Mutual Exclusion
in a Distributed Environment (Review)

m Mutual exclusion

o Centralized algorithms
m Central physical clock
m Central coordinator

® Distributed algorithms
m Time-based event ordering

— Lamport’s algorithm (logical clocks)
— Ricart & Agrawala’s algorithm (" ")
— Suzuki & Kasimi’s algorithm (broadcast)

m Token passing
— Le Lann’s token-ring algorithm (logical ring)
— Raymond’s tree algorithm (logical tree)
m Sharing K identical resources

— Raymond’s extension to Ricart &
Agrawala’s time-based algorithm

@ Atomic transactions (later in course)

m Related — self-stabilizing algorithms,
election, agreement, deadlock

Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (1985)

m Overview:

o If a thread wants to enter the critical
section, and it does not have the token, it
broadcasts a request message to all
other sites in the token’s request set

® The thread that has the token will then
send it to the requesting thread

m However, if it’s in the critical section, it
gets to finish before sending the token

@ A thread holding the token can
continuously enter the critical section until
the token is requested

® Request vector at thread i :

m RN, [A] contains the largest sequence
number received from thread kin a
request message

® Token consists of vector and a queue:

m LNI[A] contains the sequence number of
the latest executed request from thread k

m Q is the queue of requesting threads

Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

m Requesting the critical section (CS):

® When a thread j wants to enter the CS, if
it does not have the token, it:
m Increments its sequence number sn and
its request vector RN, [/] to RN, [{]+1
m Sends a request message containing new
snto all threads in that CS’s request set

® When a thread k receives the request
message, it:
m Sets RN, [] to MAX(RN, [/, sn received)
— If sn< RN, [/], the message is outdated

m If thread k has the token and is not in the
CS (i.e., is not using it),
and if RN, [{] == LN[/+1 (indicating an

outstanding request)

it sends the token to thread /

m Executing the CS:

® A thread enters the CS when it has
acquired the token

Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

m Releasing the CS:

® When a thread /leaves the CS, it:
m Sets LN[/] of the token equal to RN; [/]
— Indicates that its request RN, [] has been
executed
m For every thread kwhose ID is not in the
token queue Q, it appends its ID to Q if
RN, [A] == LN[A]+1
— Indicates that thread k has an outstanding
request
m If the token queue Q is nonempty after this
update, it deletes the thread ID at the
head of Q and sends the token to that
thread
— Gives priority to others’ requests
— Otherwise, it keeps the token

m Evaluation:

® 0 to N messages required to enter CS
m No messages if thread holds the token
m Otherwise N—1 requests, 1 reply

Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

SN
RN @ Thread O decides it wants

to get into the CS

SN
SN @ RN[o[o]o]
RN[o[o]o] @
Token
LN
o []]
SN Thread O updates its SN
RN ° and request vector RN, and
sends its new SN to others

SN
SN RN[1Jo[o]
RN[1]o]o]
Token Threads 1 and 2 update

their RNs with new SN

LN received from Thread 0.
Thread 1 has the token,

Q ID but is not currently using it,

so it sends it to Thread 0.

5 Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

Thread O now has the token,
and is actively using it, when
LN um qequt?rEomZ |; from Thread
, then Threa .
Q D] Thread O doesn't do
anything with those
requests yet, but it
updates its SN.

SN
RN[1 [1]1]

When Thread O leaves CS, it
updates LN to indicate that

LN |1 um the request has been satisfied.
Then it adds Threads

Q 1 and 2 to the token
queue Q. Finally, it deletes
Thread 1 from the head of

TG
RN Q and sends it the token.

SN
SN © RN[1]1]1]
AN[1]1]1] o

Fall 2005, Lecture 09

Suzuki and Kasami’s Broadcast
Algorithm (cont.)

SN
AN[1 [1]1] ©

SN

SN 0 RN[1]1]1]

RN[1]1]1]

Tok Thread 1 now has the token,
oxen and can enter the CS.

LN um When it finishes, it will update

- LN and send the token to

Q | [2]| Thread 2 (after adding

any new requests to the end of

the token queue Q).

