
1

Chapter 3: The Efficiency
of
Algorithms

Invitation to Computer Science,

C++ Version, Third Edition

Additions by Shannon Steinfadt SP’05

Invitation to Computer Science, C++ Version, Third Edition 2

Objectives

In this chapter, you will learn about:

 Attributes of algorithms

 Measuring efficiency

 Analysis of algorithms

 When things get out of hand

Invitation to Computer Science, C++ Version, Third Edition 3

Introduction

 Desirable characteristics in an algorithm

 Correctness

 Ease of understanding

 Elegance

 Efficiency

Invitation to Computer Science, C++ Version, Third Edition 4

Attributes of Algorithms
 Correctness

 Does the algorithm solve the problem it is
designed for?

 Does the algorithm solve the problem correctly?

 First, make it correct!

 Ease of understanding

 How easy is it to understand or alter an algorithm?

 Important for program maintenance

Invitation to Computer Science, C++ Version, Third Edition 5

Attributes of Algorithms
(continued)
 Elegance

 How clever or sophisticated is an algorithm?

 Sometimes elegance and ease of understanding
work at cross-purposes

 Efficiency

 How much time and/or space does an algorithm
require when executed?

 Perhaps the most important desirable attribute

Invitation to Computer Science, C++ Version, Third Edition 6

Measuring Efficiency

 Analysis of algorithms

 Study of the efficiency of various algorithms

 Efficiency measured as function relating size of
input to time or space used

 For one input size, best case, worst case, and
average case behavior must be considered

 The Θ notation captures the order of magnitude
of the efficiency function

2

Invitation to Computer Science, C++ Version, Third Edition 7

Sequential Search

 Search for NAME among a list of n names

 Start at the beginning and compare NAME to
each entry until a match is found

Invitation to Computer Science, C++ Version, Third Edition 8

Figure 3.1
Sequential Search Algorithm

Invitation to Computer Science, C++ Version, Third Edition 9

Sequential Search (continued)

 Comparison of the NAME being searched for
against a name in the list

 Central unit of work

 Used for efficiency analysis

 For lists with n entries:

 Best case

 NAME is the first name in the list

 1 comparison

ν Θ(1)

Invitation to Computer Science, C++ Version, Third Edition 10

Sequential Search (continued)

 For lists with n entries:

 Worst case

 NAME is the last name in the list

 NAME is not in the list

 n comparisons

ν Θ(n)

 Average case

 Roughly n/2 comparisons

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 11

Sequential Search (continued)

 Space efficiency

 Uses essentially no more memory storage than
original input requires

 Very space-efficient

Invitation to Computer Science, C++ Version, Third Edition 12

Order of Magnitude: Order n

 As n grows large, order of magnitude dominates
running time, minimizing effect of coefficients
and lower-order terms

 All functions that have a linear shape are
considered equivalent

 Order of magnitude n

 Written Θ(n)

 Functions vary as a constant times n

3

Invitation to Computer Science, C++ Version, Third Edition 13

Figure 3.4
Work = cn for Various Values of c

Invitation to Computer Science, C++ Version, Third Edition 14

Selection Sort
 Sorting

 Take a sequence of n values and rearrange them
into order

 Selection sort algorithm

 Repeatedly searches for the largest value in a
section of the data

 Moves that value into its correct position in a sorted
section of the list

 Uses the Find Largest algorithm

Invitation to Computer Science, C++ Version, Third Edition 15

Figure 3.6
Selection Sort Algorithm

Invitation to Computer Science, C++ Version, Third Edition 16

Selection Sort (continued)

 Count comparisons of largest so far against
other values

 Find Largest, given m values, does m-1
comparisons

 Selection sort calls Find Largest n times,

 Each time with a smaller list of values

 Cost = n-1 + (n-2) + … + 2 + 1 = n(n-1)/2

Invitation to Computer Science, C++ Version, Third Edition 17

Selection Sort (continued)

