Chapter 3: The Efficiency
of
Algorithms

Invitation to Computer Science,
C++ Version, Third Edition
Additions by Shannon Steinfadt SP’05

Objectives

In this chapter, you will learn about:
Attributes of algorithms
Measuring efficiency
Analysis of algorithms

When things get out of hand

Invitation to Computer Science, C++ Version, Third Edition 2

Introduction

Desirable characteristics in an algorithm
o Correctness

o Ease of understanding

o Elegance

o Efficiency

Invitation to Computer Science, C++ Version, Third Edition

Attributes of Algorithms

Correctness

o Does the algorithm solve the problem it is
designed for?

o Does the algorithm solve the problem correctly?

First, make it correct!
Ease of understanding
o How easy is it to understand or alter an algorithm?

o Important for program maintenance

Invitation to Computer Science, C++ Version, Third Edition 4

Attributes of Algorithms
(continued)

Elegance
o How clever or sophisticated is an algorithm?

o Sometimes elegance and ease of understanding
work at cross-purposes

Efficiency

o How much time and/or space does an algorithm
require when executed?

o Perhaps the most important desirable attribute

Invitation to Computer Science, C++ Version, Third Edition

Measuring Efficiency

Analysis of algorithms
o Study of the efficiency of various algorithms

Efficiency measured as function relating size of
input to time or space used

For one input size, best case, worst case, and
average case behavior must be considered

The O notation captures the order of magnitude
of the efficiency function

Invitation to Computer Science, C++ Version, Third Edition 6

Sequential Search

Search for NAME among a list of n names

Start at the beginning and compare NAME to
each entry until a match is found

Invitation to Computer Science, C++ Version, Third Edition 7

1. Get values for NAME, n, N,,.... ,N"and T1,. ..,Tn

2. Setthe value of ito 1 and set the value of Found to NO

3. While (Found = NO) and (i < n) do steps 4 through 7

4. |t NAME is equal to the ith name on the list, N, then

5. Printthe telephone number of that person, T,

6. Setthe value of Foundto YES

Else (NAME is not equal to N)

7. Add1tothevalue of i

8. If (Found = NO) then

9, Print the message ‘Sorry, this name is not in the directory
10. Stop

Figure 3.1
Sequential Search Algorithm

Invitation to Computer Science, C++ Version, Third Edition 8

Sequential Search (continued)

Comparison of the NAME being searched for
against a name in the list

o Central unit of work
o Used for efficiency analysis
For lists with n entries:
o Best case
NAME is the first name in the list

1 comparison
(1)

Invitation to Computer Science, C++ Version, Third Edition 9

Sequential Search (continued)

For lists with n entries:
o Worst case
NAME is the last name in the list
NAME is not in the list
n comparisons
o(n)
o Average case
Roughly n/2 comparisons
o(n)

Invitation to Computer Science, C++ Version, Third Edition 10

Sequential Search (continued)

Space efficiency

o Uses essentially no more memory storage than
original input requires

o Very space-efficient

Invitation to Computer Science, C++ Version, Third Edition 1

Order of Magnitude: Order n

As n grows large, order of magnitude dominates
running time, minimizing effect of coefficients
and lower-order terms

All functions that have a linear shape are
considered equivalent

Order of magnitude n
o Written ©(n)

o Functions vary as a constant times n

Invitation to Computer Science, C++ Version, Third Edition 12

=2

5| c=1

a4
5 c=1/2
A

(1.2)

2 (2,2)

' 2,1)

o . n

o 1 2 3 4 5 6
Figure 3.4

Work = cn for Various Values of ¢

Invitation to Computer Science, C++ Version, Third Edition 13

Selection Sort

Sorting

o Take a sequence of n values and rearrange them
into order

Selection sort algorithm

o Repeatedly searches for the largest value in a
section of the data

Moves that value into its correct position in a sorted
section of the list

o Uses the Find Largest algorithm

Invitation to Computer Science, C++ Version, Third Edition 14

1. Get values for n and the n ist items

2. Setthe marker for the unsorted section at the end of the list

3. While the sorted section of the listis not empty, do steps 4 through 6

4. Select the largest number in the unsorted section of the ist

5. Exchange this number with the lastnumber in the unsored section of the list
6. Move the marker for the unsorted section left one position

