
1 Fall 2005, Lecture 10

Deadlock Conditions

! These 4 conditions are necessary and

sufficient for deadlock to occur:

! Mutual exclusion — if one process holds
a resource, other processes requesting
that resource must wait until the process
releases it (only one can use it at a time)

! No preemption — resources are
released voluntarily; neither another
process nor the OS can force a process
to release a resource

! Hold and wait — processes are allowed
to hold one (or more) resource and be
waiting to acquire additional resources
that are being held by other processes

! Circular wait — there must exist a set of
waiting processes such that P0 is waiting
for a resource held by P1, P1 is waiting
for a resource held by P2, … Pn-1 is
waiting for a resource held by Pn, and Pn
is waiting for a resource held P0

2 Fall 2005, Lecture 10

Resource-Allocation Graph

! The deadlock conditions can be modeled

using a directed graph called a resource-
allocation graph (RAG)

! 2 kinds of nodes:

! Boxes — represent resources

– Instances of the resource are represented

as dots within the box

! Circles — represent processes

! 2 kinds of (directed) edges:

! Request edge — from process to resource

— indicates the process has requested

the resource, and is waiting to acquire it

! Assignment edge — from resource

instance to process — indicates the

process is holding the resource instance

! When a request is made, a request edge
is added

! When request is fulfilled, the request edge

is transformed into an assignment edge

! When process releases the resource, the

assignment edge is deleted

3 Fall 2005, Lecture 10

Interpreting a RAG
With Single Resource Instances

! If the graph does not contain a cycle,

then no deadlock exists

! If the graph does contain a cycle,

then a deadlock does exist

! With single resource instances,

a cycle is a necessary and sufficient
condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

4 Fall 2005, Lecture 10

Interpreting a RAG
With Multiple Resource Instances

! If the graph does not contain a cycle,

then no deadlock exists

! If the graph does contain a cycle,

then a deadlock may exist

! With multiple resource instances,

a cycle is a necessary (but not
sufficient) condition for deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

5 Fall 2005, Lecture 10

Interpreting a RAG With
Multiple Resource Instances (cont.)

! If the graph does contain a knot (and a

cycle), then a deadlock does exist

! If the graph does not contain a knot,

then a deadlock does not exist

! With multiple resource instances,

a knot is a sufficient condition for
deadlock

p2p1 p3

r1 r2

r3 r4

p2p1 p3

r1 r2

r3 r4

6 Fall 2005, Lecture 10

Dealing with Deadlock

! The Ostrich Approach — stick your head

in the sand and ignore the problem

! Often used in centralized systems!

! Maybe also be a good solution for
distributed systems in many situations

! Deadlock avoidance — consider each

resource request, and only fulfill those

that will not lead to deadlock

! Stay in a safe state — a state with no
deadlock where resource requests can be
granted in some order such that all
processes will complete

" A bad solution for centralized systems,
even worse in distributed systems

! Must know resource requirements of all

processes in advance

! Resource request set is known and fixed,

resources are known and fixed

! Complex analysis for every request

7 Fall 2005, Lecture 10

Dealing with Deadlock
(cont.)

! Deadlock prevention — eliminate one of

the 4 deadlock conditions

! Occasionally used in centralized systems!

! Maybe also be a good solution for
distributed systems in some situations

! We!ll come back to this next time…

! Deadlock detection and recovery —
detect, then break the deadlock

! Not too hard for single resource
instances, harder for multiple resource
instances

" More difficult when state is distributed

#Can detect concurrently w/ other activities

" In distributed systems — assume only
one non-sharable resource of each type

8 Fall 2005, Lecture 10

Deadlock Detection
in a Distributed Environment

! Centralized algorithms

! Coordinator maintains global WFG and
searches it for cycles

! Ho and Ramamoorthy!s two-phase and
one-phase algorithms

! Distributed algorithms

! Global WFG, with responsibility for
detection spread over many sites

! Obermarck!s path-pushing

! Chandy, Misra, and Haas!s edge-chasing

! Hierarchical algorithms

! Hierarchical organization, site detects
deadlocks involving only its descendants

