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Distributed File Systems

! Distributed file system — a distributed

implementation of a file system

! File service — specification of the file
system interface as seen by the clients

! File server — a process running on some
machine which helps implement the file
service by supplying files

! Goals of a distributed file system

! Network transparency

! Provide same operations for accessing

remote and local files

! Ideally, clients should not have to know

the location of files to access them

! Availability / robustness — file service
should be maintained even in the
presence of partial system failures

! Performance — should overcome
bottlenecks of a centralized file system
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Distributed File Systems (cont.)

! In principle, files in a distributed file

system can be stored at any machine

! For increased performance and reliability,
a typical distributed environment has a
few dedicated machines called file
servers that store most of the files
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Review of Some File Concepts

! Logical components of a file

! File name, file attributes, data blocks

! Directory maps file name to file descriptor
(inode in Unix terms)

! File descriptor contains file attributes and
pointers to data blocks

! Basic operations

! Create / delete, open / close, read / write

! Types of file access

! Sequential, direct / random, keyed

! File pointer keeps track of location in file
on a per-process basis

! Two separate concepts:

! File lookup / naming (directory service)

! File access (file service)
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Distributed File System Services —
File Service Interface

! Need operations for creating and

deleting, opening and closing, and

reading and writing, files

! Upload / download model

! File service provides:

! Read — transfer entire file to client

! Write — transfer entire file to server

! Client works on file locally (in memory or
on disk)

"Simple, efficient if working on entire file

# Must move entire file

# Needs local disk space

! Remote access model

! File service provides usual file operations

! File stays on server
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Distributed Naming Structures

! Need operations for name translation,

support for multilevel directories and links

! Location transparency — the name of the
file does not reveal the physical storage
location

! True for many naming schemes

! Location independence — the name of
the file need not change if the file!s
storage location changes

! False for most naming schemes

! Absolute names

! Names of form:  machine : pathname

! Used by:

! Old UNIX distributed file systems

! Current web browsers (e.g., Netscape)

"User can use same tools and file
operations for local and remote access

# Not location transparent or independent
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Sun!s Network File System

! Designed by Sun Microsystems

! First distributed file service designed as a
project, introduced in 1985

! To encourage its adoption as a standard

! Definitions of the key interfaces were

placed in the public domain in 1989

! Source code for a reference

implementation was made available to

other computer vendors under license

! Currently the de facto standard for LANs

! Provides transparent access to remote
files on a LAN, for clients running on

UNIX and other operating systems

! A UNIX computer typically has a NFS
client and server module in its OS kernel

! Available for almost any UNIX and MACH

! Client modules are available for
Macintosh OS and Windows
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Mounting Remote File Systems

! NFS supports mounting of remote file

systems onto a specific location (mount

point) in a client machine!s file system

! NFS does not enforce a single network-
wide name space

! Name space seen by each client may be
different; same file on server may have
different path names on different clients

! A uniform name space (and location
transparency) can be set up if desired
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Mounting Remote File Systems (cont.)

! On each server

! There is a file (usually /etc/exports)
containing the names of local file systems
that are available for remote mounting

! An access list is associated with each
name, and indicates which hosts are
permitted to mount that file system

! On each client

! A modified version of the UNIX mount
command mounts a remote file system

! Based on RPC — specifies remote host

name, pathname of a directory in the

remote file system, and local name where

it is to be mounted

! Mount requests are usually performed

when the system is initialized (booted)

– Usually specified in /etc/fstab

! User may also be able to mount other

remote file systems
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Mounting Remote File Systems (cont.)

! Automounting

! The automounter dynamically mounts a
file system whenever an “empty” mount
point is referenced by a client

! Further accesses do not result in further

requests to the automounter…

! Unless there are no references to the

remote file system for several minutes, in

which case the automounter unmounts it

! Remote file systems may be

! Hard mounted — when a user-level
process accesses a file, it is suspended
until the request can be completed

! If a server crashes, the user-level process

will be suspended until recovers

! Soft mounted — after a small number of
retries, the NFS client returns a failure
code to the user process

! Most UNIX utilities don!t check this code…
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NFS Software Architecture

! Virtual file system:

! Separates generic file-system operations
from their implementation (can have
different types of local file systems)

! Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)
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NFS Protocol

! NFS protocol provides a set of RPCs for

remote file operations

! Looking up a file within a directory

! Manipulating links and directories

! Creating, renaming, and removing files

! Getting and setting file attributes

! Reading and writing files

! NFS is stateless

! Servers do not maintain information about
their clients from one access to the next

! There are no open-file tables on the

server

! There are no open and close operations

! Each request must provide a unique file

identifier, and an offset within the file

! Easy to recover from a crash, but file
operations must be idempotent
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NFS Protocol (cont.)

! Because NFS is stateless, all modified

data must be written to the server!s disk

before results are returned to the client

! Server crash and recovery should be
invisible to client —data should be intact

# Lose benefits of caching

! Solution — RAM disks with battery backup

(un-interruptable power supply), written to

disk periodically

! A single NFS write is guaranteed to be
atomic, and not intermixed with other

writes to the same file

! However, NFS does not provide
concurrency control

! A write system call may be decomposed

into several NFS writes, which may be

interleaved

! Since NFS is stateless, this is not

considered to be an NFS problem
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Distributed Naming Structures (cont.)

! Single name space for remote and local

directories

! Names of form:  /.../machine/fs/pathname

! Used by:

! CMU!s Andrew, now in OSF!s Distributed

Computing Environment (DCE)

! Berkeley!s Sprite

! File names are always the same, whether
file is remote or local

! As clients access a file, the server sends
a copy to the client!s workstation, and the
workstation caches the file

! In Andrew, local disks are used

! In Sprite, large memories are used, and

workstations are diskless

! More details on these two next time…

! Location independent, not location
transparent
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CMU!s Andrew File System

! Designed by Carnegie Mellon University

! Developed during mid-1980s as part of
the Andrew distributed computing
environment

! Designed to support a WAN of more than
5000 workstations

! Much of the core technology is now part
of the Open Software Foundation (OSF)
Distributed Computing Environment
(DCE), available for most UNIX and some
other operating systems

! Provides transparent access to remote
files on a WAN, for clients running on

UNIX and other operating systems

! Access to all files is via the usual UNIX
file primitives

! Compatible with NFS — servers can
mount NFS file systems