7. Stop

Figure 3.6
Selection Sort Algorithm

Invitation to Computer Science, C++ Version, Third Edition 15

Selection Sort (continued)

Count comparisons of largest so far against
other values

Find Largest, given m values, does m-1
comparisons

Selection sort calls Find Largest n times,
o Each time with a smaller list of values

o Cost=n-1+(n-2)+...+2+1=n(n-1)/2

Invitation to Computer Science, C++ Version, Third Edition 16

Selection Sort (continued)

Time efficiency

o Comparisons: n(n-1)/2

o Exchanges: n (swapping largest into place)
o Overall: ©(n?), best and worst cases
Space efficiency

o Space for the input sequence, plus a constant
number of local variables

Invitation to Computer Science, C++ Version, Third Edition 17

Order of Magnitude —
Order n?

All functions with highest-order term cn2 have
similar shape

An algorithm that does c¢n? work for any constant
¢ is order of magnitude n2, or ©(n?)

Invitation to Computer Science, C++ Version, Third Edition 18

Order of Magnitude —
Order n? (continued)

Anything that is ®(n2) will eventually have larger
values than anything that is ®(n), no matter what
the constants are

An algorithm that runs in time ©((n) will
outperform one that runs in ®(n?)

Invitation to Computer Science, C++ Version, Third Edition 19

e=2
o

=5 c=1/2

4]
% 5] (2,4)
S
£ _ |02
£ 2 (2,2)

14

0 T T T T T T f

Figure 3.10
Work = cn? for Various Values of ¢

Invitation to Computer Science, C++ Version, Third Edition 20

2
5+ 4 n
4
+ 3
o
= 5
14
0 T T T T T T N
[0] 1 2 3 4 <) 6
Figure 3.11

A Comparison of n and n2

Invitation to Computer Science, C++ Version, Third Edition 21

Comparision of two extreme
O(n?) and O(n) algorithms

Number of Work Units Required
Algorithm A Algorithm B
n 0.0001n? 100n
1,000 100 100,000
10,000 10,000 1,000,000
100,000 1,000,000 10,000,000
1,000,000 100,000,000 100,000,000
10,000,000| 10,000,000,000 1,000,000,000
Figure 3.13

Invitation to Computer Science, C++ Version, Third Edition 22

Analysis of Algorithms

Multiple algorithms for one task may be
compared for efficiency and other desirable
attributes

Data cleanup problem

Search problem

Pattern matching

Invitation to Computer Science, C++ Version, Third Edition 23

Data Cleanup Algorithms

Given a collection of numbers, find and remove
all zeros

Possible algorithms
o Shuffle-left
o Copy-over

o Converging-pointers

Invitation to Computer Science, C++ Version, Third Edition 24

The Shuffle-Left Algorithm
Scan list from left to right

o When a zero is found, shift all values to its right
one slot to the left

Invitation to Computer Science, C++ Version, Third Edition

25

1. Get values for n and the n data items

2. Setthe value of fegitto n

3. Setthe value of feftto 1

4. Setthe value of rightto 2

5. While feftis less than or equal to lagit do steps 6 through 14
6. Ifthe item at position feftis not O then do steps 7 and 8

7. Increase Jeftby 1

8, Increase rightby 1

9. Else (the item at position /eft is 0) do steps 10 through 14
10. Reduce /agit by 1
11, While rightis less than or equal to n do steps 12 and 13

12. Copy the item at position rightinto position (right — 1)
13. Increase rightby 1
14, Setthe value of rightto (feft + 1)
15, Stop
Figure 3.14

The Shuffle-Left Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition

The Shuffle-Left Algorithm
(continued)

Time efficiency
o Count examinations of list values and shifts
o Best case
No shifts, n examinations
o(n)
o Worst case
Shift at each pass, n passes
n? shifts plus n examinations
0(n?2)

