
1

Chapter 3: The Efficiency
of
Algorithms

Invitation to Computer Science,

C++ Version, Third Edition

Additions by Shannon Steinfadt SP’05

Invitation to Computer Science, C++ Version, Third Edition 2

Objectives

In this chapter, you will learn about:

 Attributes of algorithms

 Measuring efficiency

 Analysis of algorithms

 When things get out of hand

Invitation to Computer Science, C++ Version, Third Edition 3

Introduction

 Desirable characteristics in an algorithm

 Correctness

 Ease of understanding

 Elegance

 Efficiency

Invitation to Computer Science, C++ Version, Third Edition 4

Attributes of Algorithms
 Correctness

 Does the algorithm solve the problem it is
designed for?

 Does the algorithm solve the problem correctly?

 First, make it correct!

 Ease of understanding

 How easy is it to understand or alter an algorithm?

 Important for program maintenance

Invitation to Computer Science, C++ Version, Third Edition 5

Attributes of Algorithms
(continued)
 Elegance

 How clever or sophisticated is an algorithm?

 Sometimes elegance and ease of understanding
work at cross-purposes

 Efficiency

 How much time and/or space does an algorithm
require when executed?

 Perhaps the most important desirable attribute

Invitation to Computer Science, C++ Version, Third Edition 6

Measuring Efficiency

 Analysis of algorithms

 Study of the efficiency of various algorithms

 Efficiency measured as function relating size of
input to time or space used

 For one input size, best case, worst case, and
average case behavior must be considered

 The Θ notation captures the order of magnitude
of the efficiency function

2

Invitation to Computer Science, C++ Version, Third Edition 7

Sequential Search

 Search for NAME among a list of n names

 Start at the beginning and compare NAME to
each entry until a match is found

Invitation to Computer Science, C++ Version, Third Edition 8

Figure 3.1
Sequential Search Algorithm

Invitation to Computer Science, C++ Version, Third Edition 9

Sequential Search (continued)

 Comparison of the NAME being searched for
against a name in the list

 Central unit of work

 Used for efficiency analysis

 For lists with n entries:

 Best case

 NAME is the first name in the list

 1 comparison

ν Θ(1)

Invitation to Computer Science, C++ Version, Third Edition 10

Sequential Search (continued)

 For lists with n entries:

 Worst case

 NAME is the last name in the list

 NAME is not in the list

 n comparisons

ν Θ(n)

 Average case

 Roughly n/2 comparisons

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 11

Sequential Search (continued)

 Space efficiency

 Uses essentially no more memory storage than
original input requires

 Very space-efficient

Invitation to Computer Science, C++ Version, Third Edition 12

Order of Magnitude: Order n

 As n grows large, order of magnitude dominates
running time, minimizing effect of coefficients
and lower-order terms

 All functions that have a linear shape are
considered equivalent

 Order of magnitude n

 Written Θ(n)

 Functions vary as a constant times n

3

Invitation to Computer Science, C++ Version, Third Edition 13

Figure 3.4
Work = cn for Various Values of c

Invitation to Computer Science, C++ Version, Third Edition 14

Selection Sort
 Sorting

 Take a sequence of n values and rearrange them
into order

 Selection sort algorithm

 Repeatedly searches for the largest value in a
section of the data

 Moves that value into its correct position in a sorted
section of the list

 Uses the Find Largest algorithm

Invitation to Computer Science, C++ Version, Third Edition 15

Figure 3.6
Selection Sort Algorithm

Invitation to Computer Science, C++ Version, Third Edition 16

Selection Sort (continued)

 Count comparisons of largest so far against
other values

 Find Largest, given m values, does m-1
comparisons

 Selection sort calls Find Largest n times,

 Each time with a smaller list of values

 Cost = n-1 + (n-2) + … + 2 + 1 = n(n-1)/2

Invitation to Computer Science, C++ Version, Third Edition 17

Selection Sort (continued)

 Time efficiency

 Comparisons: n(n-1)/2

 Exchanges: n (swapping largest into place)

 Overall: Θ(n2), best and worst cases

 Space efficiency

 Space for the input sequence, plus a constant
number of local variables

Invitation to Computer Science, C++ Version, Third Edition 18

Order of Magnitude –
Order n2

 All functions with highest-order term cn2 have
similar shape

 An algorithm that does cn2 work for any constant
c is order of magnitude n2, or Θ(n2)

4

Invitation to Computer Science, C++ Version, Third Edition 19

Order of Magnitude –
Order n2 (continued)

 Anything that is Θ(n2) will eventually have larger
values than anything that is Θ(n), no matter what
the constants are

 An algorithm that runs in time Θ((n) will
outperform one that runs in Θ(n2)

Invitation to Computer Science, C++ Version, Third Edition 20

Figure 3.10
Work = cn2 for Various Values of c

Invitation to Computer Science, C++ Version, Third Edition 21

Figure 3.11
A Comparison of n and n2

Invitation to Computer Science, C++ Version, Third Edition 22

Comparision of two extreme
O(n2) and O(n) algorithms

Algorithm A Algorithm B
n 0.0001n2 100n

1,000 100 100,000
10,000 10,000 1,000,000

100,000 1,000,000 10,000,000
1,000,000 100,000,000 100,000,000

10,000,000 10,000,000,000 1,000,000,000

Number of Work Units Required

Figure 3.13

Invitation to Computer Science, C++ Version, Third Edition 23

Analysis of Algorithms

 Multiple algorithms for one task may be
compared for efficiency and other desirable
attributes

