence, we must incrementally checkpoint each slab as it is
discovered. To achieve this, we monitor the address ranges
in the kernel pool written during system call or exception
handling just before they are overwritten. One challenge
is that there is a very high number of kernel functions that
attempt to write to the kernel pool memory. Fortunately,
we found that all of them rely on a set of common kernel
library functions, such as strncpy_from_user. A seg-
ment of this function is shown in Figure 2. To figure out
the buffer parameters passed to this function, we analyze
buffer management functions and insert a breakpoint at line
[x+]. When the breakpoint is encountered in execution,
we can discover the base address and offset of the buffer by
looking up the values in register edi and ecx, respectively.

pc:0xc0212fbd entrance of strncpy_from_user
[**]pc:0xc0213002 lodsb
pc:0xc0213003 stosb

chOch2l3008 dec ecx
pc:0xc0213009 jne 0xc0213002

Figure 2. Code from strncpy_from_user,
showing the breakpoint that triggers check-
point creation (line [~ *1).

These functions cannot be patched easily to make them
secure, as they have no way to know whether the buffer ad-
dress parameter they receive is valid or not. So it is up to the
caller functions to supply valid address ranges to the buffer
management functions. Unfortunately, there are many such
callers, and some of them lack the necessary checking that
make sure that they pass valid buffer ranges to the buffer
management functions, such as the example illustrated in
Figure 1. However, with our checkpointing scheme, even
if buffer ranges passed to such functions are invalid, we al-
ways create the checkpoint of that invalid address range to
undo subsequent overwrites to it.

Checkpoint Management. The next challenge that needs

to be addressed is how many checkpoints need to be kept
and for how long. This depends on how much time the at-
tack detection mechanism needs to detect an attack after the
first kernel state modification is attempted by the attacker.
To make the challenge reasonable, we need to pick detection
mechanisms that give reasonable properties. Our proposed
attack detection mechanism (Section 4.2) provides two es-
sential guarantees. First, an overwrite that begins in a given
kernel stack or slab is detected as soon as it extends be-
yond that stack or slab. Second, overwrites that occur solely
within a kernel stack or a kernel slab are detected before
the system call or exception handler returns control to the
user process. These two guarantees allow us to limit the
time and life-span of our checkpoints. The maximum num-
ber of checkpoints that need to be kept is bounded by the
maximum call chain depth when servicing a system call or
exception, and the checkpoints can be organized in a check-
point stack. When a system call or exception handler is
invoked, we push a new kernel stack checkpoint onto the
checkpoint stack, and each time subsequent kernel func-
tions attempt to write to a buffer in the kernel pool, the
buffer is also pushed to the checkpoint stack. Just before
the kernel handler returns to user space, an additional scan
of the kernel stacks and pools involved in the checkpoint can
be performed to detect an attack. If an attack is detected, we
pop a checkpoint from the stack and restore its state, and
repeat this pop-and-restore until the stack is empty. If no at-
tack is detected, the checkpoint stack is simply de-allocated.

We note that the checkpoint stack is essential for ensur-
ing survivability. Hence, it needs to be stored in memory
securely. For this, a portion in the VMA of the kernel is
allocated for storing the checkpoint stack. To protect this
checkpoint stack from attacks or unintentional tampering,
we employ two protection mechanisms. First, the check-
point stack area is surrounded by non-accessible pages, so
that any intentional or accidental buffer overflow from out-
side the checkpoint stack area would trigger an exception
before it can write to the checkpoint stack. In addition, we
write-protect the pages that keep the checkpoint stack. Only
when the stack is modified this write protection is removed,
and after the modification the write protection is restored.

Dynamic Instrumentation. We mention in Section 1 that
one of the design criteria is that we should avoid OS source
code modifications and recompilation. Checkpoint cre-
ation, checkpoint stack management, checkpoint deletion,
and breakpoints must be weaved dynamically to an existing
kernel image. To achieve that, we use dynamic interception
through Kernel Dynamic Probes (Kprobes), a mechanism
to register kernel execution breakpoints.

