
1 Fall 2005, Lecture 07

Chang and Roberts! Ring Algorithm
(1979)

! Threads are arranged in a logical ring

! Every thread is initially a non-participant

! The election:

! A thread begins an election by

! Marking itself as a participant

! Sending an election message (containing

its identifier) to its neighbor

! When a thread receives an election
message, it compares the identifier that
arrived in the message to its own:

! If the arrived identifier is greater, then it:

– If it is not a participant, it:

» Marks itself as a participant

– Forwards the message to its neighbor

! If the arrived identifier is smaller:

– If it is not a participant, it:

» Marks itself as a participant

» Substitutes its own identifier in the

election message and sends it on

– If it is already a participant, it does nothing
2 Fall 2005, Lecture 07

Chang and Roberts! Ring Algorithm
(cont.)

! The election:

! When a thread receives an election
message, it compares…:

! If the arrived identifier is that of the

receiving thread, then its identifier is the

largest, so it becomes the coordinator

– It marks itself as a non-participant again,

– It sends an elected message to its

neighbor, announcing the results of the

election and its identity

! When a thread receives an elected
message, it

! Marks itself as a non-participant, and

! Forwards the message to its neighbor

! Evaluation:

! 3N–1 messages in worst case

! N–1 election messages to reach

immediate neighbor in wrong direction, N

election messages to elect it, then N

elected messages to announce result

3 Fall 2005, Lecture 07

Chang and Roberts! Ring Algorithm
(cont.)

1

2

3

4

election1

Participant

1

2

3

4
election4

Participant

election4

election4

Participant Participant

Participant

1

2

3

4

Participant

Participant Participant

Participant

election4

1

2

3

4

Nonparticipant

elected4

elected4

elected4

elected

Nonparticipant

Nonparticipant Nonparticipant

Nonparticipant Nonparticipant

Nonparticipant

4 Fall 2005, Lecture 07

Agreement

! In a distributed system, it is often

necessary for a set of processors to

reach mutual agreement (consensus)

! Mutual exclusion — agree who has the
right to enter the critical section

! Maintain replicated data, monitor a
distributed computation, detect failed
processors, etc.

! This is one of the most fundamental
problems in distributed system design

! In normal situations, this isn!t a problem

! Exchange values, take average, etc.

! However, this is difficult if the system
contains failures (also called faults)

! Faulty processors can send erroneous

values to other processors

! Faulty network links can prevent values

from reaching other processors

5 Fall 2005, Lecture 07

Adversaries

! One way to think about agreement is to

imagine an all-powerful adversary

! Adversary is a demon with complete
control over the system who will try to
make your algorithm fail

! Adversary knows global system state (but
you can not!) and can arbitrarily
interleave process execution, event
execution, message delivery, etc.

! Adversary can make processors and links
fail at arbitrary times, even intermittently

! You must design an agreement algorithm
that always works

! Can!t say “but that!s highly unlikely!”,
because that!s what the adversary will do

6 Fall 2005, Lecture 07

System Model

! There are N processors in the system

trying to reach agreement

! A subset F of those N processors are
faulty, and others are non-faulty

! Each processor Pi has a value Vi

! To reach agreement, each processor

calculates an agreement value Ai

! Every N–F non-faulty processor
computes the same agreement value Ai

! This Ai does not depend on the value Vi of

any of the faulty processors

! We don!t care what agreement value Ai

the F faulty processors compute

! Any processor can communicate directly

with any other processor, and the

communication mechanism is reliable (no
messages are lost or corrupted)

7 Fall 2005, Lecture 07

Processor Failure

! Types of failures (Christian, 1991):

! Omission failure — server doesn!t
respond to a request

! Response failure — server responds
incorrectly to a request

! Returns wrong value, has wrong effect on

resources (e.g., sets wrong values)

! Timing failure — server responds too late
(e.g., it!s overloaded) or too early

! Crash failure — repeated omission
failure; server repeatedly fails to respond
to requests until it is restarted

! Amnesia crash — restarts in initial state

! Pause crash — … in state before crash

! Halting crash — never restarts

! A failure that exhibits many of these is

called Byzantine failure (Lamport, 1982)

! Goal: system should function correctly!

9 Fall 2005, Lecture 07

Byzantine Generals Problem

! There is one general, and N–1

lieutenants

! The general gives an order “attack” or
“retreat” to the lieutenants

! The general and the lieutenants are either
“loyal” or “traitors”

! A traitor may act maliciously to prevent

agreement (think of the adversary)

! Goal: to reach agreement:

! All loyal lieutenants should agree on the
order to perform

! If the general is loyal, then the order the
loyal lieutenants agree on should be the
order he sent

! Even if the general is a traitor, the loyal
lieutenants should agree with each other

! It is irrelevant what order the traitorous
officers want to perform

10 Fall 2005, Lecture 07

1 General, 2 lieutenants
(1 Traitor, 2 Loyal)

! What if a lieutenant is a traitor?

