
1 Fall 2005, Lecture 14

Distributed File Systems

! Distributed file system — a distributed

implementation of a file system

! File service — specification of the file
system interface as seen by the clients

! File server — a process running on some
machine which helps implement the file
service by supplying files

! Goals of a distributed file system

! Network transparency

! Provide same operations for accessing

remote and local files

! Ideally, clients should not have to know

the location of files to access them

! Availability / robustness — file service
should be maintained even in the
presence of partial system failures

! Performance — should overcome
bottlenecks of a centralized file system

2 Fall 2005, Lecture 14

Distributed File Systems (cont.)

! In principle, files in a distributed file

system can be stored at any machine

! For increased performance and reliability,
a typical distributed environment has a
few dedicated machines called file
servers that store most of the files

cache cache cache

local

disk

cache cache

server

disk

server

disk

server

disk

network

3 Fall 2005, Lecture 14

Review of Some File Concepts

! Logical components of a file

! File name, file attributes, data blocks

! Directory maps file name to file descriptor
(inode in Unix terms)

! File descriptor contains file attributes and
pointers to data blocks

! Basic operations

! Create / delete, open / close, read / write

! Types of file access

! Sequential, direct / random, keyed

! File pointer keeps track of location in file
on a per-process basis

! Two separate concepts:

! File lookup / naming (directory service)

! File access (file service)
4 Fall 2005, Lecture 14

Distributed File System Services —
File Service Interface

! Need operations for creating and

deleting, opening and closing, and

reading and writing, files

! Upload / download model

! File service provides:

! Read — transfer entire file to client

! Write — transfer entire file to server

! Client works on file locally (in memory or
on disk)

"Simple, efficient if working on entire file

Must move entire file

Needs local disk space

! Remote access model

! File service provides usual file operations

! File stays on server

5 Fall 2005, Lecture 14

Distributed Naming Structures

! Need operations for name translation,

support for multilevel directories and links

! Location transparency — the name of the
file does not reveal the physical storage
location

! True for many naming schemes

! Location independence — the name of
the file need not change if the file!s
storage location changes

! False for most naming schemes

! Absolute names

! Names of form: machine : pathname

! Used by:

! Old UNIX distributed file systems

! Current web browsers (e.g., Netscape)

"User can use same tools and file
operations for local and remote access

Not location transparent or independent
6 Fall 2005, Lecture 14

Sun!s Network File System

! Designed by Sun Microsystems

! First distributed file service designed as a
project, introduced in 1985

! To encourage its adoption as a standard

! Definitions of the key interfaces were

placed in the public domain in 1989

! Source code for a reference

implementation was made available to

other computer vendors under license

! Currently the de facto standard for LANs

! Provides transparent access to remote
files on a LAN, for clients running on

UNIX and other operating systems

! A UNIX computer typically has a NFS
client and server module in its OS kernel

! Available for almost any UNIX and MACH

! Client modules are available for
Macintosh OS and Windows

7 Fall 2005, Lecture 14

Mounting Remote File Systems

! NFS supports mounting of remote file

systems onto a specific location (mount

point) in a client machine!s file system

! NFS does not enforce a single network-
wide name space

! Name space seen by each client may be
different; same file on server may have
different path names on different clients

! A uniform name space (and location
transparency) can be set up if desired

/ (root)

export

people

bin

robinbill

/ (root)

usr

profsstudents

etc

han

/ (root)

nfs

users

janejim bob

remote

mount

remote

mount

clientserver 1 server 2

8 Fall 2005, Lecture 14

Mounting Remote File Systems (cont.)

! On each server

! There is a file (usually /etc/exports)
containing the names of local file systems
that are available for remote mounting

! An access list is associated with each
name, and indicates which hosts are
permitted to mount that file system

! On each client

! A modified version of the UNIX mount
command mounts a remote file system

! Based on RPC — specifies remote host

name, pathname of a directory in the

remote file system, and local name where

it is to be mounted

! Mount requests are usually performed

when the system is initialized (booted)

– Usually specified in /etc/fstab

! User may also be able to mount other

remote file systems

9 Fall 2005, Lecture 14

Mounting Remote File Systems (cont.)

! Automounting

! The automounter dynamically mounts a
file system whenever an “empty” mount
point is referenced by a client

! Further accesses do not result in further

requests to the automounter…

! Unless there are no references to the

remote file system for several minutes, in

which case the automounter unmounts it

! Remote file systems may be

! Hard mounted — when a user-level
process accesses a file, it is suspended
until the request can be completed

! If a server crashes, the user-level process

will be suspended until recovers

! Soft mounted — after a small number of
retries, the NFS client returns a failure
code to the user process

! Most UNIX utilities don!t check this code…

10 Fall 2005, Lecture 14

NFS Software Architecture

! Virtual file system:

! Separates generic file-system operations
from their implementation (can have
different types of local file systems)

! Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)

local
disk

UNIX
file

system

NFS
client

virtual file system

local remote

UNIX kernel

user-level
client process

system calls

client computer

local
disk

UNIX
file

system

NFS
server

virtual file system

UNIX kernel

server computer
network

NFS
protocol

11 Fall 2005, Lecture 14

NFS Protocol

! NFS protocol provides a set of RPCs for

remote file operations

! Looking up a file within a directory

! Manipulating links and directories

! Creating, renaming, and removing files

! Getting and setting file attributes

! Reading and writing files

! NFS is stateless

! Servers do not maintain information about
their clients from one access to the next

! There are no open-file tables on the

server

! There are no open and close operations

! Each request must provide a unique file

identifier, and an offset within the file

! Easy to recover from a crash, but file
operations must be idempotent

12 Fall 2005, Lecture 14

NFS Protocol (cont.)

! Because NFS is stateless, all modified

data must be written to the server!s disk

before results are returned to the client

! Server crash and recovery should be
invisible to client —data should be intact

Lose benefits of caching

! Solution — RAM disks with battery backup

(un-interruptable power supply), written to

disk periodically

! A single NFS write is guaranteed to be
atomic, and not intermixed with other

writes to the same file

! However, NFS does not provide
concurrency control

! A write system call may be decomposed

into several NFS writes, which may be

interleaved

! Since NFS is stateless, this is not

considered to be an NFS problem

13 Fall 2005, Lecture 14

Distributed Naming Structures (cont.)

! Single name space for remote and local

directories

! Names of form: /.../machine/fs/pathname

! Used by:

! CMU!s Andrew, now in OSF!s Distributed

Computing Environment (DCE)

! Berkeley!s Sprite

! File names are always the same, whether
file is remote or local

! As clients access a file, the server sends
a copy to the client!s workstation, and the
workstation caches the file

! In Andrew, local disks are used

! In Sprite, large memories are used, and

workstations are diskless

! More details on these two next time…

! Location independent, not location
transparent

14 Fall 2005, Lecture 14

CMU!s Andrew File System

! Designed by Carnegie Mellon University

! Developed during mid-1980s as part of
the Andrew distributed computing
environment

! Designed to support a WAN of more than
5000 workstations

! Much of the core technology is now part
of the Open Software Foundation (OSF)
Distributed Computing Environment
(DCE), available for most UNIX and some
other operating systems

! Provides transparent access to remote
files on a WAN, for clients running on

UNIX and other operating systems

! Access to all files is via the usual UNIX
file primitives

! Compatible with NFS — servers can
mount NFS file systems