Our breakpoint handlers consist of several types. The
first type is prefix handlers which are inserted into the sys-
tem calls, exception handlers and other kernel functions that
can serve as the entry points to the kernel, and are executed

prior to the functions themselves. Prefix handlers are used
for triggering checkpoint creations. The second type is a
suffix handlers which are inserted into the end of system
calls, exception handlers and other kernel functions that can
serve as the entry points to the kernel, and are executed af-
ter the execution of the functions themselves, but before the
functions return. Suffix handlers are used for performing
checkpoint stack de-allocation. We also use exception han-
dlers that are invoked when a detected attack raises an ex-
ception, and are used for restoring the kernel state. Finally,
PC handlers are invoked when instructions with the spec-
ified PC are invoked, and are used for identifying buffer
ranges in the kernel pool to be checkpointed.

Architecture Support for Checkpoint Creation. A
software-only checkpoint uses loads and stores to copy
the kernel state into the checkpoint area. It may have a
non-negligible performance impact because checkpoint cre-
ation cannot be overlapped with regular computation (Fig-
ure 3(a)). We explore several architectural mechanisms for
checkpointing to determine if they would be useful.

V- 0
% % ISlore conflict % Legend:
0 Z) Il - Bulk Copy
w / . Setup
% l?re conflict % // = Checkpoint
% % s /j % Creatign
2 | I = Sys Call
Handling

a)) ©
Figure 3. Checkpoint Creation: software (a),
CPTCR instruction (b), and Bulk Copying (c).
Our first attempt is to add a CPTCR instruction which

saves the processor context and a specified range of mem-

ory addresses. This approach saves instruction fetch band-
width, but can be internally unrolled into loads and stores.

To overlap checkpoint creation with regular computation,

we add a checkpoint address range register (CARR), which

records the range of addresses (base address and length)
from which checkpoints are being created. When a check-
point creation is initiated, its address range is recorded in

CARR and the hardware begins to copy data in the back-

ground. Meanwhile, the processor can continue executing

instructions. However, if the processor writes to an ad-
dress that conflicts with CARR, the processor stalls until
the checkpoint is completed (Figure 3(b)). Once the check-
point creation is over, CARR is marked as invalid, and the
stalled processor is allowed to resume execution. Although
this scheme is promising, in practice we found that there
is only a very limited overlap between checkpoint creation
and regular kernel execution. In addition, a large number of
memory locations which are brought into the cache regard-
less of the reuse pattern, which results in a waste of precious

memory bandwidth [15, 16, 17, 23, 26].

To avoid this cache pollution and improve overlap, we

use the bulk copying support proposed in [33] (Figure 3(c)).
Checkpointing region is split into pages and sent to the copy
engine in the memory controller. A pending copy table in
the processor is used to keep copying region and detect con-
flicts. The source and destination address ranges are speci-
fied to the memory controller, so it can copy from the source
range to the destination range without involving the proces-
sor or polluting the cache. At the start of checkpoint cre-
ation, the system enters a bulk copy setup phase, in which
the source and destination address ranges are written to an
on-chip Copy Control Unit (CCU) for virtual-to-physical
address translation. The cache controller writes back all
cached lines in that address range. During this setup time, a
conflicting store from the processor would result in stalling
the processor. After the write-backs are completed, the sys-
tem enters a bulk copy phase. In this phase, the copy engine
located in the memory controller performs the actual copy-
ing. The processor is allowed to resume execution. How-
ever, if cache lines in the source address range are modified,
which is indicated by a match to the pending copy table, the
modified lines are not allowed to be written back, to ensure
the integrity of the checkpoint.

4.2 Security Attack Detection Mechanism

One important component of our survivability scheme
is the attack detection mechanism. Our scheme naturally
accommodates many existing attack detection mechanisms.
However, to restrain the performance overhead associated,
we present a detection mechanism that deals with the most
prevalent attack, i.e. contiguous overwrite attacks.

