
1 Fall 2005, Lecture 04

Network Communication

! Systems communicate according to a

protocol — a set of rules that govern the

sequence, format, content, and meaning

of messages sent between the systems

! Connection-oriented communication

! Information delivered as a stream of
bytes, in correct order

! Connect, exchange data, release

! Connectionless communication

! Information delivered as a set of packets

! Packets may be delivered out of
sequence, must be reassembled

! May be reliable — data will reach
destination, otherwise sender will be
notified of an error

! May be unreliable — data may not reach
destination, sender never notified of errors

2 Fall 2005, Lecture 04

Protocol Layers

! Network communication is divided up

into seven layers

! Each layer deals with one particular
aspect of the communication

! Each layer uses a set of routines
provided by the layer below it

! Each layer ignores lower-level (and
higher-level) details and problems

! Each layer takes a message handed

down to it by a higher layer, adds some
header information, and passes the

message on to a lower layer

! Each layer has the illusion of peer-to-
peer communication

! Eventually the message reaches the
bottom layer, and get physically sent
across the network

3 Fall 2005, Lecture 04

ISO OSI 7-Layer Protocol

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

4 Fall 2005, Lecture 04

ISO OSI 7-Layer Protocol Summary

! Application layer — provides network

access to application programs

! Telnet, ftp, email, web browsers

! Presentation layer — provides freedom

from machine-dependent representations

! Session layer — provides

communication between processes,

error recovery

! Not required in connectionless commun.

! Example: Remote Procedure Call (RPC)

! Transport layer — reliably transfers
messages (broken into packets)

between hosts, error control for out-of-

sequence and missing packets

! Examples: TCP (connection-oriented),
UDP (connectionless)

5 Fall 2005, Lecture 04

ISO OSI 7-Layer Protocol Summary
(cont.)

! Network layer — provides switching and

routing needed to (1) establish,

maintain, and terminate switched

connections, and (2) transfer data

(packets) between end systems

! Examples: IP (connectionless), X.25
(connection-oriented)

! Data link layer — reliably transfers

packets (broken up into frames) over a

communication link, error / flow control

! Examples: Ethernet

! Physical layer —converts 1s and 0s into

electrical or optical signals, and

transmits frames of bits across a wire /

cable

! Examples: RS-232-C (serial
communication lines), X.21

6 Fall 2005, Lecture 04

TCP / IP Protocol

! Upper layers

! ftp — file transfer protocol

! Sends files from one system to another

under user command

! Handles both text and binary files

! Supports userids and passwords

! telnet — remote terminal protocol

! Lets a user at one terminal log onto a

remote host

! smtp — simple mail transfer protocol

! Transfers mail messages between hosts

! Handles mailing lists, forwarding, etc.

! Does not specify how mail messages are

created

! nsp — name server protocol

! Maps names into IP addresses

! A domain may be split into subdomains

! Name severs are usually replicated to

improve reliability

7 Fall 2005, Lecture 04

TCP / IP Protocol (cont.)

! Transport layer (messages & packets)

! TCP — Transmission Control Protocol

! Connection-oriented (3-way handshake)

! On transmit side, breaks message into

packets, assigns sequence numbers, and

and sends each packet in turn

– Sends to a particular IP address and port

– Flow control — doesn!t send more

packets than receiver is prepared to

receive

! On receive side, receives packets,

reassembles them into messages

– Computes a checksum for each packet

and compares it to checksum sent,

discards packet if checksums don!t agree

– Reorders out-of-order packets

! Reliable

– Packets must be acknowledged

– If sender doesn!t receive an

acknowledgment after a short period, it

retransmits that packet

! Congestion control — don!t overwhelm

the network
8 Fall 2005, Lecture 04

TCP / IP Protocol (cont.)