 Time efficiency

 Comparisons: n(n-1)/2

 Exchanges: n (swapping largest into place)

 Overall: Θ(n2), best and worst cases

 Space efficiency

 Space for the input sequence, plus a constant
number of local variables

Invitation to Computer Science, C++ Version, Third Edition 18

Order of Magnitude –
Order n2

 All functions with highest-order term cn2 have
similar shape

 An algorithm that does cn2 work for any constant
c is order of magnitude n2, or Θ(n2)

4

Invitation to Computer Science, C++ Version, Third Edition 19

Order of Magnitude –
Order n2 (continued)

 Anything that is Θ(n2) will eventually have larger
values than anything that is Θ(n), no matter what
the constants are

 An algorithm that runs in time Θ((n) will
outperform one that runs in Θ(n2)

Invitation to Computer Science, C++ Version, Third Edition 20

Figure 3.10
Work = cn2 for Various Values of c

Invitation to Computer Science, C++ Version, Third Edition 21

Figure 3.11
A Comparison of n and n2

Invitation to Computer Science, C++ Version, Third Edition 22

Comparision of two extreme
O(n2) and O(n) algorithms

Algorithm A Algorithm B
n 0.0001n2 100n

1,000 100 100,000
10,000 10,000 1,000,000

100,000 1,000,000 10,000,000
1,000,000 100,000,000 100,000,000

10,000,000 10,000,000,000 1,000,000,000

Number of Work Units Required

Figure 3.13

Invitation to Computer Science, C++ Version, Third Edition 23

Analysis of Algorithms

 Multiple algorithms for one task may be
compared for efficiency and other desirable
attributes

 Data cleanup problem

 Search problem

 Pattern matching

Invitation to Computer Science, C++ Version, Third Edition 24

Data Cleanup Algorithms

 Given a collection of numbers, find and remove
all zeros

 Possible algorithms

 Shuffle-left

 Copy-over

 Converging-pointers

5

Invitation to Computer Science, C++ Version, Third Edition 25

The Shuffle-Left Algorithm

 Scan list from left to right

 When a zero is found, shift all values to its right
one slot to the left

Invitation to Computer Science, C++ Version, Third Edition 26

Figure 3.14
The Shuffle-Left Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition 27

The Shuffle-Left Algorithm
(continued)
 Time efficiency

 Count examinations of list values and shifts

 Best case
 No shifts, n examinations
ν Θ(n)

 Worst case
 Shift at each pass, n passes

 n2 shifts plus n examinations
ν Θ(n2)

Invitation to Computer Science, C++ Version, Third Edition 28

The Shuffle-Left Algorithm
(continued)
 Space efficiency

 n slots for n values, plus a few local variables

θ Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 29

The Copy-Over Algorithm

 Use a second list

 Copy over each nonzero element in turn

 Time efficiency

 Count examinations and copies

 Best case

 All zeros

 n examinations and 0 copies

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 30

Figure 3.15
The Copy-Over Algorithm for Data Cleanup

6

Invitation to Computer Science, C++ Version, Third Edition 31

The Copy-Over Algorithm
(continued)
 Time efficiency (continued)

 Worst case

 No zeros

 n examinations and n copies

ν Θ(n)

 Space efficiency

 2n slots for n values, plus a few extraneous
variables

Invitation to Computer Science, C++ Version, Third Edition 32

The Copy-Over Algorithm
(continued)
 Time/space tradeoff

 Algorithms that solve the same problem offer a
tradeoff:

 One algorithm uses more time and less memory

 Its alternative uses less time and more memory

Invitation to Computer Science, C++ Version, Third Edition 33

The Converging-Pointers
Algorithm
 Swap zero values from left with values from right

until pointers converge in the middle

 Time efficiency

 Count examinations and swaps

 Best case

 n examinations, no swaps

ν Θ(n)

