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Chang and Roberts! Ring Algorithm
(1979)

! Threads are arranged in a logical ring

! Every thread is initially a non-participant

! The election:

! A thread begins an election by

! Marking itself as a participant

! Sending an election message (containing

its identifier) to its neighbor

! When a thread receives an election
message, it compares the identifier that
arrived in the message to its own:

! If the arrived identifier is greater, then it:

– If it is not a participant, it:

» Marks itself as a participant

– Forwards the message to its neighbor

! If the arrived identifier is smaller:

– If it is not a participant, it:

» Marks itself as a participant

» Substitutes its own identifier in the

election  message and sends it on

– If it is already a participant, it does nothing
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Chang and Roberts! Ring Algorithm
(cont.)

! The election:

! When a thread receives an election
message, it compares…:

! If the arrived identifier is that of the

receiving thread, then its identifier is the

largest, so it becomes the coordinator

– It marks itself as a non-participant  again,

– It sends an elected  message to its

neighbor, announcing the results of the

election and its identity

! When a thread receives an elected
message, it

! Marks itself as a non-participant, and

! Forwards the message to its neighbor

! Evaluation:

! 3N–1 messages in worst case

! N–1 election messages to reach

immediate neighbor in wrong direction, N

election messages to elect it, then N

elected messages to announce result
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Chang and Roberts! Ring Algorithm
(cont.)
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Agreement

! In a distributed system, it is often

necessary for a set of processors to

reach mutual agreement (consensus)

! Mutual exclusion — agree who has the
right to enter the critical section

! Maintain replicated data, monitor a
distributed computation, detect failed
processors, etc.

! This is one of the most fundamental
problems in distributed system design

! In normal situations, this isn!t a problem

! Exchange values, take average, etc.

! However, this is difficult if the system
contains failures (also called faults)

! Faulty processors can send erroneous

values to other processors

! Faulty network links can prevent values

from reaching other processors
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Adversaries

! One way to think about agreement is to

imagine an all-powerful adversary

! Adversary is a demon with complete
control over the system who will try to
make your algorithm fail

! Adversary knows global system state (but
you can not!) and can arbitrarily
interleave process execution, event
execution, message delivery, etc.

! Adversary can make processors and links
fail at arbitrary times, even intermittently

! You must design an agreement algorithm
that always works

! Can!t say “but that!s highly unlikely!”,
because that!s what the adversary will do
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System Model

! There are N processors in the system

trying to reach agreement

! A subset F of those N processors are
faulty, and others are non-faulty

! Each processor Pi has a value Vi

! To reach agreement, each processor

calculates an agreement value Ai

! Every N–F non-faulty processor
computes the same agreement value Ai

! This Ai does not depend on the value Vi of

any of the faulty processors

! We don!t care what agreement value Ai

the F faulty processors compute

! Any processor can communicate directly

with any other processor, and the

communication mechanism is reliable (no
messages are lost or corrupted)
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Processor Failure

! Types of failures (Christian, 1991):

! Omission failure — server doesn!t
respond to a request

! Response failure — server responds
incorrectly to a request

! Returns wrong value, has wrong effect on

resources (e.g., sets wrong values)

! Timing failure — server responds too late
(e.g., it!s overloaded) or too early

! Crash failure — repeated omission
failure; server repeatedly fails to respond
to requests until it is restarted

! Amnesia crash — restarts in initial state

! Pause crash — … in state before crash

! Halting crash — never restarts

! A failure that exhibits many of these is

called Byzantine failure (Lamport, 1982)

! Goal: system should function correctly!
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Byzantine Generals Problem

! There is one general, and N–1

lieutenants

! The general gives an order “attack” or
“retreat” to the lieutenants

! The general and the lieutenants are either
“loyal” or “traitors”

! A traitor may act maliciously to prevent

agreement (think of the adversary)

! Goal:  to reach agreement:

! All loyal lieutenants should agree on the
order to perform

! If the general is loyal, then the order the
loyal lieutenants agree on should be the
order he sent

! Even if the general is a traitor, the loyal
lieutenants should agree with each other

! It is irrelevant what order the traitorous
officers want to perform



10 Fall 2005, Lecture 07

1 General, 2 lieutenants
(1 Traitor, 2 Loyal)

! What if a lieutenant is a traitor?