7 Fall 2005, Lecture 09

Token-Ring Algorithm
(Le Lann, 1977 ?)

m Processes are arranged in a logical ring

m At start, process 0 is given a foken

® Token circulates around the ring in a fixed
direction via point-to-point messages

® When a process acquires the token, it
has the right to enter the critical section
m After exiting CS, it passes the token on

m Evaluation:
® N-1 messages required to enter CS
o Not difficult to add new processes to ring

@ With unidirectional ring, mutual exclusion
is fair, and no process starves

X Not very fault-tolerant
X Difficult to detect when token is lost

X Doesn’t guarantee “happened-before”
order of entry into critical section

Fall 2005, Lecture 09

Raymond’s Tree Algorithm

(1989)
T
T2 T3
m Overview: Ta 5 T6 T7

® Threads are arranged as a logical tree

m Edges are directed toward the thread that
holds the token (called the “holder”, which
also acts as the root of logical tree)

® Each thread has:

m A variable holder that points to its
immediate neighbor on the directed path
toward the holder of the token

m A FIFO queue called request_q that holds
its requests for the token, as well as any
requests from neighbors that have
requested but haven’t received the token

— If request_qg is non-empty, that implies the
node has already sent the request at the
head of its queue toward the holder

9 Fall 2005, Lecture 09

Raymond’s Tree Algorithm
(cont.)

m Requesting the critical section (CS):

® When a thread wants to enter the CS, but
it does not have the token, it:
m Adds its request to its request_q
m If its request_qg was empty before the
addition, it sends a request message
along the directed path toward the holder
— If the request_q was not empty, it’s
already made a request, and has to wait
® When a thread in the path between the
requesting thread and the holder receives
the request message, it
m < same as above >

® When the holder receives a request
message, it
m Sends the token (in a message) toward
the requesting thread

m Sets its holder variable to point toward
that thread (toward the new holder)

10 Fall 2005, Lecture 09

Raymond’s Tree Algorithm
(cont.)

m Requesting the CS (cont.):

® When a thread in the path between the
holder and the requesting thread receives
the token, it

m Deletes the top entry (the most current
requesting thread) from its request_q

m Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread

m If its request_q is not empty after this
deletion, it sends a request message
along the directed path toward the new
holder (pointed to by the updated holder
variable)

m Executing the CS:

® A thread can enter the CS when it
receives the token and its own entry is at
the top of its request_qg
m It deletes the top entry from the request g,
and enters the CS

11 Fall 2005, Lecture 09

Raymond’s Tree Algorithm
(cont.)

m Releasing the CS:

® When a thread leaves the CS

m If its request_q is not empty (meaning a
thread has requested the token from it), it:
— Deletes the top entry from its request_q
— Sends the token toward the thread
referenced by the deleted entry, and sets
its holder variable to point toward that
thread
m If its request_q is not empty after this
deletion (meaning more than one thread
has requested the token from it), it sends
a request message along the directed
path toward the new holder (pointed to by
the updated holder variable)

m Evaluation:

v On average, O(log N) messages required
to enter CS

m Average distance between any two nodes
in a tree with N nodes is O(log N)

12 Fall 2005, Lecture 09

Raymond’s Tree Algorithm
(cont.)

T T

T2 T3 T2 req4 T3
reqd
O [4]
T4 T5 T6 T7 T4 T5 T6 T7
T1 T1

T2 lok4 T3

m g%y 3

T4 T5 T6 T7

™

]:DTZ} T3

IT]

T4 T5 T6 T7
enters CS

13 Fall 2005, Lecture 09

Raymond’s Tree Algorithm
(cont.)

N
T2 T3
o% of
T4 T5 T6 T7

T1

o s

T4 ,;

T4 75 T6 T7

‘é}
tok4\(’/‘
T T5

T

T2 req4 T3

-&m{

T1

T2 tok4 T3

-6 oxe

T7

T

ene]

Fall 2005, Lecture 09

T4
enters CS