 Data cleanup problem

 Search problem

 Pattern matching

Invitation to Computer Science, C++ Version, Third Edition 24

Data Cleanup Algorithms

 Given a collection of numbers, find and remove
all zeros

 Possible algorithms

 Shuffle-left

 Copy-over

 Converging-pointers

5

Invitation to Computer Science, C++ Version, Third Edition 25

The Shuffle-Left Algorithm

 Scan list from left to right

 When a zero is found, shift all values to its right
one slot to the left

Invitation to Computer Science, C++ Version, Third Edition 26

Figure 3.14
The Shuffle-Left Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition 27

The Shuffle-Left Algorithm
(continued)
 Time efficiency

 Count examinations of list values and shifts

 Best case
 No shifts, n examinations
ν Θ(n)

 Worst case
 Shift at each pass, n passes

 n2 shifts plus n examinations
ν Θ(n2)

Invitation to Computer Science, C++ Version, Third Edition 28

The Shuffle-Left Algorithm
(continued)
 Space efficiency

 n slots for n values, plus a few local variables

θ Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 29

The Copy-Over Algorithm

 Use a second list

 Copy over each nonzero element in turn

 Time efficiency

 Count examinations and copies

 Best case

 All zeros

 n examinations and 0 copies

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 30

Figure 3.15
The Copy-Over Algorithm for Data Cleanup

6

Invitation to Computer Science, C++ Version, Third Edition 31

The Copy-Over Algorithm
(continued)
 Time efficiency (continued)

 Worst case

 No zeros

 n examinations and n copies

ν Θ(n)

 Space efficiency

 2n slots for n values, plus a few extraneous
variables

Invitation to Computer Science, C++ Version, Third Edition 32

The Copy-Over Algorithm
(continued)
 Time/space tradeoff

 Algorithms that solve the same problem offer a
tradeoff:

 One algorithm uses more time and less memory

 Its alternative uses less time and more memory

Invitation to Computer Science, C++ Version, Third Edition 33

The Converging-Pointers
Algorithm
 Swap zero values from left with values from right

until pointers converge in the middle

 Time efficiency

 Count examinations and swaps

 Best case

 n examinations, no swaps

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 34

Figure 3.16
The Converging-Pointers Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition 35

The Converging-Pointers
Algorithm (continued)
 Time efficiency (continued)

 Worst case

 n examinations, n swaps

ν Θ(n)

 Space efficiency

 n slots for the values, plus a few extra variables

Invitation to Computer Science, C++ Version, Third Edition 36

Figure 3.17
Analysis of Three Data Cleanup Algorithms

7

Invitation to Computer Science, C++ Version, Third Edition 37

Binary Search

 Given ordered data,

 Search for NAME by comparing to middle element

 If not a match, restrict search to either lower or
upper half only

 Each pass eliminates half the data

Invitation to Computer Science, C++ Version, Third Edition 38

Figure 3.18
Binary Search Algorithm (list must be sorted)

Invitation to Computer Science, C++ Version, Third Edition 39

Binary Search (continued)

 Efficiency

 Best case

 1 comparison

ν Θ(1)

 Worst case

 lg n comparisons

 lg n: The number of times n may be divided by two
before reaching 1

ν Θ(lg n)

Invitation to Computer Science, C++ Version, Third Edition 40

Binary Search (continued)

 Tradeoff

 Sequential search

 Slower, but works on unordered data

 Binary search

 Faster (much faster), but data must be sorted first

Invitation to Computer Science, C++ Version, Third Edition 41

Figure 3.21
A Comparison of n and lg n

Invitation to Computer Science, C++ Version, Third Edition 42

Pattern Matching

 Analysis involves two measures of input size

 m: length of pattern string

 n: length of text string

 Unit of work

 Comparison of a pattern character with a text
character

8

Invitation to Computer Science, C++ Version, Third Edition 43

Pattern Matching (continued)

 Efficiency

 Best case

 Pattern does not match at all

 n - m + 1 comparisons

ν Θ(n)

 Worst case

 Pattern almost matches at each point

 (m -1)(n - m + 1) comparisons

ν Θ(m x n)

Invitation to Computer Science, C++ Version, Third Edition 44

Figure 3.22
Order-of-Magnitude Time Efficiency Summary

Invitation to Computer Science, C++ Version, Third Edition 45

When Things Get Out of Hand

 Polynomially bound algorithms

 Work done is no worse than a constant multiple of
n2

 Intractable algorithms

 Run in worse than polynomial time

 Examples

 Hamiltonian circuit

 Bin-packing

Invitation to Computer Science, C++ Version, Third Edition 46

When Things Get Out of Hand
(continued)
 Exponential algorithm

θ Θ(2n)

 More work than any polynomial in n

 Approximation algorithms

 Run in polynomial time but do not give optimal
solutions

Invitation to Computer Science, C++ Version, Third Edition 47

Figure 3.25
Comparisons of lg n, n, n2 , and 2n

Invitation to Computer Science, C++ Version, Third Edition 48

Figure 3.27
A Comparison of Four Orders of Magnitude

9

Invitation to Computer Science, C++ Version, Third Edition 49

Summary of Level 1

 Level 1 (Chapters 2 and 3) explored algorithms

 Chapter 2

 Pseudocode

 Sequential, conditional, and iterative operations

 Algorithmic solutions to three practical problems

 Chapter 3

 Desirable properties for algorithms

 Time and space efficiencies of a number of
algorithms

Invitation to Computer Science, C++ Version, Third Edition 50

Summary

 Desirable attributes in algorithms:

 Correctness

 Ease of understanding

 Elegance

 Efficiency

 Efficiency – an algorithm’s careful use of
resources – is extremely important

Invitation to Computer Science, C++ Version, Third Edition 51

Summary

 To compare the efficiency of two algorithms that
do the same task

 Consider the number of steps each algorithm
requires

 Efficiency focuses on order of magnitude