! Solution:  assume the general is loyal

! But — what if the general is the traitor?

! If each lieutenant assumes the general is
loyal, they can!t reach agreement

! 3 processors can not reach agreement in
the presence of a single faulty processor

General

Lieutenant1 Lieutenant2

attack attack

attack

retreat

General

Lieutenant1 Lieutenant2

attack retreat

attack

retreat
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Lamport, Shostak, and Pease!s
Oral Message Algorithm (1982)

! Solves the Byzantine Generals problem

for 3M+1 officers, with at most M traitors

! Officers can send “oral” (non-

authenticated) messages:

! Every officer can send a message to
every other officer

! But the officer may modify a received

message before sending it on, or may

forge a message from another officer

! Every message that it sent is delivered
correctly (i.e., no messengers captured)

! The receiver of a message knows who

sent it, and the absence of a message can

be detected (communicate in “rounds”)

! Other assumptions:

! A traitorous general may or may not send
a message

! A lieutenant!s default order is “retreat”
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Lamport, Shostak, and Pease!s
Oral Message Algorithm (cont.)

! Solves the Byzantine Generals problem

for 3M+1 officers, with at most M traitors

! Algorithm for 4 officers, at most 1 traitor:

! General sends order to each lieutenant

! A lieutenant!s initial order is the value
received from the general, or “retreat” if
no order was received

! Each lieutenant sends his initial order to
all the other lieutenants

! Each lieutenant!s final order is the
majority of 3 orders it received (1 from the
general, 1 from each of the 2 lieutenants)
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1 General, 3 lieutenants
(1 Traitor, 3 Loyal)

! What if a lieutenant is a traitor?

! What if the general is the traitor?

! 4 processors can reach agreement in the
presence of a single faulty processor

General

Lieutenant1

Lieutenant2

attack attack

attack
Lieutenant3

attack

attack attack

attack

retreatretreat

General

Lieutenant1

Lieutenant2

attack attack

attack
Lieutenant3

retreat

attack attack

attack

retreatretreat
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Agreement Problems

! Byzantine agreement

! Source processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same value

! If the source processor is non-faulty, then
the commonly-agreed-upon value of all
the non-faulty processors must be the
initial value of the source

! Consensus

! Every processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same single value

! If the initial value of every non-faulty
processor is V, then the commonly-
agreed-upon value of all the non-faulty
processors must be V
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Agreement Problems (cont.)

! Interactive Consistency

! Every processor broadcasts its initial
value to all other processors

! All non-faulty processors must agree on
the same vector V = (v1, v2, …, vn)

! If the i-th processor is non-faulty and its
initial value is vi, then the commonly-
agreed-upon value of all the non-faulty
processors for the i-th value must be vi

Distributed Operating Systems, Tanenbaum, Prentice Hall, 1995
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Fault-Tolerant
Physical Clock Synchronization

! 3 basic assumptions:

! All clocks are initially synchronized to
approximately the same value

! A non-faulty process!s clock runs at
approximately the correct rate

! A non-faulty process can read the clock
value of another non-faulty clock with at
most a small error

! Interactive Convergence Algorithm:

! Each process reads the value of all other
processes! clocks, and sets its clock
value to the average of these values

! If a clock value differs from its own clock
by more than !, it replaces that value by

its own clock value in taking the average

! If the clocks are synchronized often
enough, they will converge to within a
desired degree
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Fault-Tolerant
Physical Clock Synchronization (cont.)

! Interactive Consistency Algorithm:

! Improvements

! Take median of clock values (instead of

mean)

– Provides a better estimate, since number

of faulty clocks should be low

! Overcomes problem of two-faced clocks

! Two processes compute approximately
the same median if:

! Any two processes obtain approximately

the same value for a process P!s clock

(even if process P is faulty)

! If Q is a non-faulty process, then every

non-faulty process obtains approximately

the correct value for process Q!s clock

! Algorithm for clock synchronization:

! Use solution to Interactive Consistency

problem (e.g., Oral Message Algorithm) to

collect clock values for all clocks

! Set local clock to be median of the

collected clock values


