Chapter 3: The Efficiency of Algorithms

Objectives

In this chapter, you will learn about:
- Attributes of algorithms
- Measuring efficiency
- Analysis of algorithms
- When things get out of hand

Introduction

- Desirable characteristics in an algorithm
 - Correctness
 - Ease of understanding
 - Elegance
 - Efficiency

Attributes of Algorithms

- Correctness
 - Does the algorithm solve the problem it is designed for?
 - Does the algorithm solve the problem correctly?
 - First, make it correct!
- Ease of understanding
 - How easy is it to understand or alter an algorithm?
 - Important for program maintenance

Attributes of Algorithms (continued)

- Elegance
 - How clever or sophisticated is an algorithm?
 - Sometimes elegance and ease of understanding work at cross-purposes
- Efficiency
 - How much time and/or space does an algorithm require when executed?
 - Perhaps the most important desirable attribute

Measuring Efficiency

- Analysis of algorithms
 - Study of the efficiency of various algorithms
- Efficiency measured as function relating size of input to time or space used
 - For one input size, best case, worst case, and average case behavior must be considered
 - The Θ notation captures the order of magnitude of the efficiency function
Sequential Search

- Search for NAME among a list of n names
- Start at the beginning and compare NAME to each entry until a match is found

Sequential Search (continued)

- Comparison of the NAME being searched for against a name in the list
 - Central unit of work
 - Used for efficiency analysis
- For lists with n entries:
 - Best case
 - NAME is the first name in the list
 - 1 comparison
 - \(\Theta(1) \)

Sequential Search (continued)

- Space efficiency
 - Uses essentially no more memory storage than original input requires
 - Very space-efficient

Order of Magnitude: Order \(n \)

- As \(n \) grows large, order of magnitude dominates running time, minimizing effect of coefficients and lower-order terms
- All functions that have a linear shape are considered equivalent
- Order of magnitude \(n \)
 - Written \(\Theta(n) \)
 - Functions vary as a constant times \(n \)
Selection Sort

- Sorting
 - Take a sequence of n values and rearrange them into order
- Selection sort algorithm
 - Repeatedly searches for the largest value in a section of the data
 - Moves that value into its correct position in a sorted section of the list
 - Uses the Find Largest algorithm

Selection Sort (continued)

- Count comparisons of largest so far against other values
- Find Largest, given m values, does m-1 comparisons
- Selection sort calls Find Largest n times,
 - Each time with a smaller list of values
 - Cost = n-1 + (n-2) + … + 2 + 1 = n(n-1)/2

Order of Magnitude – Order n^2

- All functions with highest-order term cn^2 have similar shape
- An algorithm that does cn^2 work for any constant c is order of magnitude n^2, or $\Theta(n^2)$
Order of Magnitude – Order n^2 (continued)

- Anything that is $\Theta(n^2)$ will eventually have larger values than anything that is $\Theta(n)$, no matter what the constants are.

- An algorithm that runs in time $\Theta(n)$ will outperform one that runs in $\Theta(n^2)$.

Comparison of two extreme $O(n^2)$ and $O(n)$ algorithms

<table>
<thead>
<tr>
<th>n</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>100</td>
<td>100,000</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>100,000</td>
<td>1,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>10,000,000</td>
<td>100,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000,000</td>
<td>1,000,000,000</td>
</tr>
</tbody>
</table>

Figure 3.10: Work = cn^2 for Various Values of c

Figure 3.11: A Comparison of n and n^2

Analysis of Algorithms

- Multiple algorithms for one task may be compared for efficiency and other desirable attributes.

- Data cleanup problem

- Search problem

- Pattern matching

Data Cleanup Algorithms

- Given a collection of numbers, find and remove all zeros

- Possible algorithms
 - Shuffle-left
 - Copy-over
 - Converging-pointers
The Shuffle-Left Algorithm

- Scan list from left to right
 - When a zero is found, shift all values to its right one slot to the left

Time efficiency
- Count examinations of list values and shifts
- Best case
 - No shifts, \(n \) examinations
 - \(\Theta(n) \)
- Worst case
 - Shift at each pass, \(n \) passes
 - \(n^2 \) shifts plus \(n \) examinations
 - \(\Theta(n^2) \)

Space efficiency
- \(n \) slots for \(n \) values, plus a few local variables
 - \(\Theta(n) \)

The Copy-Over Algorithm

- Use a second list
 - Copy over each nonzero element in turn
- Time efficiency
 - Count examinations and copies
 - Best case
 - All zeros
 - \(n \) examinations and 0 copies
 - \(\Theta(n) \)

```
1. Get values for \( n \) and the \( n \) data items
2. Set the value of left to 1
3. Set the value of right to 2
4. While left is less than or equal to right do steps 5 through 9
5. If the item at position left is not 0 then do steps 6 through 8
6. Copy the item at position left into position right in new list
7. Increase left by 1
8. Increase right by 1
9. Else the item at position left is 0 increase left by 1
10. Stop
```