Invitation to Computer Science, C++ Version, Third Edition 34

Figure 3.16
The Converging-Pointers Algorithm for Data Cleanup

Invitation to Computer Science, C++ Version, Third Edition 35

The Converging-Pointers
Algorithm (continued)
 Time efficiency (continued)

 Worst case

 n examinations, n swaps

ν Θ(n)

 Space efficiency

 n slots for the values, plus a few extra variables

Invitation to Computer Science, C++ Version, Third Edition 36

Figure 3.17
Analysis of Three Data Cleanup Algorithms

7

Invitation to Computer Science, C++ Version, Third Edition 37

Binary Search

 Given ordered data,

 Search for NAME by comparing to middle element

 If not a match, restrict search to either lower or
upper half only

 Each pass eliminates half the data

Invitation to Computer Science, C++ Version, Third Edition 38

Figure 3.18
Binary Search Algorithm (list must be sorted)

Invitation to Computer Science, C++ Version, Third Edition 39

Binary Search (continued)

 Efficiency

 Best case

 1 comparison

ν Θ(1)

 Worst case

 lg n comparisons

 lg n: The number of times n may be divided by two
before reaching 1

ν Θ(lg n)

Invitation to Computer Science, C++ Version, Third Edition 40

Binary Search (continued)

 Tradeoff

 Sequential search

 Slower, but works on unordered data

 Binary search

 Faster (much faster), but data must be sorted first

Invitation to Computer Science, C++ Version, Third Edition 41

Figure 3.21
A Comparison of n and lg n

Invitation to Computer Science, C++ Version, Third Edition 42

Pattern Matching

 Analysis involves two measures of input size

 m: length of pattern string

 n: length of text string

 Unit of work

 Comparison of a pattern character with a text
character

8

Invitation to Computer Science, C++ Version, Third Edition 43

Pattern Matching (continued)

 Efficiency

 Best case

 Pattern does not match at all

 n - m + 1 comparisons

ν Θ(n)

 Worst case

 Pattern almost matches at each point

 (m -1)(n - m + 1) comparisons

ν Θ(m x n)

Invitation to Computer Science, C++ Version, Third Edition 44

Figure 3.22
Order-of-Magnitude Time Efficiency Summary

Invitation to Computer Science, C++ Version, Third Edition 45

When Things Get Out of Hand

 Polynomially bound algorithms

 Work done is no worse than a constant multiple of
n2

 Intractable algorithms

 Run in worse than polynomial time

 Examples

 Hamiltonian circuit

 Bin-packing

Invitation to Computer Science, C++ Version, Third Edition 46

When Things Get Out of Hand
(continued)
 Exponential algorithm

θ Θ(2n)

 More work than any polynomial in n

 Approximation algorithms

 Run in polynomial time but do not give optimal
solutions

Invitation to Computer Science, C++ Version, Third Edition 47

Figure 3.25
Comparisons of lg n, n, n2 , and 2n

Invitation to Computer Science, C++ Version, Third Edition 48

Figure 3.27
A Comparison of Four Orders of Magnitude

9

Invitation to Computer Science, C++ Version, Third Edition 49

Summary of Level 1

 Level 1 (Chapters 2 and 3) explored algorithms

 Chapter 2

 Pseudocode

 Sequential, conditional, and iterative operations

 Algorithmic solutions to three practical problems

 Chapter 3

 Desirable properties for algorithms

 Time and space efficiencies of a number of
algorithms

Invitation to Computer Science, C++ Version, Third Edition 50

Summary

 Desirable attributes in algorithms:

 Correctness

 Ease of understanding

 Elegance

 Efficiency

 Efficiency – an algorithm’s careful use of
resources – is extremely important

Invitation to Computer Science, C++ Version, Third Edition 51

Summary

 To compare the efficiency of two algorithms that
do the same task

 Consider the number of steps each algorithm
requires

 Efficiency focuses on order of magnitude