To guarantee an overwrite is detected as soon as it ex-
tends beyond the stack or slab boundary and is detected
before system call or exception handling returns, we place
write-protected delimiters around a kernel state to prevent
an overwrite from pasting the delimiters. To minimize the
storage overhead of storing delimiters and to avoid com-
plicating the kernel memory allocators, we use word-size
delimiters around each kernel slab, and word-alignment of
slabs. This requires each word to have its own write protec-
tion bits. This protection would ensure that a buffer over-
flow beyond a kernel slab would promptly trigger an ex-
ception. To detect attacks on the stack, we simply make
return addresses and other critical thread information non-
writeable. To add these delimiters without modifying the
kernel source code, we insert prefix and suffix breakpoints
to kernel slab allocation routine (kmalloc). The prefix
handler intercepts the requested allocation size, while the
suffix modifies the pointer returned by the allocation rou-
tine to adjust for the alignment and delimiter.

In the main memory, we associate one write-protection
bit per kernel state word and the bits are linearly stored in
a bit vector format in the main memory. The protection bit
area is allocated at the virtual memory area and since its se-
curity is critical to the correctness of our attack detection,

so it is surrounded by write-protected pages, and the pro-
tection area itself has temporal write protection that is only
removed when it is updated.

Stores made by the processor now need to be checked
against the protection bits in order to determine if they are
valid or not. Reading the protection bits in the memory
for each store is obviously unacceptable. We observe that
at any given time, the number of write-protected words is
quite small, indicating that a small cache may be sufficient
to keep most of the protection information for these words.
As a result, we simply cache the address of each individual
word that is write-protected in a small protection cache, as
shown in Figure 4. A protection cache is basically a set-
associative tag array for write-protected words. If there are
more write-protected words than the associativity of a set,
the overflow bit is set and the information is stored into the
protection bit vector in the main memory. The protection
cache is indexed by XORing all sections of the address bits
of a store. The purpose of XOR-based [20] indexing is to
make sure that all sets are uniformly utilized. The 30-bit
tags in the indexed set are then compared to the word tag
(part of the store address). A match indicates that a store
to a write-protected word is attempted, hence an exception
is triggered. However, when the overflow bit is one, a mis-
match is quite costly as it means that the store address must
be checked against the protection bit vector information in
the main memory.

Store J‘

address [I I |]

Protection Cache

19 MOBAO

Index

o P

Trigger exception on tag match
Figure 4. Protection Cache Structure.

To reduce the cost of a mismatch, we rely on two over-
flow mechanisms, as shown in Figure 5. The first over-
flow mechanism (Figure 5(b)) utilizes a bloom filter [9, 13]
for each cache set to summarize protection information that
overflows the protection cache. The protection cache’s as-
sociativity is halved in order to make space for the bloom fil-
ter. On a mismatch at an overflowed cache set, the store ad-
dress is matched against the bloom filter for that set. Since
a bloom filter has no false negatives, a mismatch means that
the store is not to an address that is write-protected. How-
ever, a match in the bloom filter may be a false positive, so
the address needs to be checked against the protection bit
vector in the memory.

The second mechanism keeps the protection cache.

However, on overflow, several cache lines in the set are
grouped together and transformed into a bloom filter (Fig-
ure 5 (c)). On another overflow, we have two choices: store
the new address in the existing bloom filter, or group other
cache lines in the set to make a new bloom filter for the
new overflow. On the surface, aggressively turning cache
lines into bloom filters seem unnecessary. However, further
mathematical analysis reveals that the combined false posi-
tive rate is minimized when we use the aggressive approach
to ensure that the number of addresses kept by all bloom fil-
ters are roughly the same (detailed analysis is omitted due
to space limitation.). We find that when the addresses are
mapped uniformly to all bloom filters, the false positive rate
increases much more slowly than when most of them are
mapped to just one bloom filter. Hence, we conclude that
the protection cache that converts to multiple Bloom Filter
is the superior approach. When an address’ write protec-
tion is removed, its address can be removed from the bloom
filter without going to the main memory.

Protection Cache with
Multiple Bloom Filters

Protection Backup
Protection Cache Only Cache Bloom Filter

(a) (b) (c)
Figure 5. Protection Cache Overflow Mecha-
nisms: no overflow (a), Bloom Filter (b), and
multiple Bloom Filters (c).

