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Abstract

Logging and auditing is an important system facility
for monitoring correct system operation and for detect-
ing potential security problems. We present an archi-
tecture for implementing user-level auditing monitors
which: (i) does not require superuser privileges; (ii)
makes it simple to create user defined monitors which
are transparent; and (iii) provides security guarantees
such as mandatory and reliable monitoring while main-
taining confidentiality of setuid processes. We avoid
problems of self-referential monitoring. Monitor use
policies can be specified to increase flexibility. We show
that our framework can be tailored so that it is very
efficient with low overhead on macro and micro bench-
marks. This demonstrates that it is feasible to make
use of arbitrary and programmable user-level monitors
for system security and auditing applications.

1. Introduction and Overview

Logging and auditing are important operating sys-
tem facilities used to help monitor correct system op-
eration and to detect potential security problems. In
Unix systems, logging is traditionally application based.
The application itself controls what is being logged
through the system logging mechanism syslog, e.g. se-
curity audit log messages generated by login, su, etc.
The drawback of application logging is since it is un-
der the control of an application which may be com-
promised or malicious, no security guarantees are pos-
sible. More secure versions of Unix have finer grained
auditing mechanisms to satisfy the Trusted Computer
System Evaluation Criteria (TCSEC) or Common Cri-
teria (CC) security requirements. The Solaris Basic
Security Module [7] for example defines kernel audit-
ing events which can serve to log certain system calls.
Such auditing is typically system-wide on all processes
and requires administrator privileges.

Traditional auditing mechanisms are designed
mainly for system audit trail purposes. As such, they
are not sufficient for the needs of more demanding secu-
rity monitoring applications such as intrusion detection
systems (IDS), determining correct application behav-
ior, detecting improper system usage, etc. In this pa-
per, we present an approach to auditing and monitor-
ing which is sufficiently flexible for a variety of appli-
cations. We provide a kernel extension which enables
easy programming of user level (as opposed to kernel
level) monitors for observing the effects of system calls
made by specified processes of interest. Our philosophy
is to separate mechanism from policy. A kernel-level
mechanism provides transparent, secure and efficient
monitoring, while the core logic and functionality is
encapsulated in a user-level monitor. Having a user-
space monitor means that we do not have to worry
about code safety issues unlike a kernel-level one. As
user-level monitors do not have to be privileged, ordi-
nary users can create/run their own monitoring tools.
We show that general purpose user-level monitors are
easy to write without requiring any knowledge of ker-
nel programming. In the remainder of this paper, we
will refer to monitoring as encompassing the concept
of auditing and logging.

We provide a number of security guarantees: (i) the
selected processes (which can include their children)
cannot circumvent monitoring, we call this mandatory
monitoring; (ii) none of the operations/events of in-
terest from the set of monitored processes are missed,
we call this reliable monitoring; and (iii) the monitor
cannot escalate its privileges, only precisely the oper-
ations/events of processes at the same privilege level
can be monitored. The mandatory and reliable prop-
erties are necessary to ensure that a monitor can be
used for security purposes. The last property is impor-
tant since the user-level monitors can be unprivileged.
Finally, we also require that the monitor be transpar-
ent to the monitored processes — thus the act of being
monitored has no side effects to the monitorees. We re-
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mark that traditional Unix mechanisms such as ptrace

and proc do not provide these guarantees.
A key objective is that the monitoring mechanism

be efficient and scalable. By efficiency, we mean that
fine-grained monitoring is possible with low overheads.
Scalability means that the cost of monitoring should
be dependent on how much is being monitored and the
amount of information desired. The cost should be
controllable by the monitor so that overhead is com-
mensurate with need. In the end, we want to be able
to have several fine-grained root-level and unprivileged
monitors to be permanently running without paying
too high a price. On one end of the spectrum, we al-
low for global monitors which log all interesting events
across all processes to disk like an audit log; and on
the other end, the monitor might only be concerned
with writes to particular system files from particular
processes and then perform sophisticated analysis.

Consider the following motivating example. Sup-
pose we want to monitor whether a web server has been
attacked, perhaps as part of an IDS. The web server
logs cannot be used since either the server or the logs
could be compromised. A traditional auditing facility
like a disk based log would have a number of problems.
Firstly, there may be confidentiality issues in giving
the system log to the IDS, the IDS may gain access to
confidential information (assuming it isn’t running as
root). Another question is what happens if the disk log
causes the file system to run out of space? Add a net-
work IDS to this scenario will further strain the audit
log! One could use ptrace to monitor the web server
but this can have a significant performance penalty and
may not ensure mandatory or reliable auditing.

Our prototype implementation shows that it is pos-
sible to to get all these desirable features in a user-
space monitor without requiring special privileges. We
demonstrate an efficient implementation which has low
overhead even with user-space monitors.