! Solution: assume the general is loyal

! But — what if the general is the traitor?

! If each lieutenant assumes the general is
loyal, they can!t reach agreement

! 3 processors can not reach agreement in
the presence of a single faulty processor

General

Lieutenant1 Lieutenant2

attack attack

attack

retreat

General

Lieutenant1 Lieutenant2

attack retreat

attack

retreat

11 Fall 2005, Lecture 07

Lamport, Shostak, and Pease!s
Oral Message Algorithm (1982)

! Solves the Byzantine Generals problem

for 3M+1 officers, with at most M traitors

! Officers can send “oral” (non-

authenticated) messages:

! Every officer can send a message to
every other officer

! But the officer may modify a received

message before sending it on, or may

forge a message from another officer

! Every message that it sent is delivered
correctly (i.e., no messengers captured)

! The receiver of a message knows who

sent it, and the absence of a message can

be detected (communicate in “rounds”)

! Other assumptions:

! A traitorous general may or may not send
a message

! A lieutenant!s default order is “retreat”

12 Fall 2005, Lecture 07

Lamport, Shostak, and Pease!s
Oral Message Algorithm (cont.)

! Solves the Byzantine Generals problem

for 3M+1 officers, with at most M traitors

! Algorithm for 4 officers, at most 1 traitor:

! General sends order to each lieutenant

! A lieutenant!s initial order is the value
received from the general, or “retreat” if
no order was received

! Each lieutenant sends his initial order to
all the other lieutenants

! Each lieutenant!s final order is the
majority of 3 orders it received (1 from the
general, 1 from each of the 2 lieutenants)

13 Fall 2005, Lecture 07

1 General, 3 lieutenants
(1 Traitor, 3 Loyal)

! What if a lieutenant is a traitor?

! What if the general is the traitor?

! 4 processors can reach agreement in the
presence of a single faulty processor

General

Lieutenant1

Lieutenant2

attack attack

attack
Lieutenant3

attack

attack attack

attack

retreatretreat

General

Lieutenant1

Lieutenant2

attack attack

attack
Lieutenant3

retreat

attack attack

attack

retreatretreat

14 Fall 2005, Lecture 07

Agreement Problems

! Byzantine agreement

! Source processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same value

! If the source processor is non-faulty, then
the commonly-agreed-upon value of all
the non-faulty processors must be the
initial value of the source

! Consensus

! Every processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same single value

! If the initial value of every non-faulty
processor is V, then the commonly-
agreed-upon value of all the non-faulty
processors must be V

15 Fall 2005, Lecture 07

Agreement Problems (cont.)

! Interactive Consistency

! Every processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same vector V = (v1, v2, …, vn)

! If the i-th processor is non-faulty and its
initial value is vi, then the commonly-
agreed-upon value of all the non-faulty
processors for the i-th value must be vi

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995

16 Fall 2005, Lecture 07

Fault-Tolerant
Physical Clock Synchronization

! 3 basic assumptions:

! All clocks are initially synchronized to
approximately the same value

! A non-faulty process!s clock runs at
approximately the correct rate

! A non-faulty process can read the clock
value of another non-faulty clock with at
most a small error

! Interactive Convergence Algorithm:

! Each process reads the value of all other
processes! clocks, and sets its clock
value to the average of these values

! If a clock value differs from its own clock
by more than !, it replaces that value by

its own clock value in taking the average

! If the clocks are synchronized often
enough, they will converge to within a
desired degree

17 Fall 2005, Lecture 07

Fault-Tolerant
Physical Clock Synchronization (cont.)

! Interactive Consistency Algorithm:

! Improvements

! Take median of clock values (instead of

mean)

– Provides a better estimate, since number

of faulty clocks should be low

! Overcomes problem of two-faced clocks

! Two processes compute approximately
the same median if:

! Any two processes obtain approximately

the same value for a process P!s clock

(even if process P is faulty)

! If Q is a non-faulty process, then every

non-faulty process obtains approximately

the correct value for process Q!s clock

! Algorithm for clock synchronization:

! Use solution to Interactive Consistency

problem (e.g., Oral Message Algorithm) to

collect clock values for all clocks

! Set local clock to be median of the

collected clock values