4.3 Fault Isolation

As long as the detection mechanism ensures that kernel
state of different user processes are isolated against each
other, we can always recover the kernel state of each indi-
vidual user process from security attacks. When a security
attack is detected, an exception is raised and our exception
handler is invoked. The handler rolls back the kernel state to
the clean state prior to the system call or exception handler
that causes the attack. Then the handler calls a kernel func-
tion kill_proc that suspends the user process by sending
a SIGSTOP signal to the process, and invokes scheduler to
continue normal operation by scheduling another process.
The handler also logs the fact that an attack detection and
kernel recovery have occurred. Optionally, the handler can
be made to dump the memory image of the process for fur-
ther analysis, and alarm users about the events.

In the recovery process, processes that have dependen-
cies on the faulty one must be identified, since continu-
ing their execution may result in unexpected consequences.
Process dependencies can be built explicitly through inter-
process communication (IPC) or implicitly via data depen-
dencies. Our fault isolation mechanism identifies and iso-
lates processes that have either type of dependencies on the
faulty process. To identify explicit process dependencies,

we instrument system calls and kernel functions that han-
dle TPC creation (e.g. sys_pipe). The pids of dependent
processes are kept along within the checkpoint stacks. Once
the kernel recovery begins, they are looked up and sus-
pended as well. To identify implicit dependencies, one way
is to track processes’ data dependencies along with their ex-
ecution. However, this way the incurred performance over-
head can be unbounded. We found that implicit process
dependencies only affect dependent process in the presence
of kernel preemptions. If a process never gets preempted in
serving its system call, even it is detected as faulty and is
rolled back, its dependent processes still perceive a consis-
tent kernel state after the recovery process. Hence, rather
than tracking fine-grain data dependencies, we instrument
OS scheduler to track the kernel preemptions. If an attack
is detected, processes that preempt the faulty one are also
rolled back and re-executed. Checkpoints maintained for
processes that preempt others must be kept until the system
call of the preempted process returns.

5 Evaluation Methodology

Machine Parameters. We use a full system simulator
based on Simics [24] to model an out-of-order 4GHz x86
processor with issue width of 4. For L1 instruction and data
caches, we assume 16KB write-back caches with 64-byte
line size, and an access latency of 2 cycles. The L2 cache
is 8-way and has 1MB capacity, 64-byte line size, and an
access latency of 8 cycles. The memory access latency is
300 cycles (or 75ns), and we model a split transaction bus
with 6.4 GB/s peak bandwidth. For the protection caching
support, we use a 3.75KB structure that is either configured
entirely as a protection cache, as half a protection cache and
half a bloom filter, or as a protection cache that can trans-
form into multiple bloom filters (Section 4.2). The protec-
tion cache has 16 ways and each line stores a 30-bit tag.
Each bloom filter entry is 120-bit wide and has six keys.
Benchmarks. We use all 16 C/C++ benchmarks from
the SPEC2000 benchmark suite [1] with reference inputs.
Since out-of-order processor simulation in Simics can be
over ten times slower than an in-order processor simulation,
we first run all benchmarks with in-order processor model,
and then select seven of them that show the highest check-
point creation frequencies for further simulation with the
out-of-order processor model. To stress the performance of
our scheme, we add four kernel intensive benchmarks, in-
cluding Apache Server with ab workload, a network bench-
marking tool iperf, and two unix tools: find and du. For find,
we use the command ‘find /usr -type f -exec
od {} \;’, which searches the /usr directory and dumps
the file content. For du, we use the command ‘du -h
/usr’ to summarize the disk usage of each file in /uszr
directory. For SPEC2000, find and iperf, we simulate 1B
instructions after skipping the initialization phase. For du
and apache, we simulate all dynamic instructions.

