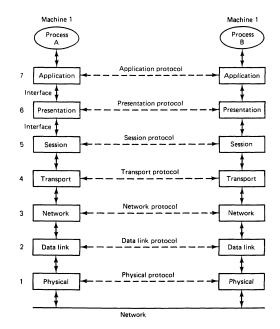
Network Communication

- Systems communicate according to a protocol — a set of rules that govern the sequence, format, content, and meaning of messages sent between the systems
- Connection-oriented communication
 - Information delivered as a stream of bytes, in correct order
 - Connect, exchange data, release
- Connectionless communication
 - Information delivered as a set of packets
 - Packets may be delivered out of sequence, must be reassembled
 - May be reliable data will reach destination, otherwise sender will be notified of an error
 - May be unreliable data may not reach destination, sender never notified of errors

Fall 2005, Lecture 04


Fall 2005, Lecture 04

Protocol Layers

- Network communication is divided up into seven layers
 - Each layer deals with one particular aspect of the communication
 - Each layer uses a set of routines provided by the layer below it
 - Each layer ignores lower-level (and higher-level) details and problems
- Each layer takes a message handed down to it by a higher layer, adds some header information, and passes the message on to a lower layer
 - Each layer has the illusion of peer-topeer communication
 - Eventually the message reaches the bottom layer, and get physically sent across the network

Fall 2005, Lecture 04

ISO OSI 7-Layer Protocol

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

ISO OSI 7-Layer Protocol Summary

- Application layer provides network access to application programs
 - Telnet, ftp, email, web browsers
- Presentation layer provides freedom from machine-dependent representations
- Session layer provides communication between processes, error recovery
 - Not required in connectionless commun.
 - Example: Remote Procedure Call (RPC)
- Transport layer reliably transfers messages (broken into packets) between hosts, error control for out-ofsequence and missing packets
 - Examples: TCP (connection-oriented), UDP (connectionless)

Fall 2005, Lecture 04

3

ISO OSI 7-Layer Protocol Summary (cont.)

- Network layer provides switching and routing needed to (1) establish, maintain, and terminate switched connections, and (2) transfer data (packets) between end systems
 - Examples: IP (connectionless), X.25 (connection-oriented)
- Data link layer reliably transfers packets (broken up into *frames*) over a communication link, error / flow control
 - Examples: Ethernet
- Physical layer —converts 1s and 0s into electrical or optical signals, and transmits frames of bits across a wire / cable
 - Examples: RS-232-C (serial communication lines), X.21

TCP / IP Protocol

- Upper layers
 - ftp file transfer protocol
 - Sends files from one system to another under user command
 - Handles both text and binary files
 - Supports userids and passwords
 - telnet remote terminal protocol
 - Lets a user at one terminal log onto a remote host
 - smtp − simple mail transfer protocol
 - Transfers mail messages between hosts
 - Handles mailing lists, forwarding, etc.
 - Does not specify how mail messages are created
 - nsp name server protocol
 - Maps names into IP addresses
 - A domain may be split into subdomains
 - Name severs are usually replicated to improve reliability

Fall 2005, Lecture 04

Fall 2005, Lecture 04

TCP / IP Protocol (cont.)

- Transport layer (messages & packets)
 - TCP Transmission Control Protocol
 - Connection-oriented (3-way handshake)
 - On transmit side, breaks message into packets, assigns sequence numbers, and and sends each packet in turn
 - Sends to a particular IP address and port
 - Flow control doesn't send more packets than receiver is prepared to receive
 - On receive side, receives packets, reassembles them into messages
 - Computes a checksum for each packet and compares it to checksum sent, discards packet if checksums don't agree
 - Reorders out-of-order packets
 - Reliable
 - Packets must be acknowledged
 - If sender doesn't receive an acknowledgment after a short period, it retransmits that packet
 - Congestion control don't overwhelm the network

TCP / IP Protocol (cont.)