Invitation to Computer Science, C++ Version, Third Edition

27

The Shuffle-Left Algorithm
(continued)

Space efficiency
o n slots for n values, plus a few local variables

0 ®(n)

Invitation to Computer Science, C++ Version, Third Edition

The Copy-Over Algorithm

Use a second list
o Copy over each nonzero element in turn
Time efficiency
o Count examinations and copies
o Best case
All zeros
n examinations and 0 copies

6(n)

Invitation to Computer Science, C++ Version, Third Edition

29

1. Get values for nand the n data items

2. Set the value of feftto 1

3. Set the value of newposition to 1

4. While leftis less than or equal to n do steps 5 through 9

5, Ifthe item at position feftis not 0 then do steps 6 through 8

6. Copy the item at position feftinto position newposition in new list
7. Increase feftby 1

8. Increase newposition by 1

9. Else (the item at position /eftis 0) increase left by 1

0.

10. Stop

Figure 3.15
The Copy-Over Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition

The Copy-Over Algorithm
(continued)

Time efficiency (continued)
o Worst case
No zeros
n examinations and n copies
o(n)
Space efficiency

o 2n slots for n values, plus a few extraneous
variables

Invitation to Computer Science, C++ Version, Third Edition 31

The Copy-Over Algorithm
(continued)

Time/space tradeoff

o Algorithms that solve the same problem offer a
tradeoff:

One algorithm uses more time and less memory

Its alternative uses less time and more memory

Invitation to Computer Science, C++ Version, Third Edition 32

The Converging-Pointers
Algorithm

Swap zero values from left with values from right
until pointers converge in the middle

Time efficiency
o Count examinations and swaps
o Best case

n examinations, no swaps

O(n)

Invitation to Computer Science, C++ Version, Third Edition 33

Get values for nand the n data items
Set the value of legitto n
Set the value of leftto 1
Set the value of rightto n
While leftis less than right do steps 6 through 10
If the item at position feftis not 0 then increase left by 1
Else (the item at position /eftis 0) do steps 8 through 10
Reduce Jegit by 1
Copy the item at position rightinto position feft
10. Reduce rightby 1
11. If the item at position Jeftis 0, then reduce Jegit by 1
12. Stop

[l B

©

Figure 3.16
The Converging-Pointers Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition 34

The Converging-Pointers
Algorithm (continued)
Time efficiency (continued)
o Worst case
n examinations, n swaps
6(n)
Space efficiency

o n slots for the values, plus a few extra variables

Invitation to Computer Science, C++ Version, Third Edition 35

| 1. SHUFFLE-LEFT | 2. CoPY-OVER |3. CONVERGING-POINTERS

Time | Space | Time Space Time Space

Best case o(n) n @(n) n A(n) n

Worst case () n O(n) 2n o(n) n

Average case | O(rF) n O |n=x=2n| 6(n) n
Figure 3.17

Analysis of Three Data Cleanup Algorithms

Invitation to Computer Science, C++ Version, Third Edition 36

Binary Search

Given ordered data,
o Search for NAME by comparing to middle element

o If not a match, restrict search to either lower or
upper half only

o Each pass eliminates half the data

Invitation to Computer Science, C++ Version, Third Edition 37

Get values for NAME, n, N,, ..., N and T, ..., T,
Set the value of beginning to 1 and set the value of Found to NO
Set the value of end'to n
While Found = NO and end is less than beginning do steps 5 through 10
Set the value of mto the middle value between beginning and end
If NAME is equal to N, the name found at the midpoint between beginning
and end, then do steps 7 and 8
Print the telephone number of that person, T,
Set the value of Found'to YES
Else if NAME precedes N, alphabetically, then set end = m — 1
Else (NAME follows N, alphabetically) set beginning = m + 1
If (Found = NO) then print the message ‘| am sorry but that name is not in the
directory’
12. Stop

I SN

230 o~

Figure 3.18
Binary Search Algorithm (list must be sorted)