Attacks. To validate the functionality of our survivabil-
ity scheme, we use two real-world kernel vulnerability ex-
ploits. The first one is the elf_core_dump attack described
in Section 3 which attempts to crash the kernel. The second
one is a block device driver attack described in [4]. To add
variation, we write a device driver program that is vulnera-
ble to buffer overflow and the number of bytes overflew can
be varied, and it attempts to crash the kernel. We call the
last attack drivercrash attack.

Operating System. We choose Fedora Core with the Linux
kernel v2.6.11. Although checkpoint creation, detection, re-
covery, and fault isolation are all automatic, currently break-
point handlers are still programmed and inserted to ker-
nel manually. Hence, we limit the kernel routines that are
instrumented. To approximate realistic performance over-
heads, we instrument the top twenty most frequently in-
voked ones. They contribute to more than 90% of all system
call and exception handler instances and hence provides a
good coverage. In addition, we instrument eight other ker-
nel functions which have been reported as vulnerable.

6 Evaluation
6.1 Survivability Functionality Validation

First, we validate the three attacks (elf_core_dump, block,
and drivercrash) on an unmodified FC Linux. Both
elf_core_dump and drivercrash crash the kernel, while block
successfully escalates to kernel level privilege. This is a sig-
nificant problem, because many production systems that use
FC Linux are completely open to these attacks. We then
boot the same Linux kernel on Simics, repeat the attacks,
and observe the same outcome.

We then integrate our survivability scheme into the simu-
lated machine. We repeat all attacks, with various overflow
amounts for the drivercrash attack. In all these attacks, ille-
gal overwrites are detected immediately when they exceed
the bounds and write into write-protected words. Automatic
recovery occur in that case and the faulty process is cor-
rectly suspended, while the kernel successfully survives the
attacks and retains its normal functioning. After each re-
covery, we continue the simulation for eight more simulated
machine hours to see if there is any sign of system instabil-
ity, and we found none.

6.2 Benchmark Characterization

Checkpoint creation frequency. To determine how fre-
quently benchmarks would cause checkpoint creations, we
measure the number of checkpoint creations per billion
instructions (NCPBI). NCPBIs of all the SPEC bench-
marks and kernel intensive (KI) benchmarks are shown
in Figure 6(a), with their separate averages. NCPBIs for
SPEC2000 benchmarks have an average of 151, which cor-
responds to one checkpoint creation of every 6.5 million
instructions. In contrast, all kernel intensive benchmarks

show much higher NCPBIs compared, ranging from a mini-
mum 8158 (find) to a maximum 21632 (du), with an average
of 16516, which corresponds to one checkpoint creation for
every 60 thousand instructions. Thus, due to frequent sys-
tem calls, kernel intensive benchmarks create checkpoints
roughly two orders of magnitudes more frequent compared
to SPEC2000 benchmarks. We pay particular attention to
benchmarks with high NCPBIs because they stress the per-
formance of our survivability scheme.

100000
10000
1000
100

10

1

ammp
art
bzip2
crafty
eon
equake
gap

goc
9zip
mcf
mesa
parser
perlbmk
twolf
vortex
vpr
avgSPEC
apache
du

find
iperf
avgKI

OaANWRUION®OO

Average Checkpoint Size(KB)
ammp
art
bzip2
crafty
eon
equake
gap
gee
gzip
mcf
mesa
parser
perlbmk
twolf
vortex
vpr
avgSPEC
apache
du
find
iperf
avgKI

Figure 6. Number of checkpoint creations per

per billion instructions (NCPBI) (a), and Aver-

age checkpoint size in KB (b).
Checkpoint sizes. Figure 6(b) shows the average size of
checkpoints. Since each kernel stack checkpoint is al-
ways 8KB, the variation comes from the sizes of check-
points from the kernel pool. The figure shows that a check-
point size is typically a few kilobytes. Combined with a
checkpoint interval of every 60k instructions, kernel inten-
sive benchmarks would incur a large checkpoint footprint if
these checkpoints are cached when they are created. For
the rest of the evaluation, we focus on benchmarks that
stress our hardware mechanisms, namely all kernel inten-
sive benchmarks and ones with the highest NCPBIs: gap,
gcc, gzip, mcf,perlbmk, twolf, and vortex.