2. Related Work and Approaches

A commonly used technique for monitoring is sys-
tem call tracing or system call interposition to monitor
the system calls made by a process. For portability,
systems like Janus [4] or Alcatraz [5] use the Unix user-
level mechanisms ptrace or proc to do system call trac-
ing. This usage is problematic because it is not meant
to be a secure monitoring mechanism, e.g. ptrace was
meant to support debuggers. In the Solaris manual
pages, ptrace is described as being “unique and ar-
cane”. [3] discuss these kinds of problems and common
pitfalls with user-level system call interposition are dis-
cussed in [3], such as: (i) race conditions between time

of check and time of use (TOCTOU), i.e. a buffer can
be modified by another thread; (ii) non-inheritance of
tracing, i.e. special strace hacks in Linux; and (iii)
not transparent with respect to setuid/setgid executa-
bles and signals, i.e. ptrace and proc disable tracing on
setuid/setgid executables. Because of their subtleties
and intrinsic difficulties, ptrace or proc are not suitable
for general purpose user-level monitoring although they
may be useful in specific situations.

The other serious drawback of ptrace or proc is that
the overhead is considerable, incurring at least two con-
text switches per traced system call. Our micro bench-
marks show that this can lead to an order of magnitude
slowdown on system call intensive programs. Another
example is Alcatraz [5], their user-level system call in-
terception mechanism gives an overhead of 77% on a
tar benchmark. Thus, user-level mechanisms also have
the drawback of high intrinsic overhead.

The obvious alternative is a kernel-level system call
interposition, e.g. the later version of Janus used a
kernel module, mod janus [3]. We remark that while
a kernel-level system call interposition is more efficient
and can be transparent, one still has to be careful about
race conditions. For example, Systrace [6] takes special
care to address aliasing and atomicity.

Efficient user-level monitoring also however requires
a flexible mechanism to reduce the overhead of com-
munication and the number of context switches to the
user-level monitor, so this is more than what is done in
system call interposition. To further improve efficiency,
we provide specifications which can be checked more ef-
ficiently than a general purpose argument analysis as
in system call interposition.

Systems such as Janus and Systrace are intended
for sandboxing or confinement. For example, Systrace
uses a user-level policy daemon which implements the
confinement policy. Efficiency is obtained by imple-
menting some of the policy in the kernel and having
a timely mechanism to invoke the user-level daemon
for the other cases. Monitoring for auditing is different
from confinement in that confinement uses synchronous
events while auditing uses asynchronous events. Fur-
thermore for auditing, we want to efficiently monitor
large numbers of relevant events and have minimal sys-
tem impact on those events which are not relevant. The
scope of processes being monitored may be quite dif-
ferent. We can monitor a collection of processes which
do not form a proper subtree in the process hierar-
chy sense, whereas a sandbox monitors processes which
form a subtree. We also provide a choice between reli-
able monitoring (no events are missed) and unreliable
monitoring (some events are allowed to be missed).

Systems for instrumenting and tracing the kernel
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can also capture data similar to the ones which we are
interested in for auditing. In particular, the new Dy-
namic Tracing (DTrace) facility [1] in Solaris 10, has
been attracting much interest. DTrace allows almost
all aspects of the kernel to be instrumented, with 30,000
probes in the kernel. DTrace uses a scripting language,
D programs, which are run within the kernel to do mon-
itoring. DTrace is extremely powerful because they run
within the kernel and also because of the large num-
ber of instrumented probes. In-kernel also means that
DTrace can be efficient.1 To ensure safety of running in
the kernel, DTrace programs are restricted and checked
for safety. However, we believe that it is far safer to
run monitors in user mode.

As kernel tracing mechanisms are meant for debug-
ging and performance analysis, they differ from moni-
tors for auditing. For example, although DTrace does
integrate in privileges, it does not have the same secu-
rity concerns. As kernel tracing is meant to minimize
impact, DTrace does not provide reliable event mon-
itoring and can drop events. Another difference with
our framework is the auditing of file operations. Since
logging access to files is a very important for many
kinds of monitoring, we provide more powerful speci-
fications on directories and subtrees. The DTrace im-
plementation requires extensive changes to Solaris, in
the words of the developers, “it was a hell of a lot of
work – Bryan Cantrill, Solaris Kernel Development”.
We feel our approach is less of a massive change to the
kernel type solution, and hence simpler.

DTrace compiles D programs for a virtual machine
which is emulated in the kernel. An early work is [12]
which provides a high level kernel instrumentation tar-
geted mainly at the system call interface using a Wrap-
per Definition Language (WSL). WSL scripts are trans-
lated into C programs and compiled into loadable ker-
nel modules. Dynamic Probes (DProbes) [10] is similar
to DTrace but for Linux. It uses the KProbes mech-
anism to implant probes and probe handlers. Rather
than providing a high level language, probe handlers
are written for a RPN-based assembly like language.
SystemTap [11] is another Linux project which uses
KProbes as the underlying kernel instrumenting mech-
anism. It uses an awk-like scripting language similar
to D but uses the WSL approach of compiling into a
kernel module.

3. The Monitor Framework

A monitor is a user-space process which audits the
behavior of other processes. Monitors are described

1Our micro-benchmarks show that while DTrace has less im-
pact than proc, the overhead is still significant.

by two specifications: (a) a process specification defin-
ing which processes to monitor; and (b) event specifi-
cations which define what operations to monitor from
those processes. In what follows, we describe the design
of our monitoring framework and portions of the API.
The API is actually a user library which provides a
convenient interface to the kernel monitoring interface.
Due to lack of space, we cannot give all the underlying
details but rather illustrate by example.