! Menasce and Muntz!s algorithm

! Ho and Ramamoorthy!s algorithm

9 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Simple Algorithms)

! First Algorithm

! A central coordinator maintains a global
wait-for graph (WFG) for the system

! When appropriate, it checks the WFG for

cycles (for single resource instances, a

cycle implies deadlock)

! WFG is resource-allocation graph minus

resources; shows that a process is waiting

for a resource held by another process

! All sites request and release resources
(even local resources) by sending request
and release messages to the coordinator

! When coordinator receives a request, it

– updates the global WFG

– checks for deadlocks

– grants the request if no deadlock results

! When coordinator receives a release, it

– updates the global WFG

" Large communication overhead,
coordinator is a performance bottleneck
and single point of failure, etc.

10 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Example Using Simple Algorithms)

! Cycle in global WFG ! deadlock

! No cycle in global WFG ! no deadlock

p1

p5

p2

p3

site A

p2

p3

p4

site B

p1

p5

p2

p3

coordinator

p4

p1

p2

site A

p1

p3

site B

p1

p2 p3

coordinator

11 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Simple Algorithms) (cont.)

! Second Algorithm

! A central coordinator maintains a global
wait-for graph (WFG) for the system

! Individual sites also maintain local WFGs

for local processes and resources

! Global WFG is an approximation of the

total state of the system

! When should the coordinator update the
WFG and try to detect deadlocks?

1.Whenever a new edge is inserted or

removed in a local WFG

– Site informs coordinator via a message

– Global WFG can be slightly out-of-date

2.Periodically, when a number of changes

have been made to WFG

– Site sends several changes at once

– Global WFG can be more out-of-date

3.Whenever it needs to detect deadlock

! After deadlock is detected, coordinator
selects a “victim”, and tells all the sites,
which take the appropriate action

12 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Problem of False Deadlock)

! Consider this system state:

! Now assume process p2 releases
resource p1 is waiting on

! Slightly thereafter, process p2 requests
resource p3 is holding

! However, first message reaches
coordinator after second message

! The global WFG now has a false cycle,
which leads to a report of false deadlock

! Lamport!s algorithm can append logical

clock values to each message and avoid

this problem, although at the cost of

many more messages

p1

p2

site A

p1

p3

site B

p1

p2 p3

coordinator

13 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Ho and Ramamoorthy, 1982)

! Two-phase algorithm:

! Every site maintains a status table,
containing status of all local processes

! Resources held, resources waiting on

! Periodically, coordinator requests all
status tables, builds a WFG, and
searches it for cycles

! No cycles ! no deadlock

! If cycle is found, coordinator again

requests all status tables, again builds a

WFG, but this time uses only those edges

common to both sets of status tables

! Rationale was that by using information
from two consecutive reports, coordinator
would get a consistent view of the state

! However, it was later shown that a

deadlock in this WFG does not imply a

deadlock exists

! So, the HR-two-phase algorithm may

reduce the possibility of reporting false

deadlocks, but doesn!t eliminate it
14 Fall 2005, Lecture 10

Centralized Deadlock Detection
(Ho and Ramamoorthy) (cont.)

! One-phase algorithm:

! Every site maintains two status tables

! Resource status table keeps track of

processes that are holding or requesting

resources at that site

! Process status table keeps track of

resources requested or held by processes

at that site

! Periodically, coordinator requests all
status tables, builds a WFG using only
information in both a resource and
process table, and searches it for cycles

! Rationale was that this eliminates
inconsistency caused by network delay

! Message in transit will have entry at one

site, not yet at the other

#The HR-one-phase algorithm does not

report false deadlocks

! Compared to two-phase algorithm:

#Faster, less messages

$More storage (2 tables), bigger messages