Network layer

(routing packets)

- IP Internet Protocol
 - Connectionless
 - Unreliable
 - Packets may be lost, duplicated, or delivered out of order
 - Forward packet from sender through some number of gateways until it reaches the final destination
 - A gateway accepts a packet from one network and forwards it to a host or gateway on another network
 - Destination has specific Internet address, which is composed of two parts:
 - $-\,$ network part $-\,$ network the host is on
 - address part specific host on network
 - Routing is dynamic each gateway chooses the next gateway to send the packet to
 - Gateways send each other information about network congestion and gateways which are down

Fall 2005, Lecture 04 8 Fall 2005, Lecture 04

TCP / IP Protocol (cont.)

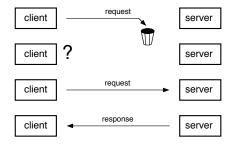
Data link / physical layers (packets & frames) (1s and 0s)

- Ethernet
 - Connectionless
 - Unreliable
 - Network is a bus
 - Broadcast to anyone who cares to listen
 - Transmission
 - Carrier sense: listen before broadcasting, defer until channel is clear, then broadcast
 - Collision detection: listen while broadcasting
 - » If two hosts transmit at same time — collision — the data gets garbled
 - » Each jams network, then waits a random (but increasing) amount of time, and tries again
 - This is called CSMA/CD (carrier sense multiple access, with collision detection)
 - Frames contain checksum
 - Every Ethernet device (everywhere in the world!) has a unique address

Fall 2005, Lecture 04

Contention

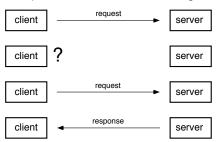
- Collision detection
 - Before sending a message, listen to see if another process is sending
 - If one is, wait a random time and try again
 - While transmitting, watch for collisions
- Token passing
 - A unique message (a token) continuously circulates through the network
 - To transmit, a host waits for a free token, attaches its message to it, sent the token status to busy, and sends it on
 - Destination removes the message, sets the token status to free, and sends it on
- Message slots
 - A number of fixed-length message slots circulate through the network
 - Wait for an empty slot and fill it

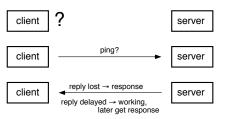

Fall 2005, Lecture 04

Failure Handling in Client / Sever Communication

- Potential failures:
 - Loss of request
 - Server never performs request
 - Loss of response message
 - Client doesn't know server performed request
 - Server may die or become unreachable
 - Did server perform request or not?
- 3-message reliable protocol:
 - Client sends request; blocks
 - Server sends reply; blocks
 - Client unblocks, sends acknowledgment; server unblocks
- 2-message protocol:
 - Client sends request; blocks
 - Server sends reply; client unblocks

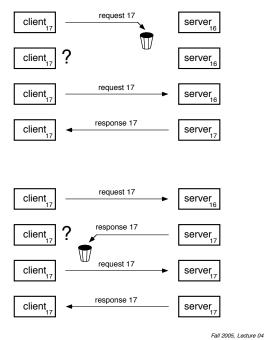
Semantics in Presence of Failure (Client Can't Locate Server, Lost Request)


- Client can't locate server
 - Reasons: server down, new version of server code
 - Can't just return error code always
 - Raise an exception (if supported)
- Lost request
 - Start timer after issuing request
 - If time expires, send request again
 - No problem if request was really lost


11 Fall 2005, Lecture 04 12 Fall 2005, Lecture 04

Semantics in Presence of Failure (Lost Request (cont.))

- Lost / delayed reply
 - OK to retransmit request only if remote procedure is idempotent (calling it multiple times is same as calling it once)


• If not idempotent, be more conservative:

Fall 2005, Lecture 04

Semantics in Presence of Failure (Error Recovery — Sequence Numbers)

More general solution: attach sequence number to every request and reply

Semantics in Presence of Failure (Server Crash)

- Possible scenarios
 - Request arrives, server crashes
 - Request arrives, request processed, server crashes
 - Request arrives, request processed, reply sent, server crashes
 - Desired response is different for each, but neither client nor server knows what it is
- Three (unattractive) alternatives:
 - Client keeps trying until it gets a response
 - Action carried out at least once
 - Client gives up and reports failure
 - Action carried out at most once (but maybe not at all)
 - Whatever...
 - No guarantees at all... easy to implement!
 - Ideal (unachievable)
 - Action carried out exactly once

14

15 Fall 2005, Lecture 04