3.1. The Monitor Process Specification

An arbitrary collection of processes, not necessarily
related by parent-child relationships can be designated
for mandatory monitoring. To allow for flexibility and
dynamic process creation (including children), we use
an API for constructing boolean expression in a func-
tional lisp-like style which allows easy creation in C.
The boolean expression is built from the following pred-
icates using the following usual boolean operators, AND,
OR and NOT:

1. true/false: For example, a global specification to
monitor all processes is simply the boolean expres-
sion true.

2. uid/euid/suid/fsuid (user id): These predicates
are true if and only if the user id of the process
is same as the user id specified. Similar predicates
are also used for group ids.

3. pid (process id): This predicate is true if and only
if the pid of the process is same as the pid spec-
ified. This is used to include or exclude existing
processes.

4. childof: This predicate is true if and only if the
process specified by the pid is an ancestor of the
current process. Note that we do not distinguish
direct child processes and grandchild processes - so
childof can specify a subtree in the process hierar-
chy. This can be used to include or exclude both
existing processes and processes which are not yet
created.

5. executable: This predicate is true when the exe-
cutable of the process is the same as the given
pathname. This can be used to include or exclude
both existing processes and processes which are
not yet created.

An example of the API (see also Section 3.4) is to mon-
itor all processes owned by the user Bob except for
process 1468 and its child processes.
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proc_spec = lbox_AND(

lbox_UID("bob"),

lbox_NOT(

lbox_CHILDOF(1468)));

Thus, the monitor can be targeted to observe only
the activities of particular processes of interest, ignor-
ing other processes. This helps to reduce monitoring
overhead.

3.2. The Event Specification List

An event specification defines which behaviors of the
monitored processes is of interest to the monitor. Sup-
pose a monitor event expression is S and event e hap-
pens. Then S is triggered when e is an object which
matches S and the operation is one which is compati-
ble with S. The notion of matching and compatibility
is specific to the type of object.

A monitor defines a list of all the events of interest.
The event specification also defines the appropriate in-
formation to return when an event is triggered. One
monitor might specify that a file event should consist
of the inode, canonical pathname and operation type.
Another monitor might only need the operation type,
perhaps because the file is unambiguous and known to
the monitor. This helps achieve scalability. In the pre-
vious example, it avoids the need for constructing a
canonical pathname and reduces the event size.

Our events are specified on system resources or ob-
jects together with their associated operations. We feel
this is more declarative than a system call approach
and makes it easier to specify the events of interest.
Due to lack of space, we will focus on file objects and
briefly mention other important system objects. Com-
mon information which can be specified for all types of
events are:

1. time: This gives the wall clock time of the event.

2. pid: This is the process which performs the oper-
ation.

3. type: The operation type which is specific to the
object.

All event specifications can specify whether the
event is asynchronous and can be buffered up, or if
it is synchronous and needs to be delivered directly to
the monitor. Synchronous events also flush any ear-
lier events which have been buffered. This is analogous
to the PUSH flag in the TCP packet and allows timely
delivery of important events to the monitor.

An event can also specify that reliable monitoring is
not needed — this means that the kernel can choose

to drop the event if the event buffer is currently full.
This would mean that the monitored processes do not
have to be suspended and thus higher throughput at
the cost of losing some events.
File Objects:
A file event specification consists of:

1. file pathname: The pathname is translated into
inode number and device number pair. For effi-
ciency, this pair is used internally by the kernel as
the identifier of the file.

2. inclusion flag: For directories, we can specify
whether we are monitoring the directory itself, or
all files in its subdirectories. For example, you can
specify that all files under /etc are included by
using the SELF+SUBDIRECTORIES flag. You
can specify that only the /etc directory itself is
included by using the SELF flag only.

Another flag, IGNORE, means that we are not
monitoring this directory and its subdirectories.
Thus IGNORE can be used for removing files in
the existing file definition. This is useful because
sometimes we want to audit file access outside
some directory. For example, we are interested in
the file access outside /var/www by the web server
process. We can combine two file event specifica-
tions to achieve this.

(a) (/, SELF|SUBDIRECTORIES, R|W|X)

(b) (/var/www, IGNORE, R|W|X)

The way multiple file specifications are treated is
that when more than one file event specifications
matches the file access, the more specific event
– the deeper file event specification takes prece-
dence.

3. operations: It specifies which operations
(read/write/execute) we are interested in.
For example, with a read operation, a file read ac-
cess event is generated when a process reads from
the file but not for write operations. Note that
the execute operation differs from the executable
predicate in the process specification as the latter
is used for process selection.

Operations on the file meta-data such as permis-
sions and access times can be monitored. The
same holds for directory operations such as file
creation, deletion or renaming.

When a file is removed (i.e. its reference count be-
comes 0), all the corresponding file event specification
are also removed. This implies that the number of
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event specifications may decrease at run time. For ex-
ample, suppose initially a monitor has 4 file event spec-
ifications, later there may be only 2 file event specifica-
tions. Removing the file event specification is necessary
because an inode number is reusable (like a pid). When
a process A creates a monitor with a read-only spec-
ification on the file /tmp/a. Later, another process B
deletes file /tmp/a and creates another file /tmp/b which
may have the same inode number of previous /tmp/a.
If the corresponding file event specification is not re-
moved, the monitor would get an incorrect event.