6.3 Performance Overhead

Having validated the functionality of the survivability
scheme, we now turn to the performance overheads of our
survivability scheme. Since the performance overheads of
our scheme come from checkpoint management (mostly
from checkpoint creation and very little from checkpoint
stack de-allocation) and attack detection, we first show
the checkpoint management and attack detection overheads
separately, then show the performance overheads of com-
bining both of them to fully support survivability.
Checkpoint Creation Evaluation. Figure 7 compares the
execution time of NULL breakpoint handlers (Kprobes),
software-only checkpoint creation (SW), and bulk copying
hardware support (BC). Kprobes represent a kernel instru-
mented with all breakpoint handlers that we use for other

cases, but we remove the code in each handler’s body, which
essentially measures the performance overheads of only the
dynamic instrumentation. For each benchmark, all config-
urations simulate a fixed number of user instructions plus
instructions from the breakpoint handlers and checkpoint
management. Unrelated kernel instructions are simulated
but not counted in deciding when to stop the simulation.

24% OKprobes BSW EBC

21% +

18% +
0 I 11l
12%

Execution Time Overhead

ga
[¢]
gzi
maf
perlbml
twolf
vorte!
avgSPE!
apache
fini
iperf
avgKI

Figure 7. Execution time overhead (IPC).

In Figure 7, Kprobes shows largely negligible overheads

compared to an un-instrumented (and unprotected) kernel.
However, due to the more frequent system calls, it is clear
that kernel intensive benchmarks suffer larger instrumen-
tation overheads, with an average of 0.5% vs. 0.2% for
SPEC benchmarks. The negative performance overhead of
-2.3% in apache is mainly caused by the variation in context
switching effect with other processes (such as OS daemons)
that also run and skew our measurement slightly. With
software-only checkpoint creation, the figure shows much
smaller overheads in SPEC benchmarks (average of 1.0%)
than in kernel intensive benchmarks (average of 19.1%).
Because the software mechanism uses a loop of loads and
stores to do the copying for checkpoint creation, checkpoint
creation is not overlapped with regular computation. These
checkpoints will not be accessed again unless there is an
attack that requires kernel state rollback. Finally, our bulk
copying hardware mechanism avoids cache pollution and
overlaps most of checkpoint creation with regular compu-
tation. As a result, it achieves very small overheads, with
an average of 1.5% for SPEC benchmarks and only 2.6%
for kernel intensive benchmarks. The worst case overhead
is also low (4% for iperf).
Attack Detection Evaluation. We now show the evaluation
results for our attack detection mechanism. For comparison,
we also implement Mondrian Memory Protection (MMP) to
compare with our protection cache scheme. Figure 8 shows
the percentage increase of memory references (or L2 cache
misses) due to various attack detection mechanisms.

The Mondrian bars show that using MMP results in a
significant increase of memory references compared to an
unprotected system, especially for kernel intensive bench-
marks. This is due to the insufficient spatial locality that
results in a high Protection Look-aside Buffer (PLB) miss
rate. Note that without bloom filters, each PLB miss must
result in memory access to fill the PLB with the protection
information. Furthermore, looking up protection informa-
tion in memory sometimes requires multiple memory ac-

cesses to traverse the multi-level protection table.

194 230 137 328, 222

%
33% T[mMondrian mBackupBF _EIMultiBF

3.0% -
2.5% -
2.0% -
1.5% 1
1.0%
0.5% -
0.0% -

Extra Memory Refs

gap

gce
gzip
mcf
perlbmk
twolf
vortex
avgSPEC
apache
du

find
iperf
avgKI

Figure 8. Increase in memory references.