Invitation to Computer Science, C++ Version, Third Edition

Binary Search (continued)

Efficiency

o Best case
1 comparison
(1)

o Worst case

Ig n comparisons

o Ig n: The number of times n may be divided by two
before reaching 1

O(lg n)

Invitation to Computer Science, C++ Version, Third Edition 39

Binary Search (continued)

Tradeoff

o Sequential search

Slower, but works on unordered data

o Binary search

Faster (much faster), but data must be sorted first

Invitation to Computer Science, C++ Version, Third Edition

©
~
M;
w_
o
"
W
"
o

Figure 3.21
A Comparison of nand Ig n

Invitation to Computer Science, C++ Version, Third Edition 41

Pattern Matching

Analysis involves two measures of input size
o m: length of pattern string

o n: length of text string

Unit of work

o Comparison of a pattern character with a text
character

Invitation to Computer Science, C++ Version, Third Edition

Pattern Matching (continued)

Efficiency
o Best case
Pattern does not match at all
n-m + 1 comparisons
o(n)
o Worst case
Pattern almost matches at each point
(m -1)(n - m + 1) comparisons
O(m xn)

Invitation to Computer Science, C++ Version, Third Edition 43

ProzLEM Unit or WoRk ALGORITEN Best Case | WonsT CasE | AVERAGE CASE
Searching | Comparisons Sequential
search 1 e(n) o(n)
Binary search 1 6(lg n) O(lg n)
Sorting Comparisons Selection
and exchanges sort 0(n?) 0P a(m?)
Data Examinations Shuffle-left a(r) O(?) Q(r?)
cleanup and copies Copy-over A(n) (n) o(n)
Converging- O(n) a(n) O(n)
pointers
Pattern Character Forward A(n) O(mx n)
matching | comparisons march
Figure 3.22

Order-of-Magnitude Time Efficiency Summary

Invitation to Computer Science, C++ Version, Third Edition 44

When Things Get Out of Hand

Polynomially bound algorithms

o Work done is no worse than a constant multiple of
n2

Intractable algorithms
o Run in worse than polynomial time
o Examples

Hamiltonian circuit

When Things Get Out of Hand
(continued)

Exponential algorithm

0 ©(2")

o More work than any polynomial in n
Approximation algorithms

o Run in polynomial time but do not give optimal

Bin-packing
Invitation to Computer Science, C++ Version, Third Edition 45
on
35 n2
30
25 —| n
b
5 20
=
15
10—
5 Ig n
o T T T n
. o 5 10 15
Figure 3.25
Comparisons of Ig n, n, n? , and 2"
Invitation to Computer Science, C++ Version, Third Edition a7

solutions
Invitation to Computer Science, C++ Version, Third Edition 46
n
ORoER \ 10 50 100 1,000
lgn | 0.0003sec 0.0006sec 0.0007 sec 0.001 sec
n 0.001 sec 0.005 sec 0.01 sec 0.1 sec
12 0.01sec 0.25 se¢ 188¢ 1.67 min

A 0.1024sec 3570years 4 x 10" centuries Too big to compute!!

Figure 3.27
A Comparison of Four Orders of Magnitude

Invitation to Computer Science, C++ Version, Third Edition 48

Summary of Level 1

Level 1 (Chapters 2 and 3) explored algorithms
o Chapter 2

Pseudocode

Sequential, conditional, and iterative operations

Algorithmic solutions to three practical problems
o Chapter 3

Desirable properties for algorithms

Time and space efficiencies of a number of
algorithms

Invitation to Computer Science, C++ Version, Third Edition 49

Summary

Desirable attributes in algorithms:
o Correctness

o Ease of understanding

o Elegance

o Efficiency

Efficiency — an algorithm’s careful use of
resources — is extremely important

Invitation to Computer Science, C++ Version, Third Edition

Summary

To compare the efficiency of two algorithms that
do the same task

o Consider the number of steps each algorithm
requires

Efficiency focuses on order of magnitude

Invitation to Computer Science, C++ Version, Third Edition 51