File events can specify the following information to
be returned:

1. inode number and device number: This uniquely
identifies a file in Unix systems.

2. operation: This is the type of operation. For ex-
ample, read, execute or delete.

3. data: the data which is read or written — which
allows the monitoring of actual I/O.

4. canonical pathname: A file can have many pos-
sible (absolute) pathnames because of hard links,
symbolic links, the “..” component and different
mount points. We thus return a canonical path-
name not containing symbolic links with the same
semantics as realpath(3).

Other Objects:
Other than file objects, we can monitor events on
other important system objects such as sockets and
processes. Due to lack of space, we can only briefly
summarize them. Socket specifications allow the mon-
itoring of interprocess communication and networking.
Process objects allow monitoring of process operations
such as process creation, signals, setuid operations.

3.3. The Monitor Operational Model

In our framework, an auditing monitor is simply
a user-level process which is the user-level monitor.
It can be thought of as a logging box in an analogy
to a sandbox, hence we abbreviate this as lbox. The
lbox create(proc spec, event spec, n) is used to des-
ignate the current process to be the lbox monitor which
will receive the events generated from the processes de-
fined by proc spec which trigger the set of events de-
fined in event spec. One caveat is that we disallow
self-referential monitoring, see section 4.3.

In our framework, asynchronous events are stored
in a kernel buffer of size n defined at monitor creation
time. Asynchronous events can only be received by
the monitor when the buffer becomes full — this can

be thought of as flushing the buffered events. To en-
sure mandatory monitoring which guarantees that no
events are lost, when the monitor buffer is full, the pro-
cess generating the event is blocked until the monitor
has emptied the buffer. Processes which are blocked
because of the full buffer are also unblocked if the
lbox is deleted explicitly by the monitor, lbox delete(),
and also implicitly when the monitor terminates. Syn-
chronous events also cause the buffer to be flushed. The
monitor can also choose to disable and then re-enable
events from the event specification.

We provide a convenient API to read events one
at a time, lbox next event() which abstracts out the
low level details. This is simply a library function (in
an analogy to stdio) which actually reads an event
buffer up to size n which can contain one or more
events. lbox next event() behaves like a blocking read,
it blocks till either the kernel buffer has filled up and
can now be read in one go or if it is flushed. A time-
out can also be specified. Thus, assuming the default
of asynchronous events, there are only a small number
of context switches to the monitor which mostly sleeps
until there are sufficient number of events. Using of
synchronous and timeouts allows the monitor to have
finer control and more timely event delivery but with
more system overhead.

The monitor API described in this section is actually
a user-space library which uses the monitoring kernel
extension. Thus, this particular API is chosen to be
one which is reasonably easy to write specifications in
a declarative fashion in C. One could of course build
a different user-space library. Even nicer would be a
scripting language to make monitoring even easier, i.e.
even a D-like scripting language.

3.4. An Extended Example

Figure 1 illustrates how a monitor is written in our
system. For simplicity, we have used C-like pseudo
code to hide some details and have not given the com-
plete program. Error handling also has been omitted
for the most part.

In part 1, two events are to be monitored. Any ac-
cess to any files starting from the current working di-
rectory including its subdirectories (the SUBDIRECTORIES
flag is used to mean this directory including any file
with a path starting from here). We also monitor
whether bash is being executed.

Part 2 defines the process specification which de-
termines which processes are to be monitored by this
monitor. Here we want to monitor process given by
pid and all its children but not if it happens to be the
process inetd pid. Also monitor any processes which
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/* initialize context. It will open the /proc/lbox file descriptor */

lbox_open();

/* PART 1: create events spec: current directory and executable, and information to gather */

lbox_addevent_file(event_spec, ".", SELF|SUBDIRECTORIES,

F_R|F_W|F_X, I_INO|I_DEV|I_PID|I_ACC|I_PATH);

lbox_addevent_file(event_spec, "/bin/bash", SELF, F_X,

I_INO|I_DEV|I_PID|I_ACC|I_PATH);

/* PART 2: create a process specification */

pid = (get root pid of process tree from argv)

proc_spec =

lbox_OR(

lbox_AND( lbox_OR( lbox_PROC(pid), lbox_CHILDOF(pid)),

lbox_NOT(lbox_PROC(inetd_pid))),

lbox_PROC(lbox_EUIDNAME("apache"))

);

/* PART 3: now create the lbox */

lbox_create(proc_spec, event_spec, 4096);

/* PART 4: read and process events. */

for (;;) {

/* lbox_next_event takes a timeout value, -1 means to block forever */

event = lbox_next_event(-1);

switch (event->type) {

lbox_FILE_EVENT:

event_file = (struct lbox_event_file *)event;

printf("pid=%d, dev=%lu, ino=%lu, access=%d, path=%s\n",

event_file->pid, event_file->dev,

event_file->ino, event_file->access,

event_file->path);

}

}

Figure 1. A Simple Monitor

happen to have an effective user id which is the same as
the user name “apache”. It should be obvious that this
specification specifies some existing processes as well as
potential future processes which are to be monitored.

Part 3 creates a lbox with the process and event
specifications. A buffer of size 4096 is specified. Part
4, just collects matching events for processing by the
monitor.