Our protection cache with backup bloom filter (Back-
upBF) significantly reduces the extra memory references to
an average of 0.05% for SPEC benchmarks and 1.6% for
kernel intensive benchmarks. This is because in contrast
to regular caching which causes memory access on a cache
miss, with a bloom filter memory access is incurred only
if there is an address that matches the bloom filter. Since
bloom filter false positive rates can be made much lower
than protection cache miss rates, it reduces the number of
memory accesses. Finally, we show our protection cache
that converts to multiple bloom filters per set on overflows
(MultiBF). In fact, MultiBF always incurs smaller false pos-
itive rates than BackupBF. The reduced false positive rates
result in a lower number of memory accesses, on average
by only 0.02% for SPEC benchmarks and 0.4% for kernel
intensive benchmarks. Even the worst case (iperf) shows
less than 1% increase in memory accesses.

Compared our schemes to MMP, our scheme works bet-
ter because of two factors. First, MMP relies on spatial
locality of the protection information and stores both write-
protected and non write-protected word information on chip
in its PLB. In contrast, our protection cache only stores
the write-protected word information. Since at any given
time there is a lot less write-protected words than non write-
protected words, our protection cache is more efficient. In
addition, bloom filters are able to summarize protection in-
formation in the memory quite well, so they reduce the fre-
quency of checking the protection bit vector in memory. Fi-
nally, we use counting bloom filters rather than plain bloom
filters, which enable on-chip protection information to be
modified (address deleted or added) without involving the
main memory most of the time.

For our detection schemes, we assume 1-cycle access la-
tency for the 3.75KB protection cache. The base case is an
unprotected system. BackupBF shows an average perfor-
mance overhead of 1% for SPEC benchmarks and 5.3% for
kernel intensive benchmarks, with a worst case of 10.2%
for iperf. These high overheads despite small increases in
the number of memory references are due to the long la-
tency to read, locate, modify, and write protection bit vec-
tors in the main memory. As expected, the multiple bloom
filter scheme (MultIBF) outperforms BackupBF scheme in
all cases, and reduce the overheads to 0.8% for SPEC and
1.9% for kernel intensive benchmarks.

o 12% W BackupBF EMultiBF
10%

8%
6%
4%
2%
0%

eal

Execution Time Overh

e g & B
N
> © y E

perlbmk
twolf
vortex
avgSPEC
apache
du

find

iperf
avgKI

Figure 9. Performance overhead of attack de-
tection scheme.

Overall Performance Overheads of Survivability. Fig-
ure 10 shows the total execution time overheads of the full
survivability scheme, which includes bulk copying hard-
ware support for checkpoint creation, and protection cache
with multiple bloom filters for attack detection. Because
the overheads of checkpoint creation and attack detec-
tion mechanisms are both low, the combined scheme still
achieve low overheads. The average overheads are 1.3%
for SPEC and 3.7% for kernel intensive benchmarks, with a
worst case overhead of 4.7% for iperf. iperf spends 99% of
its execution time in the kernel mode due to its very frequent
system calls, hence we believe that very few applications
would be as kernel intensive as iperf, so the 4.7% worst-case
overhead probably applies to a wide range of applications as
well. Additionally, the rollback handler will not incur any
performance overheads unless an attack is detected, which
is a rare occurrence.

6%
5% A
4%
3% -
2%
1%
0% -

Execution Time Overheac

gap

gce
gzip
mcf
perlbmk
twolf
vortex
avgSPEC
apache
du

find
iperf
avgKI

Figure 10. Overall performance overhead.

7 Conclusions and Future Work

In this paper, we presented the need for ensuring OS
survivability. We presented a recovery-based survivabil-
ity scheme that includes various mechanisms that work to-
gether: attack detection, recovery, and fault isolation. We
have shown that through simple but carefully-designed ar-
chitecture support, the performance overhead of our scheme
can be kept at under 5% even for kernel intensive bench-
marks. We validated the functionality of the survivability
scheme through various real world attacks. Besides, our
scheme achieves OS kernel survivability with a relatively
simple architecture support.

As future work, we would like to improve our work by
supporting more sophisticated situations such as interrupt
handling and I/O operations. We will also explore applying
our survivability scheme to other OSes.

References

[1] SPEC CPU2000 Benchmarks. http://www.spec.org/, 2000.

[2] Linux 1000 Ethernet Card Driver Vulnerability.
http://www.securityfocus.com/bid/10352, 2004.