! Network layer (routing packets)

! IP — Internet Protocol

! Connectionless

! Unreliable

– Packets may be lost, duplicated, or

delivered out of order

! Forward packet from sender through

some number of gateways until it reaches

the final destination

– A gateway accepts a packet from one

network and forwards it to a host or

gateway on another network

! Destination has specific Internet address,

which is composed of two parts:

– network part — network the host is on

– address part — specific host on network

! Routing is dynamic — each gateway

chooses the next gateway to send the

packet to

– Gateways send each other information

about network congestion and gateways

which are down

9 Fall 2005, Lecture 04

TCP / IP Protocol (cont.)

! Data link / (packets & frames)

physical layers (1s and 0s)

! Ethernet

! Connectionless

! Unreliable

! Network is a bus

– Broadcast to anyone who cares to listen

! Transmission

– Carrier sense: listen before broadcasting,

defer until channel is clear, then broadcast

– Collision detection: listen while

broadcasting

» If two hosts transmit at same time

—collision — the data gets garbled

» Each jams network, then waits a

random (but increasing) amount of

time, and tries again

– This is called CSMA/CD (carrier sense

multiple access, with collision detection)

– Frames contain checksum

! Every Ethernet device (everywhere in the

world!) has a unique address

10 Fall 2005, Lecture 04

Contention

! Collision detection

! Before sending a message, listen to see
if another process is sending

! If one is, wait a random time and try again

! While transmitting, watch for collisions

! Token passing

! A unique message (a token)
continuously circulates through the
network

! To transmit, a host waits for a free token,

attaches its message to it, sent the token

status to busy, and sends it on

! Destination removes the message, sets

the token status to free, and sends it on

! Message slots

! A number of fixed-length message slots
circulate through the network

! Wait for an empty slot and fill it

11 Fall 2005, Lecture 04

Failure Handling in
Client / Sever Communication

! Potential failures:

! Loss of request

! Server never performs request

! Loss of response message

! Client doesn!t know server performed
request

! Server may die or become unreachable

! Did server perform request or not?

! 3-message reliable protocol:

! Client sends request; blocks

! Server sends reply; blocks

! Client unblocks, sends acknowledgment;
server unblocks

! 2-message protocol:

! Client sends request; blocks

! Server sends reply; client unblocks

12 Fall 2005, Lecture 04

Semantics in Presence of Failure
(Client Can!t Locate Server, Lost Request)

! Client can!t locate server

! Reasons: server down, new version of
server code

! Can!t just return error code always

! Raise an exception (if supported)

! Lost request

! Start timer after issuing request

! If time expires, send request again

! No problem if request was really lost

client server
request

client server

client server
request

client server
response

?

13 Fall 2005, Lecture 04

Semantics in Presence of Failure
(Lost Request (cont.))

! Lost / delayed reply

! OK to retransmit request only if remote
procedure is idempotent (calling it
multiple times is same as calling it once)

! If not idempotent, be more conservative:

client server
request

client server

client server
request

client server
response

?

client server

client server
ping?

client server
reply lost ! response

?

reply delayed ! working,
 later get response

14 Fall 2005, Lecture 04

Semantics in Presence of Failure
(Error Recovery — Sequence Numbers)

! More general solution: attach sequence
number to every request and reply

client server
request 17

client server

client server
request 17

client server
response 17

?

17

17

17

17

16

16

16

17

client server
request 17

client server

client server
request 17

client server
response 17

?

17

17

17

17

16

17

17

17

response 17

15 Fall 2005, Lecture 04

Semantics in Presence of Failure
(Server Crash)

! Possible scenarios
! Request arrives, server crashes

! Request arrives, request processed,
server crashes

! Request arrives, request processed,
reply sent, server crashes

! Desired response is different for each,
but neither client nor server knows what
it is

! Three (unattractive) alternatives:

! Client keeps trying until it gets a response

! Action carried out at least once

! Client gives up and reports failure

! Action carried out at most once (but
maybe not at all)

! Whatever…

! No guarantees at all… easy to implement!

! Ideal (unachievable)

! Action carried out exactly once