4. Security and Monitor Interactions

We now turn to security considerations. Earlier
we have looked at mandatory and reliable (and non-
reliable) auditing. There are two other important se-
curity components in our framework.

4.1. Confidentiality Considerations

As we allow non-privileged users to run their own
lbox monitors, it is important to ensure system confi-

dentiality. We do not allow a non-root user to monitor
processes owned by other users. A corollary of this
constraint is that a non-root user u cannot monitor
a setuid (setgid) executable which is setuid (setgid) to
user w as long as the effective user (group) id w is differ-
ent from u. The dual to this is that a monitor process
belonging to w can monitor such a process from user u
when its effective userid is u. This allows monitors to
have separate privileges from the monitored processes.

In contrast, ptrace takes a different approach to
maintaining security. Setuid and setgid programs are
not allowed to be traced by ptrace. Thus, ptrace can-
not be used for monitoring while our mechanism can
still allow monitoring while maintaining confidentiality.

Consider a process p with original userid u is being
monitored in a lbox where the monitor has userid u.
Suppose p changes its effective userid to w, then confi-
dentiality prevents the events in p to be monitored. To
ensure mandatory monitoring, once p (or its children,
if the lbox contains the children) returns its userid back
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to u, the monitor can now receive monitored events.

4.2. The Lbox Policy Daemon

It may be the case that for non-root users, one would
like to impose further restrictions on monitoring. This
might be to disallow certain kinds of events from being
monitored or certain processes from being monitors. It
could limit monitor usage, e.g. a monitor quota. Mon-
itor creation policy can be policed by an lbox daemon
which is simply another user-space process. This is an
extension of the same philosophy of user-level moni-
tors but now for the construction of arbitrarily complex
monitor access policies.

When a process tries to create a lbox, the kernel
passes the lbox specification to the lbox daemon, and
at the same time suspending the process. The lbox
daemon then decides whether or not to allow or deny
the request. Furthermore, the lbox daemon is able to
modify the lbox specification. The suspended process
can then be woken up, if the lbox is successful, it now
becomes a lbox monitor with possibly a modified spec-
ification. The lbox daemon can also be turned off nor
does it need to be present, in which case, a default
policy is applied.

4.3. Cascading Monitors

It may be the case that one of the processes being
monitor is itself a monitor, we call this cascaded moni-
tors. Cascading auditing gives the maximum flexibility
to create collections of independent monitors as well as
an ecology of monitors. For example, the system ad-
ministrator can have a global monitor to audit any pro-
cesses (except itself) which tries to execute /sbin/su.
A user might run a monitor to log all writes from some
of his processes to a particular file.

A collection of monitors can be viewed as a directed
acyclic graph (DAG) where the edges represent the
monitoring relationship. Suppose that instead of a
DAG, we have a cycle, thus a circular monitoring chain.
The self-referencing monitoring will now lead to an ever
increasing cascading chain of monitored events which
will not terminate. For example, suppose monitors A
and B are watching each other, then event a1 triggers
monitor B which will generate event b1 for monitor
A which will trigger yet another event a2 and so on.
Thus, we require as a system safety condition no self-
referential monitoring. It is interesting to note that
DTrace does not prevent this, so for example, a D pro-
gram which traces all the write I/O will also monitor
the DTrace process itself. This appears to cause Solaris
to freeze in the kernel.

Rather than disallowing the creation of a monitor
which may lead to a cycle in the monitor DAG, we in-
stead remove the monitors which would otherwise cre-
ate a cycle from the process specification. This makes
sense since a new monitor may not wish to care about
monitors in the system. Furthermore, it can be easier
to write a process specification which is a little looser
than to write one which guarantees no cycles. For ex-
ample, global monitoring using the process specifica-
tion, TRUE, should strictly also exclude the monitor pid.

The following example shows a snapshot of a sys-
tem where a web server is running and user Alice is
using vim. The left part of Figure 2 shows the process
tree induced by the parent-child relationship while the
right shows the monitor DAG induced by the monitor-
ing relationship. The following sequence describes the
creation of the snapshot given in Figure 2:

1. The master web server process 4010 is created.

2. Process 4010 creates 3 worker processes: 4011,
4012, 4013.

3. The root user is logged in through ssh, creating
shell(14560).

4. Root first creates a global monitor 14940 to audit
file access on /etc/passwd for all processes (except
14940).

5. Root then creates a monitor 14941 to audit the
web server processes.

6. Alice logs in and a shell 15343 is created.

7. Alice creates a monitor 15349 to audit her
vim(15350) editor because she want to know which
files are accessed by vim(15350).

Here, two monitors 15349 and 15340 are monitoring
the vim(15350) process. Suppose the vim (15350) pro-
cess accesses the /etc/passwd file, two file events will
be generated to the two monitors, 15349 and 15340.
If vim (15350) accesses another file, then only monitor
15349 will receive the event.