Figure 3.14
The Shuffle-Left Algorithm for Data Cleanup

Figure 3.15
The Copy-Over Algorithm for Data Cleanup
The Copy-Over Algorithm (continued)

- Time efficiency (continued)
 - Worst case
 - No zeros
 - \(n \) examinations and \(n \) copies
 - \(\Theta(n) \)
 - \(2n \) slots for \(n \) values, plus a few extraneous variables

- Time/space tradeoff
 - Algorithms that solve the same problem offer a tradeoff:
 - One algorithm uses more time and less memory
 - Its alternative uses less time and more memory

The Converging-Pointers Algorithm

- Swap zero values from left with values from right until pointers converge in the middle

- Time efficiency
 - Count examinations and swaps
 - Best case
 - \(n \) examinations, no swaps
 - \(\Theta(n) \)

- Space efficiency
 - \(n \) slots for the values, plus a few extra variables

The Converging-Pointers Algorithm (continued)

- Time efficiency (continued)
 - Worst case
 - \(n \) examinations, \(n \) swaps
 - \(\Theta(n) \)

- Space efficiency
 - \(n \) slots for the values, plus a few extra variables

Figure 3.16
The Converging-Pointers Algorithm for Data Cleanup

1. Get values for \(n \) and the \(n \) data items
2. Set the value of left to \(n \)
3. Set the value of right to 1
4. Set the value of right to \(n \)
5. While \(\text{left} \) is less than \(\text{right} \): steps 6 through 10
6. If the item at position \(\text{left} \) is not 0 then increase \(\text{left} \) by 1
7. Else (the item at position \(\text{left} \) is 0): do steps 8 through 10
8. Reduce \(\text{right} \) by 1
9. Copy the item at position \(\text{right} \) into position \(\text{left} \)
10. Reduce \(\text{right} \) by 1
11. If the item at position \(\text{left} \) is 0, then reduce \(\text{right} \) by 1
12. Stop

Figure 3.17
Analysis of Three Data Cleanup Algorithms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Best case</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Worst case</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n))</td>
<td>(2n)</td>
</tr>
<tr>
<td>Average case</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n))</td>
<td>(n/2 < x < 2n) (\Theta(n))</td>
</tr>
</tbody>
</table>
Binary Search

- Given ordered data,
 - Search for NAME by comparing to middle element
 - If not a match, restrict search to either lower or upper half only
 - Each pass eliminates half the data

Binary Search (continued)

- Efficiency
 - Best case
 - 1 comparison
 - \(\Theta(1) \)
 - Worst case
 - \(\log n \) comparisons
 - \(\log n \): The number of times \(n \) may be divided by two before reaching 1
 - \(\Theta(\log n) \)

Binary Search (continued)

- Tradeoff
 - Sequential search
 - Slower, but works on unordered data
 - Binary search
 - Faster (much faster), but data must be sorted first

Pattern Matching

- Analysis involves two measures of input size
 - \(m \): length of pattern string
 - \(n \): length of text string

- Unit of work
 - Comparison of a pattern character with a text character
Pattern Matching (continued)

- Efficiency
 - Best case
 - Pattern does not match at all
 - \(n - m + 1 \) comparisons
 - \(\Theta(n) \)
 - Worst case
 - Pattern almost matches at each point
 - \((m-1)(n-m+1) \) comparisons
 - \(\Theta(m \times n) \)

When Things Get Out of Hand

- Polynomially bound algorithms
 - Work done is no worse than a constant multiple of \(n^2 \)
- Intractable algorithms
 - Run in worse than polynomial time
 - Examples
 - Hamiltonian circuit
 - Bin-packing

When Things Get Out of Hand (continued)

- Exponential algorithm
 - \(\Theta(2^n) \)
 - More work than any polynomial in \(n \)
- Approximation algorithms
 - Run in polynomial time but do not give optimal solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Average Case</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Average Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Sorting</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Data</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>cleanup</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Pattern</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Average Case</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Average Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searching</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Sorting</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Data</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>cleanup</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Pattern</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>
Summary of Level 1

- Level 1 (Chapters 2 and 3) explored algorithms
 - Chapter 2
 - Pseudocode
 - Sequential, conditional, and iterative operations
 - Algorithmic solutions to three practical problems
 - Chapter 3
 - Desirable properties for algorithms
 - Time and space efficiencies of a number of algorithms

Summary

- Desirable attributes in algorithms:
 - Correctness
 - Ease of understanding
 - Elegance
 - Efficiency
- Efficiency – an algorithm’s careful use of resources – is extremely important

Summary

- To compare the efficiency of two algorithms that do the same task
 - Consider the number of steps each algorithm requires
- Efficiency focuses on order of magnitude