[3] Linux Kernel ELF Core Dump Privilege Elevation.
http://www.securityfocus.com, 2005.

[4] Linux Raw Device Block Device
http://secunia.com/advisories/15392/, 2005.

[5] Cyber Security Bulletin. http://www.us-cert.gov/, 2009.

[6] E. Berger et al. DieHard: Probabilistic Memory Safety for
Unsafe Languages. in PLDI, 2006.

[7] P.Bernstein. Sequoia: a Fault-tolerant Tightly Coupled Multi-
processor for Transaction Processing. IEEE Computer, 1988.

[8] S.Bhatkar et al. Address Obfuscation: an Efficient Approach
to Combat a Broad Range of Memory Error Exploits. in
USENIX, 2003.

[9] B. Bloom. Space/Time Trade-offs in Hash Coding with Al-
lowable Errors. Communications of the ACM, 1970.

[10] G. Bronevetsky et al. Application-level Checkpointing for
Shared Memory Programs. in ASPLOS, 2004.

[11] C.Cowan. Survivability: Synergizing Security and Reliabil-
ity. Advances in Computers, 2004.

[12] C. Cowan et al. StackGuard: Automatic Adaptive Detec-
tion and Prevention of Buffer-Overflow Attacks. in USENIX,

1998.

[13] L. Fan et al. Summary Cache: A Scalable Wide-area Web
Cache Sharing Protocol. in SIGCOMM, 1998.

[14] M. Frantzen et al. StackGhost: Hardware facilitated stack
protection. in USENIX, 2001.

[15] X. Jiang et al. Architecture Support for Improving Bulk
Memory Copying and Initialization Performance. in PACT,

2009.

[16] X.lJiangetal. CHOP: Adaptive Filter-based DRAM Caching
for CMP Server Platforms. in HPCA, 2010.

[17] X. Jiang et al. CHOP: Integrating DRAM Caches for CMP
Server Platforms. in IEEE Micro Top Picks 2010, 2010.

[18] M. Kharbutli et al. Comprehensively and Efficiently Protect-
ing the Heap. in ASPLOS, 2006.

[19] A. Lenharth et al. Recovery Domains: An Organizing Prin-
ciple for Recoverable Operating Systems. in ASPLOS, 2009.

[20] G. Liaoetal. A New IP Lookup Cache for High Performance
IP Routers. in 47th DAC, 2010.

[21] H. Lipson et al. Survivability: A New Technical and Busi-
ness Perspective on Security. New Security Paradigm Work-
shop, 1999.

[22] A. Liu et al. Diverse Firewall Design. in DSN, 2004.

[23] F Liu et al. Understanding How Off-chip Memory Band-
width Partitioning in Chip-Multiprocessors Affects System
Performance. in HPCA, 2010.

[24] P. Magnusson et al. Simics: A Full System Simulation Plat-
form. Computer, 2002.

[25] M. Prvulovic et al. ReVive: Cost-effective Architectural
Support for Rollback Recovery in Shared-Memory Multipro-
cessors. in ISCA, 2002.

[26] B. Rogers et al. Scaling the Bandwidth Wall: Challenges in
and Avenues for CMP Scaling. in ISCA, 2009.

[27] D. Sorin et al. SafetyNet:Improving the Availability
of Shared Memory Multiprocessors with Global Check-
point/Recovery. in ISCA, 2002.

[28] M. Swift et al. Improving the Reliability of Commodity Op-
erating Systems. in SOSP, 2003.

[29] M. Swift et al. Recovering Device Drivers. in OSDI, 2004.

[30] E. Witchel et al. Mondrian Memory Protection. in ASPLOS,

Vulnerabilities.

2002.

[31] H. Xu et al. Detecting Exploit Code Execution in Loadable
Kernel Modules. in ACSAC, 2004.

[32] J. Xu et al. Transparent Runtime Randomization for Secu-
rity. in Reliable Distributed Systems, 2003.

[33] L. Zhao et al. Hardware Support for Bulk Data Movement in
Server Platforms. in ICCD, 2005.