5. Using Monitors

We now give some simple examples of using the
framework. These examples are only meant to exem-
plify the ease of creating a customized auditing monitor
and are not meant to be full blown applications.
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Figure 2. A Tree of Cascaded Monitors

5.1. Testing a possibly untrusted program

This example checks to see if a process is not steal-
ing your PGP keys. The monitor process first creates
the lbox and then a child process which executes the
program to be audited.

proc_spec = lbox_CHILDOF(getpid());

lbox_addevent_file(event_spec,

"/home/alice/.gnupg/secring.gpg",

SELF, F_R, I_ALL);

// .... create the lbox

if (fork()) {

// .... do the event processing

} else execl(....);

5.2. Monitoring the web server

In this example, we want to see whether the web
server is working correctly. More precisely, we want to
make sure it is only accessing files inside /var/www.

The process specification can be described as fol-
lows:

proc_spec = lbox_CHILDOF(apach_master_pid);

The event specification is an example of monitoring
files outside some directory. We first make all files to
be monitored, then we make all files under /var/www

not to be monitored. Note that the order of the two
specifications is not important.

lbox_add_event_file(&event_spec1, "/",

SELF|SUBDIRECTORIES, F_R|F_W, I_ALL);

lbox_add_event_file(&event_spec2,

"/var/www", IGNORE, F_R|F_W, I_ALL);

5.3. Global Monitoring

Sometimes you need to monitor all actions on a sin-
gle process; and other times you need to monitor a sin-
gle action on all processes. In this example, we want

to see if any process is sending packets to the network
137.132.0.0/255.255.0.0. The process specification is
simply,
proc_spec = lbox_TRUE();

The event specification is the following network event,
lbox_net_connect_ipv4(&event_spec,

"137.132.0.0/255.255.0.0");

5.4. Other Applications

LAFS [8] is a logging and auditing file system where
accesses not conforming to a policy are logged. The
policy specification includes a time interval, userid
specification, application and operation type. A LAFS-
like monitor could easily be written. Note that it is
harder to use DTrace to do this LAFS-style tracing be-
cause of its system call orientation. Here we can make
use of inheritance in the directory structure.

In [2] a monitoring application is described to report
when applications tasks did not run as they were sup-
posed to, e.g. due to some failure. Again, it is easy to
write a monitor which can detect whether tasks ran as
scheduled.

6. Experimental Evaluation

Our prototype Linux implementation makes use of
LSM [9] and version 2.6.10 of the kernel, and thus is
convenient to install as it consists of loadable kernel
modules. The interface to the kernel is done through
ioctl to a pseudo file system in /proc/lbox. The lbox
API library in Section 3 gives a more convenient inter-
face than using ioctl system calls directly. Due to lack
of space, we do not go into further details of the kernel
implementation. The PC used here is a Pentium IV
3.0GHz PC with 1G memory.

We want to demonstrate that the framework and
prototype system leads to rather efficient monitoring.
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Although our prototype is not yet fully optimized, the
results do show that the overheads of monitoring can
be very low.

We first use a simple micro-benchmark which gives
an indication of worse case overheads. The program
performs 1000000 open(2) and close(2) calls with a
monitor watching for the file access. We compare the
auditing framework in each of the following scenarios:

1. clean kernel: A clean stock kernel.

2. proc miss: The lbox module is loaded in the kernel
but no monitors are present.

3. file miss 1/2: A monitor is monitoring the file
open but on a different file specification. Thus
no event is generated. We compare two scenarios.
File miss 1, uses a directory specification without
the SUBDIRECTORIES property, thus no direc-
tory traversal is needed. File miss 2 has a file
specification which is some non-matching direc-
tory with the SUBDIRECTORIES set. This re-
quires traversing up ancestor directories up to the
root.

4. 0 dir level: The monitor is monitoring a regular
file. The benchmark is accessing the same regular
file.

5. 1/2 dir levels: The monitor is monitoring a di-
rectory which is 1 or 2 levels deep containing the
file which is opened. For example, the monitor
uses the file specification /1 with SUBDIRECTO-
RIES set. The 2 dir level benchmark opens the
file /1/2/foo. This test investigates the time for
directory traversal..

6. no buff: The file event is synchronous which
means 1000000 context switches to the monitor
are needed. The benchmark process suspends un-
til the monitor has read the event.

7. ptrace: The comparison is with strace which uses
the traditional ptrace mechanism in Linux.

The open micro-benchmark results are given in Ta-
ble 1 with all times in seconds. The average and stan-
dard deviation is given over 10 runs. As the timings
are only measured with the Unix user/system and real-
time mechanism, they are only approximate and are
meant to give an indication of the overheads of moni-
toring under the different scenarios.

The kernel inspection implementation (proc miss)
has negligible overhead (∼ 2%) over the clean kernel.
The file miss 2 test has (∼ 14%) overhead, this is be-
cause that the system needs to travel to the root di-
rectory to make sure the file is not monitored. The file

scenario real user sys

clean kernel 1.99 ± 0.01 0.21 ± 0.01 1.77 ± 0.02
proc miss 2.04 ± 0.02 0.21 ± 0.01 1.82 ± 0.03
file miss 1 2.17 ± 0.01 0.22 ± 0.01 1.95 ± 0.02
file miss 2 2.27 ± 0.01 0.22 ± 0.01 2.04 ± 0.02
1 dir level 2.29 ± 0.01 0.21 ± 0.01 2.03 ± 0.02
2 dir levels 2.52 ± 0.01 0.21 ± 0.01 2.23 ± 0.03
3 dir levels 2.56 ± 0.01 0.20 ± 0.02 2.31 ± 0.02
no buff 8.70 ± 0.04 0.99 ± 0.08 4.57 ± 0.16
ptrace 59.04 ± 0.15 12.90 ± 0.32 46.11 ± 0.39

Table 1. Open micro-benchmark

miss 1 scenario has a smaller overhead (∼ 9%) because
directory traversal is not needed. When monitoring is
synchronous, events are not buffered (no buff), over-
head jumps substantially to 337%. It is interesting to
note that this is still much smaller than ptrace which
has 2866% overhead or seven times slower than the no
buffering case. Using asynchronous events with buffer-
ing (0 dir level) drops the overhead to 15%.

