Distributed File Systems

m Distributed file system — a distributed
implementation of a file system

® File service — specification of the file
system interface as seen by the clients

® File server — a process running on some
machine which helps implement the file
service by supplying files

m Goals of a distributed file system

® Network transparency

m Provide same operations for accessing
remote and local files

m Ideally, clients should not have to know
the location of files to access them

® Availability | robustness — file service
should be maintained even in the
presence of partial system failures

® Performance — should overcome
bottlenecks of a centralized file system

Fall 2005, Lecture 14

Distributed File Systems (cont.)

|] [
m In principle, files in a distributed file
system can be stored at any machine

® For increased performance and reliability,
a typical distributed environment has a
few dedicated machines called file
servers that store most of the files

Fall 2005, Lecture 14

Review of Some File Concepts

m Logical components of a file
@ File name, file attributes, data blocks

@ Directory maps file name to file descriptor
(inode in Unix terms)

@ File descriptor contains file attributes and
pointers to data blocks
m Basic operations

® Create / delete, open / close, read / write

m Types of file access
® Sequential, direct / random, keyed
® File pointer keeps track of location in file
on a per-process basis
m Two separate concepts:
® File lookup / naming (directory service)

® File access (file service)

Fall 2005, Lecture 14

Distributed File System Services —
File Service Interface

m Need operations for creating and
deleting, opening and closing, and
reading and writing, files

m Upload / download model

@ File service provides:
m Read — transfer entire file to client
m Write — transfer entire file to server

® Client works on file locally (in memory or
on disk)

v Simple, efficient if working on entire file
X Must move entire file

X Needs local disk space

m Remote access model
® File service provides usual file operations

@ File stays on server

Fall 2005, Lecture 14

Distributed Naming Structures

m Need operations for name translation,
support for multilevel directories and links

® Location transparency — the name of the
file does not reveal the physical storage
location
m True for many naming schemes

® Location independence — the name of
the file need not change if the file’s
storage location changes
m False for most naming schemes

m Absolute names
® Names of form: machine : pathname

® Used by:
m Old UNIX distributed file systems
m Current web browsers (e.g., Netscape)

v User can use same tools and file
operations for local and remote access

X Not location transparent or independent

5 Fall 2005, Lecture 14

Sun’s Network File System

m Designed by Sun Microsystems

o First distributed file service designed as a
project, introduced in 1985

® To encourage its adoption as a standard

m Definitions of the key interfaces were
placed in the public domain in 1989

m Source code for a reference
implementation was made available to
other computer vendors under license

m Currently the de facto standard for LANs

m Provides transparent access to remote
files on a LAN, for clients running on
UNIX and other operating systems

® A UNIX computer typically has a NFS
client and server module in its OS kernel
m Available for almost any UNIX and MACH

@ Client modules are available for
Macintosh OS and Windows

6 Fall 2005, Lecture 14

Mounting Remote File Systems

/ (root) / (root) / (root)
TN AN AN
export etc usr bin nfs
e NS
mount mount
bill robin han jim jane bob
server 1 client server 2

m NFS supports mounting of remote file
systems onto a specific location (mount
point) in a client machine’s file system

m NFS does not enforce a single network-
wide name space

® Name space seen by each client may be
different; same file on server may have
different path names on different clients

® A uniform name space (and location
transparency) can be set up if desired

7 Fall 2005, Lecture 14

Mounting Remote File Systems (cont.)

m On each server

® There is afile (usually /etc/exports)
containing the names of local file systems
that are available for remote mounting

® An access list is associated with each
name, and indicates which hosts are
permitted to mount that file system

m On each client

® A modified version of the UNIX mount
command mounts a remote file system
m Based on RPC — specifies remote host
name, pathname of a directory in the
remote file system, and local name where
it is to be mounted
m Mount requests are usually performed
when the system is initialized (booted)
— Usually specified in /etc/fstab
m User may also be able to mount other
remote file systems

8 Fall 2005, Lecture 14

Mounting Remote File Systems (cont.)

m Automounting

® The automounter dynamically mounts a
file system whenever an “empty” mount
point is referenced by a client

m Further accesses do not result in further
requests to the automounter...

m Unless there are no references to the
remote file system for several minutes, in
which case the automounter unmounts it

m Remote file systems may be

® Hard mounted — when a user-level
process accesses a file, it is suspended
until the request can be completed

m If a server crashes, the user-level process
will be suspended until recovers

® Soft mounted — after a small number of
retries, the NFS client returns a failure
code to the user process

m Most UNIX utilities don’t check this code...

Fall 2005, Lecture 14

NFS Software Architecture

user-level
client process

system calls

UNIX kernel UNIX kernel

virtual file system virtual file system

local l l remote T

NFS
UNIX NES protocol NES UNIX

client computer server computer

m Virtual file system:

® Separates generic file-system operations
from their implementation (can have
different types of local file systems)

® Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)

Fall 2005, Lecture 14

NFS Protocol

m NFS protocol provides a set of RPCs for
remote file operations

® Looking up a file within a directory

® Manipulating links and directories

® Creating, renaming, and removing files
@ Getting and setting file attributes

® Reading and writing files

m NFS is stateless

@ Servers do not maintain information about
their clients from one access to the next
m There are no open-file tables on the
server
® There are no open and close operations
m Each request must provide a unique file
identifier, and an offset within the file

® Easy to recover from a crash, but file
operations must be idempotent

Fall 2005, Lecture 14

NFS Protocol (cont.)

m Because NFS is stateless, all modified
data must be written to the server’s disk
before results are returned to the client

® Server crash and recovery should be
invisible to client —data should be intact

X Lose benefits of caching

m Solution — RAM disks with battery backup

(un-interruptable power supply), written to
disk periodically

m A single NFS write is guaranteed to be
atomic, and not intermixed with other
writes to the same file

® However, NFS does not provide
concurrency control
m A write system call may be decomposed

into several NFS writes, which may be
interleaved

m Since NFS is stateless, this is not
considered to be an NFS problem

Fall 2005, Lecture 14

Distributed Naming Structures (cont.)

m Single name space for remote and local
directories

® Names of form: /.../machinelfs/pathname

® Used by:

m CMU’s Andrew, now in OSF’s Distributed
Computing Environment (DCE)

m Berkeley’s Sprite

® File names are always the same, whether
file is remote or local

@ As clients access a file, the server sends
a copy to the client’s workstation, and the
workstation caches the file

m In Andrew, local disks are used

m In Sprite, large memories are used, and
workstations are diskless

m More details on these two next time...

® Location independent, not location
transparent

13 Fall 2005, Lecture 14

CMU’s Andrew File System

m Designed by Carnegie Mellon University

® Developed during mid-1980s as part of
the Andrew distributed computing
environment

@ Designed to support a WAN of more than
5000 workstations

® Much of the core technology is now part
of the Open Software Foundation (OSF)
Distributed Computing Environment
(DCE), available for most UNIX and some
other operating systems

m Provides transparent access to remote
files on a WAN, for clients running on
UNIX and other operating systems

@ Access to all files is via the usual UNIX
file primitives

® Compatible with NFS — servers can
mount NFS file systems

14 Fall 2005, Lecture 14

