
1 Fall 2005, Lecture 15

File Access & Semantics of Sharing

! Overlapping / interleaving data access

! When data is replicated in space to
increase concurrency, coherency control
is needed to keep the copies coherent

! When data operations are spread out and
interleaved in time, concurrency control is
needed to prevent interference

! Remote access — no local data

! Cache access — small part kept locally

! DL/UL access — whole file is
downloaded for local use, then uploaded

time / space
remote
access

cache
access

down/up load
access

simple RW
no true

sharing

coherency

control

coherency

control

transaction
concurrency

control

concurrency

control

concurrency

control

session
not

applicable

not

applicable

ignore

sharing

2 Fall 2005, Lecture 15

Semantics of Sharing (cont.)

! Alternatives for interleaving file

operations:

! Simple RW — each read & write
operation is an independent request

! Transaction — groups of reads and writes
treated as an atomic action

! Session — sequence of transactions and
simple RW operations, plus additional
semantics

! Three different semantic models:

! UNIX semantics — result of a write goes
immediately to the file, so reads always
return the “latest” value

! Transaction semantics — writes go to
local storage and go to file when and if
the transaction commits

! Session semantics — similar, but writes
go to the file when the session is closed

3 Fall 2005, Lecture 15

Cache Location

! No caching — all files on server!s disk

"Simple, no local storage needed

Expensive transfers

! Cache files in server!s memory

"Easy, transparent to clients

Still involves a network access

! Cache files on client!s local disk

"Plenty of space, reliable

Faster than network, slower than memory

! Cache files in client!s memory

! "The usual solution (either in each
process!s address space, or in the kernel)

"Fast, permits diskless workstations

Data may be lost in a crash

4 Fall 2005, Lecture 15

Cache Modification Policy

! Cache modification (writing) policy
decides when a modified (dirty) cache

block should be flushed to the server

! Write-through — immediately flush the
new value to server (& keep in cache)

"No problems with consistency

"Maximum reliability during crashes

Doesn!t take advantage of caching during
writes (only during reads)

! Write-back (delayed-write) — flush the

new value to server after some delay

"Fast — write need only hit the cache
before the process continues

"Can reduce disk writes since the process
may repeatedly write the same location

Unreliable — if machine crashes,
unwritten data is lost

5 Fall 2005, Lecture 15

Cache Modification Policy (cont.)

! Variations on write-back — when are the

new values flushed to the server?

! Write-on-close — flush new value to the
server only when the file is closed

"Can reduce disk writes, particularly when

the file is open for a long time

#Unreliable — if machine crashes,

unwritten data is lost

#May make the process wait on the file

close

! Write-periodically — flush new value to
the server at periodic intervals (maybe 30
seconds)

"Can only lose writes in last period

6 Fall 2005, Lecture 15

Cache Validation

! A client must decide whether or not a

locally cached copy of data is consistent

with the master copy

! Client-initiated validation:

! Client initiates validity checks

! Client contacts the server and asks if its
copy is consistent with the server!s copy

! At every access, or

! After a given interval, or

! Only on file open

! Server could enforce single-writer,
multiple-reader semantics, but to do so

! It would have to store client state

(expensive)

! Clients would have to specify access type

(read / write) on open

High frequency of validity checks may
mitigate the benefits of caching

7 Fall 2005, Lecture 15

Cache Validation (cont.)

! Server-initiated validation:

! Server records the parts of each file that
each client caches

! Server detects potential conflicts if two or
more clients cache the same file

! Concurrency control for handling conflicts:

! Session semantics — writes are only visible

in sessions starting later (not to processes

which have file open now)

– When a client closes a file that it has

modified, the server notifies the other clients

that their cached copy is invalid, and they

should discard it

» If another client has the file open,

discard it when its session is over

! UNIX semantics — writes are immediately

visible to others

– Clients specify the type of access they want

when they open a file, so if two clients want

to write the same file for writing, that file is

not cached

Significant overhead at the server
8 Fall 2005, Lecture 15

Stateful vs. Stateless

! Stateful server — server maintains state

information for each client for each file

! Connection-oriented (open file, read /
write file, close file)

"Enables server optimizations like read-
ahead (prefetching) and file locking

Difficult to recover state after a crash

! Stateless server — server does not

maintain state information for each client

! Each request is self-contained (file,
position, access)

! Connectionless (open and close are

implied)

" If server crashes, client can simply keep
retransmitting requests until it recovers

No server optimizations like above

File operations must be idempotent

9 Fall 2005, Lecture 15

Caching in NFS

! Traditional UNIX

! Caches file blocks, directories, and file
attributes

! Uses read-ahead (prefetching), and
delayed-write (flushes every 30 seconds)

! NFS servers

! Same as in UNIX, except server!s write
operations perform write-through

! Otherwise, failure of server might result in

undetected loss of data by clients

! NFS clients

! Caches results of read, write, getattr,
lookup, and readdir operations

! Possible inconsistency problems

! Writes by one client do not cause an

immediate update of other clients! caches

10 Fall 2005, Lecture 15

Caching in NFS (cont.)

! NFS clients (cont.)

! File reads

! When a client caches one or more blocks

from a file, it also caches a timestamp

indicating the time when the file was last

modified on the server

! Whenever a file is opened, and the server

is contacted to fetch a new block from the

file, a validation check is performed

– Client requests last modification time from

server, and compares that time to its

cached timestamp

– If modification time is more recent, all

cached blocks from that file are invalidated

– Blocks are assumed to valid for next 3

seconds (30 seconds for directories)

! File writes

! When a cached page is modified, it is

marked as dirty, and is flushed when the

file is closed, or at the next periodic flush

! Now two sources of inconsistency: delay
after validation, delay until flush

11 Fall 2005, Lecture 15

Caching in Andrew

! When a remote file is accessed, the

server sends the entire file to the client

! The entire file is then stored in a disk
cache on the client computer

! Cache is big enough to store several

hundred files

! Implements session semantics

! Files are cached when opened

! Modified files are flushed to the server
when they are closed

! Writes may not be immediately visible to
other processes

! When client caches a file, server records

that fact — it has a callback on the file

! When a client modifies and closes a file,
other clients lose their callback, and are
notified by server that their copy is invalid

12 Fall 2005, Lecture 15

How Can Andrew Perform Well?

! Most file accesses are to files that are

infrequently updated, or are accessed by

only a single user, so the cached copy

will remain valid for a long time

! Local cache can be big — maybe 100

MB — which is probably sufficient for one

user!s working set of files

! Typical UNIX workloads:

! Files are small, most are less than 10kB

! Read operations are 6 times more
common than write operations

! Sequential access is common, while
random access is rare

! Most files are read and written by only
one user; if a file shared, usually only one
user modifies it

! Files are referenced in bursts