One point of comparison with other systems on
Linux would be with Systrace [6]. A pure compari-
son is not valid since in our system any event which
must be monitored is eventually passed to the moni-
tor. Systrace on the other as it does access control first
can choose between a kernel-level policy or the user-
level policy daemon. The kernel-level policy should
entail less work for Systrace simply because the deci-
sion is handled only within the kernel, while the user-
level policy is more expensive simply due to the in-
creased number of context switches. The objectives of
the two systems are also different. With those caveats
in mind, the Systrace open micro-benchmark shows a
6.25% overhead over no monitoring. Our overhead for
file miss 1 is a little more at 9%. This makes sense
since for auditing, an event has to cross in two direc-
tions: first inwards when it is recorded; and later back
to user-space when it is sent to the monitor. Our im-
plementation is not yet optimized and we expect also
to be able to reduce the overheads further.

Our directory file specifications can be compared
against the pathname normalization of Systrace. The
“0-2 dir levels” scenario shows that the overhead of an
inherited file specification is small, the initial overhead
of checking a directory is reasonable at 26% and then
a rather small overhead for the next component. The
Systrace results show that each directory component in
their specification adds about 1665% additional over-
head over the original open() system call. This is be-
cause of the filename normalization done in user-space
which is significantly more expensive.

2The D program is “syscall::open:entry { @[execname] =
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scenario real user sys

direct run 3.84 ± 0.01 1.04 ± 0.01 2.80 ± 0.01

truss 100.32 ± 0.85 10.12 ± 0.05 56.71 ± 0.80

DTrace2 8.41 ± 0.02 1.08 ± 0.01 7.33 ± 0.01

Table 2. Open micro-benchmark on Solaris 10

Table 2 shows the test on Solaris for the same hard-
ware with the same benchmark program. While the
baseline for Solaris is slower than Linux, it is reason-
able to make relative comparisons. Truss which uses
the proc adds 2510% overhead to the open() system call
and DTrace is significantly more efficient with 119%
overhead. The use of proc allows only the open() sys-
tem call to be traced rather than all system calls. Even
so, we see that the overhead is considerably higher than
in Linux where ptrace traces every system call. In
the DTrace test, we have allowed DTrace more advan-
tage as the D program does not return any information
to user space, whereas in our system, all the relevant
open()’s are being returned to the user space monitor.
The absolute running time in the DTrace test is 3.67
times of that in our system. The overhead added to
the original system call in DTrace is 7.9 times of that
in our system. This is slightly surprising since DTrace
uses dynamic instrumentation (which is hardware de-
pendent) while we use a simpler static instrumentation
which is more expensive but portable. Perhaps it is
due to Linux having less overheads than Solaris.

The open micro-benchmark gives a measure of worst-
case overhead since the file is totally cached in memory
and in that case, the Linux open code is heavily opti-
mized. It is also useful to look at applications (macro-
benchmarks which do more than just system calls)
which may have moderate to moderately heavy system
call usage. Obviously, there is little point benchmark-
ing CPU bound applications which only have low sys-
tem call use. In the macro-benchmarks, we also look at
the cost of monitoring I/O (reading and writing), this
is meant to simulate a monitor which might want to
examine precisely what an application has done. We
have chosen three application benchmarks which are
realistic applications

• apache web server: this is chosen because web
server performance is important. For apache, we
measure the average number of requests served per
second using the apache ab benchmark and I/O
monitoring is for the HTTP requests (reading) and
HTTP responses (writing).

• make bash: this builds the bash shell.

count(); }”

• install mozilla: this installs mozilla. The Linux
and Solaris differ. The Linux one has a custom
install program while the Solaris version is simply
untar. This means the results are not comparable
except in a relative to each operating system alone.

The last two benchmarks, bash and mozilla, have
also been chosen because these applications have been
used in Alcatraz. For I/O monitoring, we have mon-
itored all the I/O from the application. The results
given in Table 3. The results for strace and truss are
only meant to illustrate the additional overhead of I/O
since both programs do re-process the data and thus
do have additional overhead but serves to bound the
cost of ptrace and proc. We see that in all cases, lbox
monitoring has very low overheads, below 2% with-
out I/O and less than 4% with complete I/O monitor-
ing of the applications. The mozilla install cannot be
directly compared since the actual install is different.
Even though these are macro-benchmarks, overhead for
ptrace without I/O is significant, at least 15%. With
I/O monitoring, the overhead shoots up. Alcatraz [5]
which uses ptrace has rather high overheads for their
system call interception, 43% for a make and 79% for
mozilla. Their isolation overhead which is a measure
of write I/O adds a further 20%. Our overheads are
much smaller (< 4%) but we don’t do isolation.

It is a little surprising that our user-level auditing
framework can out perform DTrace which is an in-
kernel tracing mechanism. This is very encouraging
since further optimizations are possible.

7. Conclusion

We show a user-level auditing framework suitable
for general purpose auditing and security monitoring.
We achieve transparent auditing at a fine-grained level
of applications while providing guarantees on the secu-
rity of the auditing process. We are careful to avoid
problems with privilege escalation and access to infor-
mation beyond the user’s privileges. Furthermore, we
avoid problems associated with denial of service which
can be caused by self-referential monitoring or tracing.

As our monitors are user-level, the auditing is ex-
pressed in terms of operations on operating system ob-
jects and resources. This makes it easy to write a cus-
tom monitor since the semantics is close to that of user
code rather than having to understand kernel internals.

A user-level monitor is desirable given it is more safe
than an in-kernel one. The question is whether a user-
level monitor is sufficiently efficient. Our framework is
designed so that the cost of monitoring is commensu-
rate with the amount of events and information needed.
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web server (request/sec) make bash (sec) install mozilla (sec)
Linux clean 8903.1 ± 21.8 34.3 ± 0.2 1.8 ± 0.1
lbox no I/O, file miss 8773.1 ± 19.4(1.5%) 34.4 ± 0.2(0.17%) 1.8 ± 0.0(0%)
lbox no I/O, file hit 8762.0 ± 25.6(1.6%) 34.4 ± 0.2(0.17%) 1.8 ± 0.0(0.56%)
lbox with I/O 8728.9 ± 18.4(2.0%) 34.4 ± 0.2(0.29%) 1.7 ± 0.1(3.9%)
strace no I/O 3577.6 ± 8.5(148.9%) 39.6 ± 0.1(15.3%) 2.2 ± 0.1(21.1%)
strace with I/O 1981.4 ± 6.9(349.3%) 100.7 ± 0.1(293.2%) 23.2 ± 0.1(1189.4%)
Solaris clean 6889.1 ± 42.6 43.8 ± 0.1 1.6 ± 0.1
DTrace no I/O 6776.2 ± 53.6(1.7%) 44.4 ± 0.1(1.4%) 1.6 ± 0.1(0%)
DTrace with I/O 6326.9 ± 52.4(8.9%) 44.5 ± 0.0(1.6%) 1.6 ± 0.0(0.6%)
truss no I/O 1382.0 ± 2.0(398.5%) 70.9 ± 0.0(61.8%) 7.7 ± 0.0(372.2%)
truss with I/O 1126.7 ± 4.4(511.5%) 74.6 ± 1.5(70.2%) 13.4 ± 0.13(724.7%)

Table 3. Macro-benchmarks

Our experiments are very encouraging showing that the
overhead is comparable to in-kernel mechanisms such
as DTrace.

Future work includes further system optimizations
to make the framework even more scalable and effi-
cient. We would like to increase the expressiveness of
the in-kernel mechanisms without incurring more cost
and also avoiding executing monitor code in the kernel.

References

[1] B.M. Cantrill, M.W. Shapiro and A.H. Leven-
thal, “Dynamic Instrumentation of Production
Systems”, USENIX Annual Technical Conference,
15–28, 2004.

[2] J. Finke, “Process Monitor: Detecting Events
That Didn’t Happen”, USENIX Large Installation
Systems Administration Conference, 2002. 145–
154, 2002.

[3] T. Garfinkel, “Traps and Pitfalls: Practical Prob-
lems in System Call Interposition Based Security
Tools”, Network and Distributed Systems Security
Symposium, 163–176, 2003.

[4] I. Goldberg, D. Wagner, R. Thomas, and E.
Brewer, “A Secure Environment for Untrusted
Helper Applications”, USENIX Security Sympo-
sium, 1–14, 1996.

[5] Z. Liang, V.N. Venkatakrishnan, and R. Sekar,
“Isolated Program Execution: An Application
Transparent Approach for Executing Untrusted
Programs”, Annual Computer Security Applica-
tions Conference, 182–191, 2003.

[6] N. Provos, “Improving Host Security with Sys-
tem Call Policies”, USENIX Security Symposium,
257–272, 2003.

[7] Sun Microsystems, “System Administration
Guide: Security Services”, part IV: Auditing and
Device Management.

[8] C. Wee, “LAFS: A Logging and Auditing File
System”, Annual Computer Security Applications
Conference, 231–240, 1995.

[9] C. Wright, C. Cowan, S. Smalley, J. Morris,
and G. Kroah-Hartman, “Linux Security Modules:
General Security Support for the Linux Kernel”,
USENIX Security Symposium, 17–31, 2002.

[10] S. Bhattacharya, “Dynamic Probes - Debugging
by Stealth”, Linux.Conf.Au, 2003.

[11] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J.
Keniston, B. Chen, “Locating System Problems
Using Dynamic Instrumentation”, Linux Sympo-
sium, vol. 2, 57–72, 2005.

[12] T. Fraser, L. Badger, M. Feldman, “Harden-
ing COTS Software with Generic Software Wrap-
pers”, IEEE Symposium on Security and Privacy,
2–16, 1999.

Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005) 
1063-9527/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


